Sequence of a cDNA specifying subunit VIa of human cytochrome c oxidase

Gian Maria Fabrizi¹, Rosario Rizzuto¹, Hirofumi Nakase¹, Shuji Mita¹, Bernhard Kadenbach³ and Eric A.Schon^{1.2}

Departments of ¹Neurology and ²Genetics and Development, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA and ³Department of Biochemistry, Phillips-Universität, Marburg, FRG Submitted June 8, 1989 EMBL accession no. X15341

Cytochrome c oxidase (COX; EC 1.9.3.1) catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen in the mitochondrial respiratory chain. In mammals, the apoprotein is composed of three larger catalytic subunits, encoded by the mitochondrial genome, and by ten smaller, nuclear-encoded subunits, which may play a regulatory role (1); subunits VIa, VIIa, and VIII have been shown to have heart- and liver-specific isoforms in cows and pigs (2), and cDNAs encoding the heart- and liver-specific isoforms of subunit VIa have been isolated from rat (3). Using a rat liver COX VIa cDNA (3) as a probe, we isolated a partial-length clone from a human liver cDNA library (a gift of G. Ricca, Meloy Laboratories), and a full-length clone (pCOX6a.24; sequence below) from a human endothelial cell CDNA library (a gift of M. Chao and D. Littman). The deduced polypeptide is 87% identical to rat liver COX VIa, but only 51% identical to rat heart COX VIa (3). Like rat heart COX VIa and VIc (4), human liver COX VIa does not contain an in-frame cleavable presequence for importation into mitochondria.

[5 '	EcoRI	linker]	TITITITITITITAGAAGAAATAATGIGGT	(30))
-------------	-------	---------	--------------------------------	------	---

AGITGGIGIGICCIOGGITTICIOGGCIGCIGGGICOGGCCCACAGCIGGGGGGGCCT (90)

ATGTOGAGTGGOGCCCATGGOGAAGAGGGCTCAGCTOGCATGTGGAAGACTCTCAOCTTC										(150)										
М	S	S	G	A	H	G	Ε	Е	G	S	A	R	M	W	K	т	L	Т	F	[20]
TTOSTOGOGCTCOCCOGGGTGGCAGTCAGCATGCTGAATGTGTACCTGAAGTCGCACCAC												(210)								
F	V	A	L	P	G	v	A	V	S	M	L	D	v	Y	L	ĸ	S	Н	н	[40]
GGAGAGCACGAGAGACCCGAGTTCATCGCCTACCCCCATCTCCGCATCAGGACCAAGCCG												GCCCG	(270)							
G	Е	Н	Е	R	P	Е	F	I	A	Y	Ρ	н	L	R	I	R	т	K	Р	[60]
TTTCCCTGGGGAGATGGTAACCATACICIATTCCATAACCCTCATGIGAATCCACITCCA											ICCA	(330)								
F	Ρ	W	G	D	G	N	H	Т	L	L	Н	N	Ρ	н	v	N	P	L	P	[80]
AC	IGG	CTA	CGA	AGA	IGA	ATA	AAG	AGA	ATC	IGG	ACC	ACT	ACC	œ	GCA	CCA	GGG	ACC	ACAG	(390)
т	G	Y	Е	D	Е	*														[86]
CA	CIG	GIT	TGG	ACO	GIT	ACT	CIG	CAC	ATG	GAC	CAG	AAA	AAG	TAT	ATG	GGA	CCI	TAA	GCTC	(450)
AC	CIT	CIT	TAC	FIG	TAT	CAA	ATG	ATG	ACT	GGT	ATA	CIG	GIC	TCC	CAT	œ	TTT	GCT	IGIG	(510)
GCAGGAGATGGCTTAAATAAATAACTTAAACTT - poly(A) [3' EcoRI linker]										(543)										

Notes: (1) Kadenbach et al. (1987) Curr. Top. Bioenerg. 15, 113; (2) Kadenbach et al. (1983) TIBS 8, 398; (3) Schlerf et al. (1988) EMBO J. 8, 2387; (4) Suske et al. (1987) Eur. J. Biochem. 168, 233. Supported by grants from NIH (NS11766), the Muscular Dystrophy Association, the Aaron Diamond Foundation, and a donation from Dr. and Mrs. Libero Danesi.