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Abstract

The relationship between mutation, protein stability and protein function plays a central role in molecular evolution.
Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic
resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting
for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like
bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat
proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability
using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate
that most, though not all, of the observed mutations are stabilizing.
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Introduction

One of the overarching objectives of evolutionary biology is to

understand what has happened in the past, why it occurred, and

how it may be predictive of further evolution [1]. At the molecular

level, one factor that may impose constraints on evolution is

protein stability. Protein folding stability measures the difference in

free energy (DG) between the folded and unfolded states. Proteins

tend to exist in a range of folding stabilities (DG = -3 to -10 kcal/

mol) where, at equilibrium, the vast majority of molecules are in

the folded state [2]. When the equilibrium favors the folded state, a

protein is considered thermodynamically stable. Alternatively, a

protein is kinetically stable if, once folded, the energy barrier is

large enough that it unfolds very slowly despite thermodynamics

that favor it unfolding (i.e., DG.0)[3]. Here we use the word

stability broadly, in reference to either thermodynamic or kinetic

stability.

Most mutations decrease the thermodynamic and kinetic

folding stability of proteins. Tokuriki et al. [4] argue that many

mutations that rise to high frequency due to a strong selective force

(e.g., metabolizing a new antibiotic) also destabilize the protein.

This tradeoff between function and folding stability has been

observed in a number of enzymes (e.g., [4],[5]), and suggests that

stability will often be an important target on which selection acts.

The threshold hypothesis [6] argues that the relationship between

stability and function is sigmoidal with a steep decline in function/

fitness beyond some critical stability. Therefore, stable back-

grounds reside further from this threshold and should be more

tolerant of destabilizing mutations. During adaptation, more stable

backgrounds should be more tolerant of mutations that alter

function, leading to increased evolvability [7], [8], [9], [10]. For

example, Bloom et al. [11] showed that thermostabilized TEM-1 b
lactamase enzymes could tolerate 1 to 1.5 more random mutations

than the ancestral background. Similarly, only a cytochrome P450

enzyme engineered for thermostability could tolerate the highly

destabilizing mutations that confer the ability to hydroxylate the

anti-inflammatory drug naproxen [8].

The threshold hypothesis therefore suggests that an adaptive

change in function can be obtained in one of two ways. i) The first

mutation increases function but destabilizes the protein; a second

compensatory mutation then increases stability. Depending on the

severity of the trade-off, the first mutation may be beneficial,

neutral, or even deleterious. ii) The first mutation may increase

protein stability while having little effect on function; the protein

then obtains a second mutation that increases novel function. We

provide a graphical illustration of these two pathways in Figure 1.

The first mutation in pathway (ii) is stabilizing (see Figure 1).

This could occur via the accumulation of neutral mutations that

drift to moderate or high frequency largely by chance. A more

common mechanism may be exposure to elevated temperature,

which imposes a selective force favoring a stabilizing mutation.

This selection for stability might occur prior to any selection for a
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new function, for example, when a bacterium is first exposed to

elevated temperature and later to a new antibiotic (Figure 1B), or

they might occur simultaneously (Figure 1A).

In this study we test the hypothesis that beneficial mutations that

arise in a microbial population exposed to elevated temperature

have stabilizing effects. We do this by assessing the stability of

capsids for viral mutants that were obtained by adaptation under

elevated temperature but without selection for any other novel

function (Figure 1B). Note, we use the term novel function here to

mean a gain in function besides the ability to grow at an elevated,

previously nonpermissive, temperature. Also note that the stability

we focus on is protein-protein interaction stability, as opposed to

protein folding stability. The model system employed is the

bacteriophage ID11, a member of the Microviridae closely related

to G4 and more distantly related to wX174 [12]. During previous

adaptation experiments at 37uC (the optimum is ,31uC [13]), we

obtained 17 first-step amino acid mutations, all but 4 of which were

beneficial [14],[15]. Of the 17, 13 map to the major capsid protein

F, and two map to the DNA binding protein J. Figure 2A shows the

capsid of ID11 which is comprised of 12 pentameric units roughly

analogous to panels of a soccer ball. Each pentameric unit is formed

of five copies of F, G and J [16]. The observed mutations are

clustered along F-F protein interfaces (Figure 3). This led us to

speculate that these mutations may be strengthening protein-protein

interactions and, thus, stabilizing the capsid.

