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Abstract

Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion
during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells.
We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure
reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-
domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by
residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting b-strands F
and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD
and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to
gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1
homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers
HSV entry through receptor-mediated displacement of the gD C-terminal region.
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Introduction

Herpes simplex virus (HSV) enters cells by fusing its envelope

with a membrane of the host cell [1]. Five viral envelope

glycoproteins participate in the cell entry process. First, glycopro-

tein C (gC) and gB promote attachment by interacting with cell

surface proteoglycans, then gD binds to a specific receptor [2,3].

The gD-receptor interaction initiates the process that ultimately

leads to gB-mediated membrane fusion [4,5]. Depending on the

cell type, fusion occurs at the cell surface or, after endocytosis of

virions, with an endosomal membrane in a low pH-dependent or

independent manner [6,7]. Regardless of the entry pathway gD,

gB, gH/gL and a cellular gD receptor are required for entry [8].

Several cell surface molecules can bind gD and mediate HSV

entry into human cells [1]. The immune modulator HVEM

(herpesvirus entry mediator) is a member of the Tumor Necrosis

Factor Receptor (TNFR) family and is used by wild type (wt) HSV

type 1 (HSV-1) and HSV-2 [9]. HVEM was the first described

herpes simplex virus receptor and is expressed at low levels on

fibroblasts and on ocular cell types [10,11,12]. However, the cell

adhesion molecule nectin-1 (HveC, CD111) is the primary

receptor for HSV-1 and HSV-2 on neurons, keratinocytes and

epithelial cells [12,13,14,15]. In addition, HSV-1 gD binds to

heparan sulfate (HS) specifically modified by 3-O-sulfotransferases

(3-OS-HS) [16]. Recently it has been shown that the interaction

between gD and its receptor is not only required to trigger the

HSV fusion machinery but also to direct the virus to the endocytic

pathway in some cell types [6,17,18,19,20].

We previously reported the structure of HSV-1 gD alone and

bound to HVEM [21,22]. The gD ectodomain consists of 316

residues and is formed by a core with a variable-type immuno-

globulin fold (IgV, residues 55 to 185) that is wrapped by a N-

terminal extension and a C-terminal proline-rich extension. The

first 20 N-terminal residues are flexible and extended in the

receptor-free form of gD. However, when gD is bound to HVEM

these residues fold back to form a hairpin structure that contains

all the amino acids contacting this receptor [21,23]. The first 32

N-terminal residues of gD are also involved in binding to 3-OS-HS

but are dispensable for nectin-1 binding and usage [24].

The C-terminal extension of the gD ectodomain past residue

255 is also flexible and its location and structure were determined

after stabilization in a disulfide-bonded gD dimer [22]. In this
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receptor-free structure, the C-terminal region folds back around

the core towards the N-terminus and amino acids 280 to 306 fill

the space occupied by the N-terminal first 20 residues of gD in the

gD/HVEM complex. In this conformation, the C-terminal gD

amino acids were positioned directly over several residues

previously implicated in nectin-1 binding [22]. Despite the key

insights into the gD/Nectin-1 interaction obtained from muta-

genesis studies a structural model for the gD/Nectin-1 complex

has been missing.

The nectin-1 ectodomain spans residues 31 to 346 forming

three domains with an Ig-like fold (V-C1–C2) and contains 8

potential sites for N-linked oligosaccharides [25,26]. Chimeric

receptor molecules were used to show that the binding site for gD

involves mainly the N-terminal V-domain of nectin-1 (residues 31–

143) [27,28] and that residues 64–94 in particular are part of the

binding epitope [29]. In addition, linear epitopes of two

neutralizing monoclonal antibodies directed at nectin-1, CK6

and CK8, were mapped to residues 80–105 [30].

Nectin-1 form cis-dimers at the cell surface to interact with

nectin-1 or other nectin family members in trans (different cells) at

cell junctions [31]. The crystal structure of the nectin-1

ectodomain has revealed that the V-domain mediates receptor

dimerization [26] and it was proposed that these dimers may be

representative of the nectin-1 cis-interaction [26]. Importantly,

HSV gD has been shown to interfere with nectin-1 mediated cell-

adhesion [28,32,33].

Given the importance of the gD/Nectin-1 interaction in HSV

entry and the need to gain insights into how two structurally

different receptors, nectin-1 and HVEM, trigger HSV entry we

sought to obtain a molecular view of the interaction between gD

and nectin-1. Here we present the structure of the gD/Nectin-1

complex determined by x-ray crystallography to 4.0 Å resolution

and accompanying mutagenesis data. The comparison of the new

structure with the previously determined gD/HVEM and

unliganded gD structures suggests a common mechanism of

receptor-induced conformational changes as a trigger of HSV

membrane fusion.

Results

Structure determination and refinement
Truncated forms of the gD ectodomain (gD285t, residues 1–

285; gD306t, residues 1 to 306; and gD316t, residues 1 to 316) and

the full length nectin-1 ectodomain (residues 31–345; Fig. 1A)

were used for complex formation and crystallization. Crystals were

obtained for the gD285t/Nectin-1 complex whereas the longer

forms of gD (i.e. gD306t or gD316t) failed to produce crystals.

Previous experiments have demonstrated a 20–40 fold decreased

affinity for nectin-1 by gD306t (KD = 1.8 mM) compared to the

shorter gD285t (gD285; KD = 70 nM) [22]. This decreased affinity

and the intrinsic flexibility of C-terminus of the gD ectodomain

may have hindered crystallization of the longer forms. In addition,

crystals from the gD285t/Nectin-1 complex could not be easily

reproduced. The nectin-1 ectodomain contains several consensus

N-glycosylation sites (Fig. 1A) and heterogeneity in glycosylation

may interfere with crystallization [26]. However, attempts to

reduce protein heterogeneity by enzymatically deglycosylating

nectin-1 produced in insect or mammalian cells did not facilitate

crystallization. Ultimately, a 4.0 Å resolution data set was collected

and the structure was determined by the molecular replacement

method with the program Phaser [34] and refined with Refmac

[35] to an Rfree of 28.9% and Rwork of 26.5% (Table S1 and

Fig. S1).