In order to test this hypothesis, we measured the effects of these

mutations using both experimental methods and computer

simulations. The research brings together a number of novel

features: selection for mutations occurred at the organismal rather

than the protein level; stability is assessed at both these levels; and

our molecular dynamic simulations focus on protein-protein

interaction rather than protein folding. The results indicate that

most, though not all, of the observed mutations are indeed

stabilizing at 37uC.

Results and Discussion

The hypothesis tested here is that adaptation to an elevated

temperature favors mutations that increase kinetic and thermody-

namic stability of protein-protein interactions in the capsid.

Experimentally, we assayed kinetic stability by estimating the rate

of decay of phage survival by incubating at 37uC for two hours. An

example of the decay in survival for the ancestor and two

mutations is show in Figure 4. Fitting the log-transformed fraction

surviving through linear regression yields an estimate of the decay

rate (see Materials and Methods for details). In simulations we

used molecular dynamics and thermodynamic integration to

calculate the relative protein-protein binding affinities (i.e.,

thermodynamic stability). For each mutation, we simulated

dynamics of the protein containing it both in isolation and in

complex, and used the difference in free energy between them to

estimate relative binding affinity. This was done by simulating the

dynamics of every atom in a spherical volume immediately

surrounding the mutation (Figure 2; see Materials and Methods

for further details).

The experimental and simulation results indicate that most

mutations are stabilizing (Table 1). Figure 5 is a graphical

representation of these results, showing the experimental kinetic

stability measure (ratio of decay rate) plotted against the simulated

thermodynamic stability measure (relative binding affinity). The

point estimates of most mutations fall in the lower left quadrant of

the plot where their effects are kinetically stabilizing with decay

rates ,1 and thermodynamically stabilizing with relative binding

affinities ,0. However, the evidence for thermodynamic stability

is substantially stronger than that for kinetic stability. Eight of the

ten mutations have significantly negative binding affinities relative

to the wildtype. By contrast, four of the ten mutations have decay

rates significantly below the wildtype. It is not known whether this

difference indicates that selection is acting more on thermody-

namic stability (or something correlated to it) than kinetic stability,

or simply reflects different levels of noise in the two methods of

assessment.

We next turn to the question of what effect these stabilizing

mutations might have in the life cycle of the virus. Our data

suggest that they are affecting both intra-pentamer interactions

(i.e., the early stages involving intra-pentamer assembly) as well as

inter-pentamer interactions (i.e., the later stages involving capsid

assembly or in mature capsid stability). Visually, this is

Figure 1. Mutational pathways to a novel function when function and stability trade-off. (A) Dashed line: mutation 1 on the ancestral
background confers increase in novel function, but stability is decreased. If trade-off is severe, fitness may decline. Mutation 2 is compensatory and
increases both stability and fitness. Solid line: mutation 2 on the ancestor does not affect function or fitness and is, thus, neutral, but pre-adapts the
protein by increasing stability. Mutation 1 on the background of 2 then increases function and fitness. (B) Elevated temperature selects for increased
stability in the absence of selection for a novel function. The protein is now pre-adapted should selection for a novel function arise later.
doi:10.1371/journal.pone.0025640.g001

Capsid Stability in Adaptation
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demonstrated by the tendency of mutations to occur near the

corners of the F protein where they may interact across interfaces

both within the pentamer and between pentamers (Figure 3). To

test this more rigorously, we calculated the distances from each

mutation to the nearest residue in another F protein that was

either located in the same pentamer (intra-pentamer) or in another

pentamer (inter-pentamer). We performed the same calculation for

all residues in F. Because J is not present in intra-pentamer

assembly, we only calculated the inter-pentamer distance for each

residue in J. Comparing the distances of mutated sites with the

distribution of residues indicates that the observed mutations are

unusually close to protein-protein interfaces (p = 0.007; Figure 6A;

see figure legend for details on calculation). More specifically,

observed mutations are especially close to interfaces with other

pentamers (p,0.0001, Figure 6C). The intra-pentamer distances

of are not significantly small (p = 0.083; Figure 6B), but this result

is largely driven by the outlier mutation F227 (Figure 3). When this

mutation is removed, the mean intra-pentamer distance becomes

significant (p = 0.001).