Overall structure of the gD/Nectin-1 complex
The crystals belong to the P3221 space group and contain three

gD/Nectin-1 complexes per asymmetric unit. Two complexes

form a dimer around a two-fold non-crystallographic symmetry

(NCS) axis (Fig. S2) and the third complex forms an equivalent

dimer with a crystallographically related molecule. Experiments

with purified proteins in solution suggest that these dimers might

have formed in the crystals as a result of the high protein

concentration and crystal packing interactions and are unlikely to

be biologically relevant (see below).

The structure shows a direct interaction between one monomer

of gD and one of nectin-1 (Fig. 1B). No electron density was

observed for residues 1 to 22 and 251 to 285. Both regions are

known to be flexible and are presumably disordered in the crystals.

In the gD285t/HVEM complex the same C-terminal region of gD

was disordered [21]. Moreover, deletions within the first 32

residues of gD do not impair nectin-1 binding and HSV entry in

nectin-1 expressing cells [36].

The gD binding site is located exclusively within the N-terminal

V-domain of nectin-1, validating previous predictions from in vitro

binding and infection assays [27,28,37]. The nectin-1 V-domain

major axis forms an angle of almost 90u with the long axis of the

gD IgV-core while the C1 domain points away from gD. The

elbow angle between the V and C1 domains is the same as that

observed in the unliganded form of nectin-1 [26] and differs by

approximately 15u from what was observed in the structure of the

closely related poliovirus receptor (necl-5, CD155) (Fig. S3) [38].

The C2 domain, though present in the crystals of the complex, was

not visible in the electron-density maps and is likely to be

disordered in the crystals.

The gD/Nectin-1 interface
Nectin-1 interacts with gD mainly through the side chains of

exposed residues. A total of 1665 Å2 of surface area, 829 Å2 in

nectin-1 and 836 Å2 in gD, are buried in the complex. This value

is within the range observed for other protein/protein complexes

and viral glycoprotein/receptor complexes [21,39,40,41]. Nectin-

1 contacts gD exclusively with one b-sheet of the V-domain

Authors Summary

Herpes simplex virus (HSV) is a widespread human
pathogen. Four viral glycoproteins (gD, gB, gH/gL) are
required for HSV entry into host cells. gD binding to a cell
surface receptor triggers conformational changes in the
other viral glycoproteins leading to membrane fusion and
viral entry. Two structurally unrelated cellular protein
receptors, nectin-1 and HVEM, can mediate HSV entry
upon binding to gD. The structure presented here reveals
the molecular basis for the stable interaction between
HSV-1 gD and the receptor nectin-1. Comparison with the
previously determined structures of the gD/HVEM complex
and unliganded gD shows that, despite the fact that the
two receptors interact with different binding sites, they
both cause a similar conformational change in gD.
Therefore, our data point to a conserved mechanism for
receptor mediated activation of the HSV entry process. In
addition, the gD/Nectin-1 structure reveals that the gD-
binding site overlaps with a surface involved in nectin-1
homo-dimerization. This observation explains how gD
interferes with the cell adhesion function of nectin-1.
Finally, the gD/Nectin-1 complex displays similarities with
other viral ligands bound to immunoglobulin-like recep-
tors suggesting a convergent mechanism for receptors
selection and usage.

Structure of HSV-1 gD Bound to Nectin-1
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(strands C0C9CFG) and the intervening loops (Fig. 1B). This b-

sheet forms an extensive interface with residues from the C- and

N-terminal extensions of gD. In particular, the upper part of b-

strands C0C9 is close to two short gD b-strands (b2, residues 35–38

and b3, residues 219–221) whereas at the bottom part the same

strands are in proximity with two short gD helical turns (g1,

residues 199–201 and g2, residues 214–217).

Additional contacts are established by the loop connecting

strands F and G of the nectin-1 V-domain. In particular, a

prominent interaction involves Phe129, at the tip of the FG loop,

which protrudes into a pocket formed by residues from the long

a3-helix flanking the IgV-like core of gD and the side chain of

Phe223 (Fig. 1B and Fig. 2A, B). Direct interaction with the gD

IgV-core is limited and involves only nectin-1 strand C0 and the

side chains of gD Gln132.

The gD/Nectin-1 structure and previous mutagenesis
studies

The structure of the gD/Nectin-1 complex explains the results

of previous mutagenesis experiments. On the nectin-1 V-domain,

strands C0C9C were predicted to be involved in gD binding based

on epitope mapping and chimeric receptor analysis [29,30,36,42]

(Fig. 1B). In addition, site-directed mutagenesis identified residues

important for nectin-1 binding and usage between positions 64

and 94 [29]. Notably, nectin-1 residues Asn77 and Met85, which

mutations to alanine hindered HSV entry [43], are now found at

the interface with gD (Fig. 2A). On gD a number of residues have

been shown to affect nectin-1 binding (Fig. 2A, B). For instance,

gD Tyr38 side chain, a critical residue for nectin-1 binding, is

located near the receptor C0 strand and Met85 (Fig. 2A).

Furthermore, residues Asp215 and Arg222/Phe223 of gD, contact

the receptor b-strands C0C9 and the FG loop respectively. The

structural data explain the phenotype of a triple mutant of gD,

which combined mutations of these residues prevent nectin-1

usage [36,44]. In particular, the side chain of Arg222 of gD is in

salt bridge distance of nectin-1 Glu125 (Fig. 2A) consistent with

the decrease in gD/Nectin-1 binding affinity seen when Arg222

was mutated to alanine [45,46]. Finally, mutation of nectin-1

Phe129 to leucine, a structurally conservative mutation, was found

to impair gD binding, although this form of nectin-1 retained some

receptor activity [26,47]. The gD/Nectin-1 structure demonstrates

the critical location of this residue at the interface with gD.

Figure 1. Structure of the gD/Nectin-1 complex. A. Schematic representations of human nectin-1 and HSV-1 gD. Signal peptides are shown as
white boxes and transmembrane regions are shown as hatched boxes. Lollipops represent N-glycosylation sites. For nectin-1, numbering starts at
methionine 1 of the open reading frame while for gD it starts at lysine 1 of the mature glycoprotein. Arrowheads indicate the location of truncations
for production of nectin-1(346t), gD285t, gD306t and gD316t. Nectin-1 is colored in violet with a region previously implicated in gD binding colored
in red. The gD Ig core is in shown in yellow, residues forming the HVEM binding hairpin are in green, residues 39 to 55 from the N-terminal extension
are in dark grey, residues 185 to 250 from the C-terminal extension are in light gray and residues 251 to 316 are in red. B. Ribbon representation of
the gD/Nectin-1 complex. The color code is the same as in Fig. 1A. The secondary structure elements are labeled as in Carfi et al. [21]. The b-strands
are labeled according to the Ig V-fold. Unsolved loops in the distal portion of the nectin-1 C1 domain are drawn as dotted lines.
doi:10.1371/journal.ppat.1002277.g001

Structure of HSV-1 gD Bound to Nectin-1
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Comparison of the gD/Nectin-1 and Nectin-1/Nectin-1
interface

The structures of the nectin-1 dimer and the gD/Nectin-1

complex reveal similarities between their interfaces. Indeed gD

contacts many of the same residues involved in nectin-1

dimerization (Fig. 2A, C) and buries a similar surface area on

the receptor (1665 Å2 vs. 1686 Å2) (Fig. 2D). In the nectin-1

homo-dimer several hydrogen bonds, two salt bridges (between

Lys75 and Glu135), and a number of van der Waals interactions

involving Thr63, Phe129 and Met85 are present [26] (Fig. 2C). In

the complex, both Thr63 and Phe129 of nectin-1 establish van der

Waals interactions with Phe233 of gD whereas Met85 is in

Figure 2. The gD/Nectin-1 and Nectin-1/Nectin-1 interfaces. A. Representation of the gD/Nectin-1 interface with key contact residues labeled
and displayed in stick representation. Nectin-1 and gD are colored as in Fig. 1. B. Surface representation of gD showing the interface with nectin-1. gD
is colored as in Fig. 1 with the nectin-1 contact area represented in blue and magenta. Mutations of residues colored blue have been shown to affect
nectin-1 binding. Involvement of residues colored magenta has not previously been proposed. Most of the contacts involve residues from the gD C-
terminal extension and, Y38 and Q27 from the N-terminal extension. C. Representation of a portion of the nectin-1 dimer interface (pdb-id 3ALP).
Residues involved in key dimer interactions and that are involved in the gD/Nectin-1 interface are shown in stick representation. One monomer of
nectin-1 is colored orange with black labels and the other is in pink with gray labels. D. Surface representation of the nectin-1 V-domain highlighting
residues involved in either gD binding (magenta, left panel) or nectin-1 dimerization (orange, right panel).
doi:10.1371/journal.ppat.1002277.g002

Structure of HSV-1 gD Bound to Nectin-1
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proximity of gD Tyr38. In addition, in the nectin-1 homodimer

two inter-molecular salt bridges between Lys75 and Glu135 are

present whereas two Glu125 residues make a potentially

unfavorable interaction as they are buried at the dimer interface

(Fig. 2C). In the complex, the nectin-1 Lys75-Glu135 salt bridge

forms intra-molecularly and a new inter-molecular salt bridge is

formed between Glu125 of nectin-1 and Arg222 of gD. Therefore,

nectin-1 binding to gD leads to the replacement of the potentially

unfavorable Glu125-Glu125 interaction at the nectin-1 dimer

interface and formation of a new salt bridge (Fig. 2A, C).

Stoichiometry of the gD/Nectin-1 complex and effects of
gD binding on nectin-1 homo-dimerization

The b-sheet of the nectin-1 V-domain that contacts gD has

been implicated in mediating homophilic and heterophilic trans-

interactions in other Ig-superfamily members involved in cell

adhesion (e.g. necl-1 [48], CAR [49], JAM [41] and SLAM [50]).

The same surface on the nectin-1 V-domain has been shown to

mediate its dimerization [26] (Fig. 2D). Together these data are

consistent with gD binding preventing nectin-1 from interacting

with itself as previously suggested by size exclusion chromatogra-

phy (SEC) experiments [25,28].

To analyze the stoichiometry of gD/Nectin-1 binding in

solution and to gain further insights into the effects of gD binding

on nectin-1 oligomerization and homophilic interaction, we

combined SEC with multi-angle light scattering analysis (MALS).

Differently from SEC, which is dependent on the hydrodynamic

radius of molecules, MALS is not affected by the shape of the

molecules and provides with the absolute molar mass of the

particles measured. The elution volume of the nectin-1 ectodo-

main (MW 40 kDa) in SEC experiments suggested an apparent

MW of 115 kDa, however MALS revealed a MW of 71 kDa (data

not shown). Together these data are consistent with nectin-1

forming an elongated dimer in solution as revealed by the crystal

structure [26]. MALS of the gD/Nectin-1 complex yielded a MW

of 72 kDa in line with the formation of a 1:1 complex of

monomers (data not shown). These analyses are in agreement with

previous experiments demonstrating that gD binding prevents

functional nectin-1 homo-dimerization and interferes with nectin-

1 mediated cell adhesion [32,33] and support the notion that the

gD/Nectin-1 dimers, seen in the crystals, are not formed in

solution (Fig. S2).