These distance measures suggest that selection may be acting at

more than one stage of the life cycle. However, there are two

mutations that are known to affect procapsid stability and are thus

unlikely to act earlier, during intra-pentamer assembly. Both F227

and J20 are known to stabilize the procapsid and can suppress the

effects of a lethal mutation in the external scaffolding protein D

[17–19]. F227 does so by interacting with the D protein itself,

while J20 is near the inner surface of the procapsid and likely

stabilizes it by interacting with F proteins.

Interestingly, both experimental and simulation methods

indicate that F182 is an outlier, acting to destabilize the capsid

by both measures while improving fitness. The other anomalous

mutation is F425, which is mildly deleterious and which we

estimate is kinetically stabilizing but thermodynamically destabi-

lizing. Two commonalities between these mutations is their close

proximity to a Ca+2 binding site in the viral capsid [20] and their

close proximity to the site where three pentamers intersect

(Figure 3). Calcium is believed to play a role in DNA ejection in

the closely related wX174 [21]. It is also known to be important for

structural integrity [22]. Furthermore, the location of these

residues at the site of 3-fold intersection means they have the

unusual potential to interact with the same site in other pentamers.

By what biophysical mechanism do the observed beneficial

mutations increase stability? Our simulations suggest that they

may be doing so in an unexpected way: by increasing the

conformational entropy. Changes in entropy are reported in the

last column of Table 1; they are all positive. Conformational

Figure 2. Interface mutations on the ID11 viral structure and design of the thermodynamic simulation model. (A) The mature virus
capsid composed of 12 pentameric units. Each pentameric unit contains five identical copies of protein F (purple), and protein G (pink). (B) The
simulation system containing three pentameric units. For each mutation a 35 Å radius sphere is defined to be centered on the mutation and is
surrounded by water molecules and ions (red sphere). (C) Detailed view of one F protein and an example mutation (F314). (D) Representation of the
left vertical path in thermodynamic cycle. A single protein in water is simulated. (E) Thermodynamic cycle. The horizontal paths are binding affinities
that can be measured experimentally. In this study, the vertical paths are computed by thermodynamic integration. Because the binding affinity is a
state function, the two vertical paths can be used to determine the relative binding affinity, i.e., DDG =DGbound - DGunbound. (F) Representation of the
right vertical path in thermodynamic cycle.
doi:10.1371/journal.pone.0025640.g002
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entropy is a measure of the amount of conformational space

available to the proteins and, thus, positive values can be thought

of as an increase in protein flexibility. This suggests that the

mutant capsids are generally more flexible than the ancestor, and

at the same time more stable. It may be that increased flexibility

benefits the virus by increasing the rate of genome packaging or

ejection. In enzymes, it is known that increased flexibility can be

beneficial by increasing activity and/or substrate spectrum (e.g.,

[23]), but to our knowledge, a structural protein obtaining

increased fitness via increased flexibility has not been observed.

It is also possible that flexibility is not the target of selection, but is

simply correlated to that target.

While the two measures of stability agree that most of the

mutations are stabilizing (Figure 5), there is little correlation

between them (r2 = 0.11, p = 0.34). This is not surprising, nor does

it weaken the evidence that selection is acting on stability or a trait

correlated to it. First, the two methods measure different types of

stability. The decay assay measures kinetic stability: the effect of

mutations on the rate that capsids denature. The simulations

measure thermodynamic stability: the effect of mutations on the

relative binding affinity between proteins. Second, the two

methods make their measurements in different chemical environ-

ments. The decay assay occurs in a nutrient-rich media where

interactions may occur between the mutation, other proteins,

DNA, ions, and cellular debris. In contrast, the simulated chemical

environment contains only water and Na+ and Cl2 ions. Third,

the decay assays transpire across hours while the thermodynamic

integration occurs on the scale of nanoseconds. Fourth, the decay

assay involves the global effect to the capsid while the simulations

measure effects in the immediate vicinity of the mutation.