Mutations of nectin-1 and effect on gD binding
To gain additional insight into the involvement of specific

amino acids in the formation of a stable gD/Nectin-1 complex and

to assess the relative contribution of the CC9C0 region versus the

FG loop, we targeted four nectin-1 residues located at the interface

with gD for mutagenesis. We hypothesized that the CC9C0 region

would rely less on single residues for binding and that the

protruding phenyl ring of Phe129 was critical for function. Thus

we selected Thr66, Asn82, Ser84 in the CC9C0 region and Phe129

at the tip of the FG loop (Fig. 2A). Ser84 was mutated to tyrosine

(S84Y) or arginine (S84R), Asn82 was mutated to a threonine

(N82T) and Thr66 to glutamine (T66Q). The changes in the size

of the side chains at these positions were designed to destabilize the

interaction with gD either by steric obstruction or by interfering

with the formation of hydrogen bonds. On the other hand, the

structure predicted that mutation of Phe129 to serine (F129S) or

alanine (F129A) should prevent formation of favorable hydropho-

bic contacts and potential stacking interactions. In this context

F129W is considered a conservative mutation. Importantly,

Asn82, Ser84 and Phe129 are located in exposed positions in

nectin-1 and we considered it unlikely that their mutation would

affect the folding of the receptor.

To analyze the effects of these mutations on binding of nectin-1

to gD in vitro, we produced chimeras comprising the nectin-1 V-

domains (aa 31–146) fused at its C-terminus to the maltose binding

protein (N1V-MBP). We first analyzed the ability of the N1V-

MBP proteins to bind gD by ELISA (Fig. 3A). While S84R and

T66Q nectin-1 mutants bound to gD(285t) similarly to wt, S84Y

and N82Y mutation markedly decreased binding. Furthermore,

the aromatic side chain at Phe129 was critical for gD complex

formation as F129S mutation severely compromised gD binding

while F129W did not (Fig. 3A).

We next analyzed the ability of mutant N1V-MBP proteins to

interact with gD on virions. We tested whether the purified soluble

receptors blocked HSV entry into cells by competing with cell

surface nectin-1. We used HeLa cells as targets since soluble

nectin-1 V-domain produced in baculovirus efficiently blocked

entry in these cells [30]. Consistent with the ELISA results,

proteins with the mutations F129S or N82Y failed to block entry

(Fig. 3B). Mutation S84Y had intermediate blocking activity,

which correlated with its reduced binding to gD. The other

mutants (F129W, S84R and T66Q), which bound gD like the wt

protein by ELISA, retained the ability to block virus entry. These

observations indicates that these mutants bind virion gD with

sufficient affinity to compete with cell surface nectin-1 for binding

to gD on the viral envelope.

Nectin-1 mutations and CK41 MAb binding
We determined the effects of nectin-1 mutations on binding to

the conformation-dependent MAb CK41. This antibody blocks

binding of nectin-1 to gD and efficiently prevents nectin-1 usage

for HSV entry [30]. We therefore anticipated that mutations

designed to prevent gD binding would also affect the interaction

with CK41. Indeed mutations that affected gD binding (i.e. S84Y,

N82Y and F129S) also hindered CK41 binding (Fig. 3C). In

addition, since the conserved mutation F129W decreased CK41

recognition by 50%, without affecting gD binding, we infer that

Phe129 is likely part of the CK41 epitope. Change of Ser84 to

arginine does not affect CK41 detection, while a change to

tyrosine decreased binding of this MAb. Overall these data mirror

the binding properties of these nectin-1 mutants to gD and are

consistent with the prediction that the CK41 epitope involves

residues critical for gD binding [30].

Mutations of nectin-1 affect its function as an HSV
receptor

To further assess the functional role of individual residues at the

gD/Nectin-1 interface, we tested a subset of mutants in a viral

entry assay. Mutations were engineered in full-length nectin-1 and

transfected into receptor-negative B78H1 mouse melanoma cells

[32]. Upon transient expression of wt nectin-1, B78H1 cells

become susceptible to HSV entry (Fig. 4A) [32]. While all tested

mutants allowed some level entry of HSV-1 KOS tk12 in a dose

dependent manner, mutants F129S and F129A exhibited a

marked decrease in entry compared to wild type (Fig. 4B). These

results are consistent with the reduced binding affinity of the

mutated receptor to gD. Nectin-1 mutants N82Y and S84Y were

only partially reduced in their ability to support HSV entry despite

exhibiting profound decrease in N1V-MBP binding to gD by

ELISA. Such a discrepancy between binding and entry function

has been previously observed [47,51]. It is likely that the decrease

in affinity observed between the purified proteins is less critical in

the context of the cell-virus interaction due to avidity effects (i.e.

HSV binding to multiple receptor molecules and to cell surface

Structure of HSV-1 gD Bound to Nectin-1
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HS) thus making the entry assays more permissive [47,51].

Overall, however, the phenotypes of the mutants agreed with their

importance for stabilizing the interface indicated by the structure

of the complex.

Nectin-1 and HVEM binding sites on gD are mutually
exclusive and require the displacement of gD C-terminal
region

Comparison of the gD/Nectin-1 and gD/HVEM structures

reveals that the two receptors bind to different but overlapping sites.

Although each receptor buries a comparable area on gD, for the

most part their binding sites do not involve common residues. In fact,

the binding site of HVEM is located exclusively within the first 32 N-

terminal residues of gD that are folded in a hairpin-like structure

[21]. The same hairpin does not form in the nectin-1 complex,

rather the first N-terminal 22 residues of gD point towards the

solvent (Fig. 5A–D). However, a large portion of the gD surface

contacted by nectin-1 would be covered by these N-terminal residues

if they were adopting the same hairpin structure observed in the gD/

HVEM complex (Fig. 5A–D). Thus the structural comparison

reveals that nectin-1 and HVEM bind to different sites on gD but

the binding of one receptor should prevent the binding of the

other.