The preponderance of stabilizing mutations suggests that

selection is acting on stability or a trait correlated to it. However,

an alternative explanation is that most random mutations are also

stabilizing. Under this (null) hypothesis, a sample like ours of

Figure 3. Location of observed mutations. Observed mutations (yellow spheres) are close to protein-protein interfaces. Solid lines are within
pentamer protein-protein interfaces. Dashed lines are between pentamer protein-protein interfaces. Most mutations are located in the two corners of
the F protein where interactions may occur both within and between pentamers.
doi:10.1371/journal.pone.0025640.g003

Figure 4. Example decay assay showing reduction in phage
survival with time at 376C for wildtype and two mutations.
Decay rates in Table 1 and Figure 5were calculated by: (i) obtaining
decay rate for each day from the slope of the log-transformed data in a
linear regression as illustrated in the figure, (ii) dividing each mutant
decay-rate by the ancestor rate for that day, and (iii) averaging across
days.
doi:10.1371/journal.pone.0025640.g004

Capsid Stability in Adaptation
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mostly stabilizing effects reveals little about selection. An ideal test

of this null hypothesis would be to examine a large set of random

interface mutations, but the computational and laboratory

resources required for such a test render this strategy unfeasible.

However, two lines of evidence suggest that this null hypothesis is

not correct. First, we explored how the set of non-synonymous

single mutations along F-F interfaces would affect an amino acid

polarity index [24]. A decrease in the polarity index of amino acids

along interfaces should generally stabilize interactions because, in

an aqueous environment, excluding water from hydrophobic sites

requires proteins to remain together. The results suggest that

approximately half of all interface mutations should decrease

polarity and thereby stabilize F-F interactions and half should not

(detailed analysis not shown). Second, it is known that most

mutations negatively affect protein-folding stability [6], [25],

presumably because such mutations disrupt evolved patterns of

amino acid complimentarily. Similarly, the F protein has evolved

to form stable pentamers, and F and J have coevolved to form

stable capsids. Thus, it is reasonable to think that random

mutations to such a semi-optimized system will on average

decrease the stability. The more parsimonious explanation,

therefore, is that the increased stability seen here is the result of

selection.

The threshold hypothesis [6] holds that protein function

remains approximately constant within a range of stabilities, but

outside this range function drops off dramatically (Figure 1B)

[2],[9]. This implies that within the functional range, there should

be little correlation between stability and fitness. Our results are

consistent with this expectation. Specifically, when the rate of

thermal decay is regressed against fitness, no correlation is

observed (r2 = 0.02, p = 0.67). Similarly, the relationship between

relative binding affinity and fitness is weak (r2 = 0.22, p = 0.13),

and driven largely by two data points (J20 and F425). We speculate

that the ancestor is marginally stable at the elevated temperature

of 37uC and that most of the mutations that survive purifying

selection are stabilizing and therefore reside in the flat region of

the stability-fitness function.

When there is an inherent trade-off between increasing novel

function and reducing stability, two mutational pathways may

facilitate adaptation (Figure 1A). We hypothesize that elevated

temperature can play an important role in pushing adaptation

down the stabilization-first pathway. Notice, however, that if a

stabilizing mutation is to be pre-adaptive in a warmer environ-

ment, its change in stability must be large enough to provide the

new background more stability than it minimally needs to function

Table 1. Fitness, stability, and conformational entropy of single amino acid mutations.

Nucleotide
substitutiona Amino acid substitution Fitnessb Thermal decay ratec, *(95% CI**) DDG rated, *(95% CI***) DSe

Wildtype 14.3

g 2534 t Val J20 Leu 18.7 0.47 (0.36, 0.58) -2.94 (-3.28, -2.60) 5.56

g 3850 a Met F416 Ile 18.2 0.99 (0.73, 1.25) -0.71 (-1.31, -0.11) 4.20

c 2520 t Ala J15 Val 17.9 0.61 (0.48, 0.74) -1.19 (-1.71, -0.67) 5.68

a 3857 g Thr F419 Ala 17.6 0.87 (0.62, 1.12) -1.35 (-1.95, -0.75) 5.03

a 3147 g Asn F182 Ser 17.4 1.13 (1.01, 1.25) 1.56 (0.83, 2.29) 5.86

c 3543 t Ala F314 Val 16.9 1.02 (0.74, 1.30) -2.13 (-2.62, -1.64) 5.32

c 3134 t Arg F178 Cys 16.8 0.91 (0.70, 1.12) -4.57 (-6.97, -2.17) 6.01

a 3567 g Asn F322 Ser 14.8 0.99 (0.81, 1.17) -1.94 (-3.84, -0.04) 4.84

c 3282 t Ser F227 Phe 14.5 0.48 (0.34, 0.62) -0.94 (-1.87, -0.01) 6.00

a 3876 g Thr F425 Ile 13.7 0.72 (0.63, 0.81) 0.94 (0.04, 1.84) 5.91

Below wildtype, the mutations are ordered by descending fitness.
aSubstitutions come from Rokyta et al. [14] and Miller et al. [15].
bFitness is defined as population doublings per hour.
cThermal decay rate is a proportion of the ancestral decay rate; values less than 1.0 are more stable than ancestor.
dDDG in units of kcal/mol is estimated protein-protein interaction via molecular dynamics simulation; values less than 0.0 indicate more stable than ancestor.
eConformational entropy, DS, in units of kcal/mol K is estimated via molecular dynamics simulation.
*Estimates are median values of individual data points.
**95% confidence intervals are based on +/- 3.2 absolute errors (see Appendix S1).
***95% confidence intervals based on +/- 2.5 absolute errors. The difference in number of absolute errors used reflects differences in sample size.
doi:10.1371/journal.pone.0025640.t001

Figure 5. Plot of relative binding affinity (DDG) against relative
decay rate for high-temperature mutations. Increased stability is
associated with relative binding affinities less than zero and decay rates
less than one. Error bars show the 95% confidence interval obtained by
performing multiple independent experiments and simulations. Most
data points lie in the lower left quadrant or on its boundary suggesting
qualitative agreement that most mutations are stabilizing. Both
methods also concur that F182 is an outlier that destabilizes the capsid.
doi:10.1371/journal.pone.0025640.g005
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(e.g. as the mutation in Figure 1B does). This excess stability is

what the subsequent mutation can capitalize upon. If the

relationship between stability and fitness is nearly flat, selection

does not favor mutations that provide a large stability buffer over

those that provide no stability buffer. For the same reason, if a

mutation fixes that provides only the minimal necessary stability,

there is no selective force for fixing another mutation that further

increases stability. The amount of excess stability provided by the

stabilizing mutation will tend to be a random quantity. Thus there

will be stochasticity in whether or not the stabilizing mutation puts

the protein on the pre-adaptive pathway, facilitating evolution of a

novel function.

The next stage of this research is to determine whether

stabilized backgrounds are indeed more likely to obtain novel

function than non-stabilized backgrounds, i.e., are the viruses

more evolvable? While this has been demonstrated in enzymes

through directed evolution (e.g., [8]), it is not known how

important this pathway is in real populations and in proteins

involved in protein-protein interactions. Of special interest is the

possibility that selection for stabilized capsids in viruses might pre-

adapt them to tolerate a broader array of mutations that confer the

ability to change hosts.

Materials and Methods

Mutations
ID11 is a bacteriophage from the Microviridae family; it was

first described by Rokyta et al. ([12]; GenBank accession number

AY751298). The single-stranded DNA genome is 5,577 bases and

encodes 11 genes. All the mutations studied here are first-step

mutations obtained from Rokyta et al. [14] and Miller et al. [15].

The experiment of Rokyta et al. [14] was designed to yield only

first-step beneficial mutations. Passages were conducted at small

population sizes, thus favoring selective-sweep dynamics, and were

halted as soon as a fitness increase was detected. In Miller et al.

[15], the goal was instead to observe the frequency dynamics of

competing mutations. Consequently, passaging was conducted at

both small and large population sizes, continued for a fixed

number of flask passages (20), and many isolates were sequenced to

obtain frequencies. This resulted in detection of first-, second- and

third-step mutations, most of which were beneficial but some of

which were approximately neutral or deleterious. The first-step

mutations from the two studies were combined. Because of

limitations in the computational methods employed (described in

next section), this set was ultimately reduced to ten mutations

(Table 1).

Experimental methods
Assays were conducted to determine how mutations affect

capsid stability at 37uC by measuring the decline in survival as a

function of time. For each assayed mutation, a single stock

population was used to initiate growth across all replicates. This

stock was obtained by plating a sequenced, archived freezer

sample at 37uC and then suspending a plaque in 1 ml phage-LB

media (a modified Luria-Bertani broth containing 10 g tryptone,

5 g yeast extract, 10 g NaCl per liter supplemented with CaCl2 to

2 mM).