The unliganded gD structure showed the C-terminal residues

268–306 wrapped around the gD core (Fig. 5E) [21,22]. Notably,

in this position, these residues cover a large portion of the nectin-1

Figure 3. Effect of nectin-1 mutations on binding to gD. A. Binding of purified gD(306t) to immobilized N1V-MBP by ELISA. Dilutions of gD
were added to the same amount of immobilized N1V-MBP proteins. Bound gD was detected with polyclonal rabbit serum R8. B. Blocking of entry of
HSV-1 KOS-tk12 into HeLa cells with soluble N1V-MBP proteins. Virus was preincubated with various concentrations of the indicated purified proteins
for 1h and then added to HeLa cells. Entry was monitored 6h post infection by measuring b-galactosidase activity. The results are reported as percent
of b-galactosidase signal compared to infection in the absence of soluble inhibitor (dotted line). A representative experiment is shown. C. Antigenic
characterization of N1V-MBP mutants by ELISA. The purified wt fusion protein and each mutants were captured by the indicated immobilized anti-
nectin-1 Ig and detected with anti-MBP antibody conjugated to HRP. Detection of each mutant is represented as percent of wt detection. An average
of at least 5 experiments is shown with standard deviation.
doi:10.1371/journal.ppat.1002277.g003

Figure 4. Effect of nectin-1 mutations on HSV entry. A. Receptor
negative B78H1 cells were transfected with full-length nectin-1 carrying
the indicated mutations. HSV KOS-tk12 virus was added at various MOI.
Entry was recorded 6h post infection by measuring b-galactosidase
activity. A representative experiment is shown. Background signal from
mock-transfected cells is also shown. B. Summary of all the entry data at
an MOI of 5 pfu/cell. Levels of entry into cells expressing nectin-1
mutants are reported as the percentage of entry into B78H1 cells
transfected with wt nectin-1. An average of 6 experiments is shown
with standard deviation.
doi:10.1371/journal.ppat.1002277.g004
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binding site (Fig. 5A, B and E). Therefore, formation of the gD/

Nectin-1 complex requires disruption of the contacts between the

core and the C-terminus of the gD ectodomain [22,52].

Interestingly, this separation is also required for the formation of

the HVEM-binding N-terminal hairpin of gD (Fig. 5C and E)

[22].

Discussion

The structure and mutagenesis data reported here provide the

molecular basis for the interaction between gD and its cellular

receptor human nectin-1. The structure shows the key features of

the interface between the nectin-1 V-domain and the core of gD

Figure 5. Unliganded gD and gD/receptor complexes. A, B. Surface representation of gD bound to nectin-1, with nectin-1 removed (A) or
present (B). Residues 23–38 of gD are colored light green, the V-domain (residues 56–185) is colored yellow and the other residues from N-terminal
(residues 39–55) and C-terminal (residues 186–250) extensions are in gray. Residues buried by nectin-1 in the gD/Nectin-1 complex are colored in
dark blue. The V domain of nectin-1 is colored violet and the C1 domain is pink. C, D. View of gD bound to HVEM with HVEM removed (C) or present
(D). Colored as in panel A with the N-terminal region involved in HVEM binding colored in dark green (residues 1 to 16) and in light-green (residues
17–38). Residues 1–16 of gD, which were not localized in the gD/Nectin-1 structure, fold back to form a hairpin structure when HVEM is bound. In the
latter conformation, these residues mask the nectin-1 binding site. HVEM is shown in light blue. E. Conformation of unliganded gD colored as in
panel A with residues 260–306 from the C-terminal extension colored in red.
doi:10.1371/journal.ppat.1002277.g005
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[28]. The binding site for gD overlaps with a nectin-1 dimerization

interface explaining how gD interferes with the cell-adhesion

function of this receptor. In addition, the gD/Nectin-1 complex

reveals structural similarities with other viral ligands bound to

receptors with an Ig-like fold, thus pointing to a convergent

mechanism for receptor selection and usage by otherwise

unrelated viruses. Importantly, comparison of the gD/Nectin-1

structure with the previously determined gD/HVEM structure

indicates that despite contacting different amino acids the two

receptors compete for binding to gD. Finally, a comparison

between the two gD-receptor structures and the unliganded gD

structure provides additional insights into the mechanism of

receptor-mediated activation of the HSV fusion machinery.

The gD/Nectin-1 interface
The gD/Nectin-1 structure confirms the presence at the

interface of a number of gD residues that were previously

identified by mutagenesis to be important for nectin-1 usage and

HSV entry [36,44,46,53]. gD contacts a large surface on the

nectin-1 V-domain composed mainly by residues from the

C0C9CFG b-sheet. In other cell adhesion molecules of the Ig-

superfamily this same region is involved in homophilic and

heterophilic trans-interactions and nectin-1 uses the same surface

to homo-dimerize [26]. Therefore, and in agreement with our

SEC/MALS data, formation of the gD/Nectin-1 complex

requires dissociation of the nectin-1 dimers. Consistent with these

findings, gD can prevent nectin-1 mediated cell aggregation [32]

and HSV infection is favored by prior disruption of cell junctions

[54].

Notably, non-enveloped adenovirus, reovirus and measles virus

bind to a similar epitope on their respective receptors, the Ig-like

cell-adhesion receptors CAR, JAM-A and SLAM (Fig. 6A–D)

[50,55,56,57]). Similarly to HSV, these viruses disrupt the

homophilic trans-interactions of their receptors [41,49]. Binding

to cell-adhesion molecules may ultimately favor release of these

viruses by opening intercellular junctions [58].