Assays were conducted across an eight-week period. Every assay

included the ancestor plus a group of seven mutants. The

members of the group were varied over a total of 11 assays such

that each mutant was included 6-7 times. Phage titers drop in the

first 24 hours following growth regardless of storage conditions,

suggesting that they are most sensitive to physical deterioration

during this initial phase. Consequently, freshly grown phage were

used in all assays.

Individual assays were composed of the following steps. For

each mutant assayed, 10 ml of phage-LB were added to a 125-ml

Erlenmeyer flask with loose fitting lid and placed in a shaking

water bath at 37uC at 200 rpm. After equilibrating for five

minutes, 22.5 ml of Escherichia coli C from freezer stock were added

to each flask and allowed to grow for one hour (previously

calibrated to result in ,36108 cells/ml). Between 103 and 104

phage were added to each flask. Phage were allowed to grow for

40 minutes resulting in titers between 106 and 107 per ml. A

sample of 1 ml from each flask was added to 100 ml of chloroform

to kill the E. coli C. After centrifuging, removing the supernatant,

and vortexing, the sample was divided into five subsamples of

100 ml and placed on ice. One subsample was plated immediately

(t = 0). The remaining subsamples were floated in water at 37uC
within an incubator. Stability was estimated only at 37uC, as

opposed to across a temperature gradient. This is because the

mutations arose at 37uC and because there is no guarantee that

Figure 6. Distances from F and J residues to nearest adjacent F protein. For each residue in F (light grey) and J (dark grey), the distance
between its alpha carbon and the alpha carbon of every residue in all adjacent F proteins was calculated. Distributions were calculated using the
minimum distances to adjacent F proteins (A) in any pentamer, (B) in the same pentamer, or (C) in a different pentamer. Observed mutations are
shown as triangles. P-values were calculated by simulating 10,000 datasets (each containing 8 random F and 2 random J mutations), taking the mean
of their minimum distances as defined in each panel, and asking what proportion of random datasets had smaller means than the mean of the
observed dataset. Note that J mutations are excluded from the distance calculations for (A) any pentamer and (B) the same pentamer because J is not
present during intra-pentamer assembly.
doi:10.1371/journal.pone.0025640.g006
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the qualitative effects of mutations on stability at other

temperatures will be the same as the effects at 37uC [26].

Subsamples were removed at the time points described next,

placed immediately on ice, and plated. In the first four assays, the

sampled time points were 0, 0.75, 1.5, 2.5, and 3.25 hours. The

results indicated that most of the decline was occurring in the first

two hours. We, therefore, shifted sampling in the remaining seven

assays to 0, 0.5, 1, 1.5, and 2 hours.

At all time points, two plates (rather than one) were used to

obtain more precise titer estimates. The titer at each time point

was divided by the titer at t = 0 to estimate the proportion of viable

phage remaining at time t (pt). Assuming an exponential decay

model (pt = e-rt), a linear regression was fit to the natural log of

these proportions to estimate the rate of decay (r). An example is

shown in Figure 4. To control for day effects, the estimated decay

rate for mutant m on day j (rm,j) was divided by the estimated decay

rate of the ancestor from the same day (ra,j) to yield a relative day

rate, r*m,j = rm,j/ra,j. Over the course of 6–7 replicate assays, most

mutants exhibited one or occasionally two outliers. The cause of

the outliers is not known, but may be related to mutations arising

during the assay. These outliers were accounted for by using the

median rather than the mean to summarize replicate data for each

mutant. Median confidence intervals were calculated using a

double-exponential model that assumes heavy tails (Appendix S1).

Molecular dynamic simulations
To estimate the stability of the ID11 capsid, molecular

dynamics simulations were performed using thermodynamic

integration [27],[28],[29],[30]. Note that most previous simulation

studies have emphasized protein folding stability rather than

protein-protein interaction stability [31]. These folding simulation

studies have tended to estimate stability based on the amino acid

sequence alone [32],[33] or from the protein structure

[34],[35],[36]. Other simulation studies on viruses have estimated

protein-protein association using potential energy [37] or binding

free energy as a function of pH via the approximate method [38].