Contribution of nectin-1 phenylalanine 129 to gD
binding

On the nectin-1 side, point mutations of residues in the C0C9C

region can affect binding to gD (e.g. S84Y, N82Y); however, they

have limited effects on nectin-1 as a mediator of HSV entry. This

suggests that the interactions established by single amino acids in

this region may not be critical for function. Indeed, the same

Figure 6. Similarities in the interactions between adhesion molecules with Ig-like fold and viral receptor-binding proteins. The Ig-like
domains of the receptors are shown in similar orientation and colored in red with the region that appears most structurally variable in cyan. A.
Nectin-1 V-domain bound to HSV gD (gold). B. Coxsackie and Adenovirus receptor, CAR, domain D1 bound to Ad12 of adenovirus (blue) (pdb-id
1KAC). C. Junctional adhesin molecule-A, JAM-A, domain D1 bound to reovirus s1 (green) (pdb-id 3EOY). D. Signaling lymphocyte activation
molecule, SLAM, bound to measles virus hemagglutinin, MV-H, (purple) (pdb-id 3ALX).
doi:10.1371/journal.ppat.1002277.g006
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conclusion can be drawn from the gD side where multiple

mutations are needed to abolish nectin-1 usage [36,44]. This is

quite different from the role of Phe129 at the tip of the FG loop of

the nectin-1 V-domain. Mutations of Phe129 to alanine showed

that this residue plays an important role for tight gD binding and

for HSV entry. Of note, Phe129 protrudes into a pocket on the gD

surface occupied in the unliganded gD by the C-terminal residue

Trp294 (Fig. 7). Therefore, nectin-1 Phe129 effectively substitutes

for gD Trp294 and provides a key contribution to the stable

displacement of the gD C-terminal region.

Importantly, Phe129 is conserved in the poliovirus receptor

necl-5 and nectin-2, consistent with the finding that a chimera

composed of the necl-5 or nectin-2 V-domain where strands C0C9

were replaced with the corresponding residues of nectin-1 retains

binding to gD and allows HSV infection [29,59]. The equivalent

FG loop in necl-5 has been shown to be at the interface with

poliovirus and to be important for poliovirus binding [38],

pointing to a conserved feature in the interaction between HSV

and poliovirus with their respective receptors.

Comparison with the gD/HVEM complex and implication
for gD activation

Nectin-1 and HVEM are two gD receptors that belong to

different structural families. Consistently, the gD/Nectin-1

complex shares only limited similarity with the gD/HVEM

complex (Fig. 5). The binding site of nectin-1 on gD differs

dramatically from that of HVEM. The latter contacts only

residues within the first N-terminal 32 residues of gD folded in a

hairpin-like structure and the interaction involves several hydro-

gen bonds through main and side chain atoms [21]. The nectin-

1 V-domain, instead, contacts a large surface on gD formed

mostly by residues from the C-terminal extension and some amino

acids from the N-terminal region. However, structural superpo-

sition of the two gD-receptor structures reveals that most of the

residues involved in nectin-1 binding are buried by the gD-N-

terminal residues in the gD/HVEM complex (Fig. 5). Thus,

despite their considerably different binding sites, each receptor is

likely to interfere with binding of the other. Indeed soluble nectin-

1 can block virus entry in HVEM expressing cells [60].

A comparison between the gD-receptor complexes and the

structure of unliganded gD provides additional insights in the

mechanism of receptor-mediated activation of gD. In the absence

of receptors residues from the gD C-terminal region (residues 285–

306) are anchored by Trp294 on the core of gD. In this

conformation, the C-terminus of gD occludes the nectin-1 binding

site and fills the space occupied by gD N-terminal residues in the

gD/HVEM complex. This is consistent with the increase receptor

affinity of the C-terminally truncated form of gD used in this study

compared to the full length molecule [25,61]. Therefore, for both

receptors complex formation requires the displacement of residues

from the gD C-terminal region.

Role of the C-terminus of the gD ectodomain
During HSV entry, gD interacts with gH/gL and possibly gB

[4,62,63] but how gD triggers conformational changes in the other

glycoproteins remains unclear. Several observations point to a key

role of the gD C-terminal region. A soluble gD molecule

encompassing the entire ectodomain allows entry of a gDnull

virus (i.e. devoid of envelope gD) in receptor expressing cells,

whereas a truncated form of gD lacking residues 260–316 does not

[64]. Moreover, mutagenesis data showed that the C-terminal

region is essential for virus entry [52,62,64,65,66]. These data

support a role for the gD C-terminal region in activation of the

fusion/entry process. They also suggest a critical role for this

region for the interaction with other viral glycoproteins. Exposure

of the C-terminal region upon receptor binding therefore provides

a timely and cell specific trigger for the activation of the HSV

entry process. The conformation of the C-terminus in receptor-

bound gD has not been determined due to its high flexibility.

Remarkably, gD has been engineered to bind alternate

receptors [67,68,69,70]. Heterologous ligands such as uPA,

IL13, and a single chain antibody to HER-2 were engineered in

at least three different regions in the gD-N-terminus or replaced

the entire gD Ig core. All these ligands are able to mediate entry of

HSV virions carrying the chimeric forms of gD in cells expressing

the respective receptors. In the absence of structural data on such

chimeras, one can only speculate on their mechanism of action

during entry. Even in the most extreme recombinant [70], the N-

Figure 7. Functional pocket on the surface of gD. Comparison between unliganded gD and gD/Nectin-1 complex. gD N-terminal residues 23–
38 are green, the Ig-like V-domain is colored yellow (aa 56–185), the C-terminal region (aa 268–306) is shown in red and the remaining residues are
white. A. In unliganded gD, the C-terminus of the ectodomain (red) is maintained in place by the insertion of Trp294 into a pocket made of the gD N-
terminal residues, the a3-helix and residues from the Ig-core. This interaction is critical for function. B. The side chain of Phe129 (purple) located on
the FG loop of the nectin-1 V-domain protrudes into the same pocket in the complex with gD. This binding configuration is not compatible with the
native position of the gD C-terminus.
doi:10.1371/journal.ppat.1002277.g007
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terminal and C-terminal extensions to the Ig core are maintained

for activity [71]. Thus, these regions likely contain the necessary

sites for binding and activation of the other viral glycoproteins. In

the engineered gDs the C-terminus may be exposed upon

exogenous receptor binding in a way that is very similar to the

model supported by our studies for wt HSV. Alternatively, this

functional region may already be exposed in these molecules so

that exogenous receptor binding would solely allow the close

proximity of viral and cell membranes. In such a situation,

expressing a pre-activated gD may lead to a decrease in viral

fitness by diminishing the selectivity for target cells. It is likely that

HSV evolved to unmask the gD C-terminus only upon receptor

binding to ensure efficient tropism in the host. Of note, the initial

analysis of the structural organization of gD revealed that the Ig-

core acts as structural support to the functional C- and N- terminal

regions and suggested that it inserted in an ancestor molecule

formed by the N- and C- terminal extensions [21]. The results

obtained with the above engineered gDs are consistent with such

hypothesis.