Simulations including the entire capsid have also been performed

using coarse-grained approaches [39],[40] and all atom simula-

tions [41]. However, none of these approaches do vigorous

thermodynamic integration to obtain the binding affinity of

protein-protein interactions.

Figure 2E shows the thermodynamic cycle used to calculate the

relative binding affinity, DDG, between the proteins that make up

the capsid. This figure shows that DDG can be computed using

either the two horizontal paths (which is difficult via simulation due

to large changes in atomic interactions) or the two vertical paths

(chosen for this study). The left vertical path represents the affinity

change in the unbound (or apo) state caused by mutating the target

residue from the ancestor DGunbound (see Figure 2D). The right

vertical path represents the affinity change in the complex (or holo)

state caused by mutating the target residue from the ancestor

DGbound(see Figure 2F). Then, DDG =DGbound - DGunbound.

Since no experimental structures are available for the proteins

in the ID11 capsid SWISS-Model [42],[43],[44] was used to

generate the structure of the capsid based on the protein sequence

and the template structures of proteins G and F from the

bacteriophage G4 (PDB 1GFF [45]) and protein J from the

bacteriophage a3 (PDB 1M06 [46]). While ID11 is more closely

related to G4 than a3 [12], PDB 1M06 contains a complete J

protein structure while PDB 1GFF does not. Based on the

Needleman-Wunsch alignment algorithm (Rice et al. 2000; gap

opening penalty = 10.0, gap extension penalty = 0.5) [47], the

sequence identities of G4 and ID11 for proteins G and F are both

98%, and between a3 and ID11 for protein J is 68%.

All simulations were set up using Visual Molecular Dynamics

[48] and utilized the CHARMM22 force field [49], the TIP3P

water model [50], and the NAMD2.7b1 package [51]. Molecular

dynamics simulation of the full capsid is not feasible due to the

large number of atoms involved. Thus, after 1000 steps of

minimization, we explicitly simulated the atoms in a 35 Å radius

spherical region that was centered on the mutation. This spherical

region contains approximately 18,000 atoms instead of the more

than one million in the full system. Within this spherical region,

the atoms within 20 Å of the mutation are allowed to move freely,

and the atoms within 20–35 Å of the mutation are frozen (i.e., not

allowed to move) (Figure 2D and 2F). For all mutations, the sphere

of 35 Å radius used to calculate DGbound contains exactly one

instance of the mutated amino acid. Consequently, DGunbound does

not need to be multiplied by the number of proteins (as it typically

would be) in calculating DDG.

Our simulations employed spherical non-periodic boundary

conditions that prohibited water from leaking from the moving

layer into the frozen layer. Another 1000 steps minimization was

applied to the sphere before doing the thermodynamic integration

simulation. NAMD simulation parameters were chosen to be 1

atm constant pressure, 37uC constant temperature, 14 Å cutoff for

van der Waals and electrostatic interactions, 0.5 tiElecLambdaS-

tart, 0.7 tiVdwLambdaEnd, and decoupled target residue

interactions. A range of tiVdWShiftCoeff values from 4 Å to

7 Å at 1 Å increments were employed which provided four DG

estimates per mutation. The total duration of the simulation was

126 ns (21 windows at 6 ns per window). Thermodynamic

integration was then applied to the spherical system by calculating

DG for the bound and the unbound systems. We note that while

this method of estimating DDG is only accurate to within one or

two kcal/mol, the qualitative sign of DDG is usually correct

[52],[53]. To be consistent with the analysis of experimental data,

we calculated the median with confidence intervals based on the

double-exponential model (Appendix S1). We also estimated

conformational entropy from a MD equilibrium simulation of two

F and one J proteins within a water box. This calculation involves

atom-positional fluctuations of the entire proteins and of each of

the side chains [54],[55].

Our original pool of mutations contained 17 amino acid

substitutions [15]. Of these, 15 occur on the proteins F and J. Two

mutations (F3 and F5) occur in unstructured regions of F, and

therefore could not be modeled. Two mutations affect the same

residue, F425. One of these, Thr F425 Ala, was highly deleterious

and was not included. Finally, two mutations involve glycine or

proline: Asp F421 Gly and Pro F355 Ser. Glycine and proline are

not supported by the software and were consequently excluded

from the analysis. This resulted in a dataset of 10 mutations.

Supporting Information

Appendix S1 Confidence intervals of the median.
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