In summary, our data reveal the molecular basis for the gD/

Nectin-1 interaction. This new structure shows how nectin-1 and

HVEM, albeit belonging to different structural families and

establishing different interactions with gD, similarly cause the

disruption of intra-molecular contacts between the gD C-terminal

region and the rest of the molecule thus leading to activation of the

entry process through a conserved mechanism. The structure of

the gD/Nectin-1 complex also provides a frame to design of

inhibitors that would block HSV entry and infection.

Materials and Methods

Complex purification
Production of gD-1 KOS (residues 1 to 285, gD(285t)) and

human nectin-1 (residues 31–346, gD(346t)) using recombinant

baculoviruses and their purification were described previously

[21,25]. The complex used for crystallization experiments was

formed by mixing purified gD and nectin-1 in a 1.3:1 molar ratio.

Unbound gD in excess was removed by size exclusion chroma-

tography (SEC) on a analytical Superdex-200 column in 20mM

TRIS-HCl pH 8.0 buffer and 300mM NaCl. The complex, which

eluted as single peak from the SEC step, was concentrated to

3.5mg/ml and stored at 4uC prior to crystallization.

Crystallization and data processing
The gD/Nectin-1 complex was crystallized by the vapor

diffusion method with 1.0M Na2HPO4/KH2PO4 pH 7.2 and

300mM NH4SO4 as precipitating agents. SDS gels and N-

terminal sequencing on washed crystals confirmed the presence of

the full-sized proteins. The crystals had a very low reproducibility,

suffered from strong anisotropy and the great majority diffracted

only up to 7–8 Å resolution at different x-ray synchrotron sources.

Nevertheless, after screening more than 100 crystals a 4.0 Å data

set was collected at the BM14 beam line at the Advanced Photon

Source (APS), Argonne National Lab. (Table S1). The HKL suite

was used for data integration and scaling [72] and the CCP4 suite

was used for further data processing and analysis [73].

Data integration suggested that the crystals belong to the

hexagonal P6222 space group, however analysis of the cumulative

intensity distribution [73] hinted at the presence of merohedral

twinning and as a consequence to a lower symmetry space group.

Data analysis with the Merohedral Crystal Twinning server for

data integrated in P321 or P312 pointed to the presence of nearly

perfect merohedral twinning (a= 0.49) [74]. Due to the difficulty

of obtaining similar quality diffraction this data set was used for

subsequent structure determination and refinement despite

integration in the trigonal space groups resulted in low redundancy

(Table S1).

Structure determination and refinement
The structure was determined by the Molecular Replacement

(MR) method with the program Phaser [34]. The initial search

was carried out in all trigonal and hexagonal space groups with a

gD model (PDB entry 2C36: amino acids 27–250) and using all

data between 12 and 4.0Å. A clear solution for 3 gD molecules

was identified in P3221 whereas no solutions were found in all the

other space groups tested. A polyalanine version of the major

structural protein of peripheral nerve myelin (1NEU; 27%

sequence identity with the V-domain of nectin-1), the C1 domain

of the poliovirus receptor necl–5/CD155 (3EOW; 34% identity

with the C1 domain of nectin-1) and the perlecan IG3 domain

(1GL4 25% identity), after removal of some of the loops, were

used as search models for the V, C1 and C2 domains of the

receptor, respectively. Keeping the 3 gD molecules fixed, three

solutions for the V domain and then for the C1 domains

of nectin-1, consistent with 3 gD-nectin-1 complexes in the

asymmetric unit, were clearly identified. In addition to the

improvements in TFZ, LLG, Rwork and Rfree during all the steps

of MR several pieces of evidence supported the correctness of the

solution. First, the nectin-1 V-domain was positioned in proxim-

ity of gD residues previously implicated in nectin-1 binding;

second, the N- and C-termini of the C1 and V-domain,

respectively, were at a distance from each other compatible with

the number of missing residues connecting the two domains; and

third the model agreed with considerations on packing and

symmetry relation between the molecules in the crystal (see also

Results). However, only a poorly contrasted solution for one of

the C2 domains could be identified by MR. Despite this solution

positioned the C2 domain in proximity of a C1 domain with

reasonable crystal contacts, its addition to the model did not

improve the Rfree or the quality of the electron density maps and

therefore was excluded from the refinement.

Simulated annealing composite 2mFo-DFc and mFo-DFc omit

electron density maps followed by local three fold NCS averaging

for each of the nectin-1 domains were calculated with the

program Phenix [75] and used during the initial stages of model

building. The resulting electron density maps clearly revealed the

location of some of the loops in the nectin-1 V-domain and some

of the glycans both of which had been excluded from the MR

model (Fig. S1). The electron density of the glycans and of

residues with large side chains together with the location of

disulfide bonds in V and C1 Ig domains were used to confirm the

register of the polypeptide chain. The model was refined with

Refmac using the 0detwin0 option, overall B-factor refinement

and tight non-crystallographic symmetry (NCS) restraints. The

twinning fraction estimated by Refmac was of 0.49, in agreement

with what reported by the Merohedral Crystal Twinning Server.

When the structure was refined without allowing for detwinning

of the data the Rfree was ,10% higher. Following the initial

building the crystal structure of nectin-1 became available [26]

and was used to modify the V and C1 domains. Additional

refinement showed that although most of the structure remained

the same between the two models, modest differences were

present in between the structures in some of the V1 loops and

residues involved in the gD-nectin-1 interface. The final model

includes the full V1 domain but does not include some of the

loops in the distal part of the nectin-1 C1 domain which did not

have interpretable electron density.
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Production of nectin-1 V-domain-MBP
A DNA fragment corresponding to the variable immuno-

globulin domain (V-type) of nectin-1 was amplified by PCR

from a plasmid containing the cDNA form of the full length

protein (pCK451) [76], using primers designed to insert a stop

codon after residue 146. This fragment was inserted into the

bacterial gene fusion vector pMAL-p (New England Biolabs) by

a blunt-ended ligation into BamH1 restriction site of the

plasmid polylinker. This construct produces a fusion with the

maltose-binding protein under the control of the Lac repressor

that is exported to the periplasm. Mutants were produced using

the Quikchange mutagenesis kit (Stratagene). Correctness of all

the constructs was verified by sequencing. For protein

purification, E. coli BL21 (DE3*) cells were transformed with

the constructs, grown at 37uC in LB to an optical density of 0.7

at 600nm and induced with ITPG for 16 h at 23uC. After an

overnight culture cells were resuspended in 40mM TRIS

pH 7.5, 300mM NaCl, 10% glycerol, 0.03% b-octyl-glucoside

(Buffer A, 100ml/liter of culture) and lysed with a micro-

fluidizer. Debris were removed by centrifugation (13000 rpm)

for 45 min at 4uC and the supernatant was incubated with

amylose resin (New England Biolabs). After binding, the resin

was washed with Buffer A and proteins were eluted with 20mM

maltose in Buffer A. Proteins were concentrated and purified by

size exclusion chromatography on a Superdex S200 column

equilibrated with 40mM Tris pH 8.0 and 150mM NaCl.

Fractions containing non-aggregated nectin-1 V-domain MBP

fusion protein (N1V-MBP) were pooled, concentrated and

dialyzed against PBS. All the N1V-MBP mutants were purified

similarly to the wild type protein.

Nectin-1 mutants and gD binding
Purified N1V-MBP fusion proteins were immobilized on a 96

well plate (10 mg/ml in PBS) overnight at 4uC. Plates were

blocked with PBS containing 0.05%, Tween20 and 5% nonfat

milk (PBS-T milk). Purified gD(306t) (residues 1 to 306) was

serially diluted in PBS-T milk and added to the plate [25]. After

incubation and washing with PBS-T, bound gD was detected

with polyclonal rabbit serum R8 (diluted 1:500 in PBS-T-milk)

and goat anti-rabbit-HRP secondary antibody (KPL Inc).

Absorbance at 405 nm was read after addition of ABTS as

substrate.

Blocking HSV infection
HSV-1 KOStk12 [9] was diluted in cell culture medium and

pre-incubated with purified N1V-MBP proteins at various

concentrations for 1 h at 37uC. The mixture was added to

confluent HeLa cell cultures in a 96 well plate (56104 cells/well)

and directly incubated at 37uC for 5–6 h. Lysis and reading of b-

galactosidase activity was performed as described below for entry

assays.

CK41 detection by ELISA
Purified anti-nectin-1 monoclonal antibody CK41 [30] was

immobilized on an ELISA plate in PBS (10 mg/ml). After blocking

with PBS-T-milk, purified N1V-MBP (20 mg/ml) was added in

PBS-T-milk for 2 h at RT. The wells were washed and N1V-MBP

was detected with HRP-conjugated anti-MBP antibody MBP-17

(Sigma-Aldrich), followed by goat anti-rabbit-HRP secondary

antibody (KPL Inc). Absorbance at 405 nm was read after

addition of ABTS as substrate.

Nectin-1 mutants and HSV entry
Mutations were engineered in full-length nectin-1 using the

Quikchange mutagenesis kit in plasmid pCK452 expressing full-

length human nectin-1a [76]. Plasmids were transfected into

B78H1 cells using either Geneporter (2 mg plasmid/ well of

subconfluent cells in 6 well plates) or the AMAXA system kit V,

2 mg/106 cells. One day post transfection cells were seeded in 96

well plates (56104 cells/well). After an overnight culture, cells were

infected with dilutions of sucrose-purified HSV-1 KOS tk12. After

6 h incubation at 37uC cells were lysed by adding NP-40 to a final

concentration of 0.5%. A 50 ml volume of lysate was mixed with

an equal volume of b-galactosidase substrate (chlorophenol red-b-

D-galactopyranoside; Roche) and absorbance was read at 595nm

for 50 min to record enzymatic activity. Surface expression of

nectin-1 mutants was assessed by CELISA using MAb CK6 [30]

and was comparable between mutants and wt nectin-1 in

transiently transfected B78H1 cells.

Accession number for genes and proteins mentioned in
the text

Nectin-1

Swissprot/UniProt: Q15223

NCBI: NP_002846

HVEM

Swissprot/UniProt: Q92956

NCBI: AAQ89238

gD KOS

Swissprot/UniProt: A1Z0Q5

Supporting Information

Figure S1 Representative electron density (gray) from a three-

fold averaged composite anneal omit map of the nectin-1 V-

domain. A region of the final model is shown in the density in stick

representation highlighting the presence of two glycosylation

sites.

(TIF)

Figure S2 View of a crystallographic dimer of gD/Nectin-1. gD

is shown in yellow and orange and nectin-1 is shown in purple and

pink.

(TIF)

Figure S3 Comparison of the elbow angle of necl-5 (cyan) and

nectin-1 (purple). An approximate difference of 15 degrees exists

between the two structures. Loops not built in the nectin-1 model

are shown as a dotted line.

(TIF)

Table S1 Data collection and refinement statistics.

(DOC)
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