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Abstract

In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo.
Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate
mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression
on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that
affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild
dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp
receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab,
displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in
bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled
with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp
activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the
midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required
for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From
these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and
Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and
Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal
activation and correct LR patterning.
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Introduction

In vertebrates the internal organs are positioned asymmetrically

along the left-right (LR) axis. For example, in humans, the heart is

positioned on the left side, as is the stomach whilst the liver is

positioned on the right side. Within organs LR asymmetry also

exists. For example, the two lungs appear identical however they

are divided into lobes with 3 on the right lung and 2 on the left.

Animals with situs inversus totalis (a LR reversal of all organs) have

no pathological features [1] however severe medical problems

occur in infants with a partial reversal in a subset of organs (situs

ambigious or heterotaxia). These heterotaxic phenotypes occur

during early embryonic development and can have both genetic as

well as environmental causes [2,3].

A ciliated organ at the posterior end of the embryo is required

for LR-axis specification in the embryo. In this LR organ, the node

in mouse or Kupffer’s vesicle (KV) in zebrafish, cilia rotate and

create a directional fluid flow from the right to left side of the

embryo. This directional nodal flow induces a unilateral and

asymmetric expression of Nodal in the left lateral plate mesoderm

(LPM) directing organ laterality. Unilateral expression of Nodal is

essential for correct LR-axis specification, a function that has been

highly conserved from human to snails [2,4,5]. Although unilateral

expression of Nodal is highly conserved and essential for LR–axis

specification, there is still very little understanding of how this

unilateral Nodal expression is initiated by nodal flow and

maintained in the LPM.

Nodal is a member of the Tgf-ß superfamily of secreted growth

factors. Nodal signaling is activated by the interaction of Nodal

ligands with the type I and II Activin receptors and the Cripto

coreceptor (reviewed by A.F. Schier [6]). Upon Nodal interaction

with its receptor, intracellular Smad2 protein is phosphorylated,
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which after associating with Smad4 protein is translocated to the

nucleus to activate transcription of downstream target genes.

Extracellular antagonists such as Lefty and Cerberus can inhibit

Nodal signalling either by direct interaction with Nodal or by

competing with Nodal for binding to the receptor. The activity of

Lefty proteins, Lefty1 and Lefty2, is controlled at the level of

transcription. In most tissues Lefty expression is dependent on

Nodal signalling [6]. During LR-axis formation in mouse embryos

Lefty1 and Lefty2 have reciprocal expression patterns. While Lefty1

is expressed strongly in the presumptive floor plate and only

weakly in the left LPM, Lefty2 is expressed strongly in the left LPM

and only weakly in the presumptive floorplate [7]. During LR axis

formation in zebrafish embryos lefty1 is expressed in the

notochord. Only after LR patterning has been established are

lefty1 and lefty2 expressed in the left cardiac field [8]. Nodal likely

activates its own expression via a positive feedback loop while it

also activates expression of its own antagonists Lefty1 and Lefty2.

Genetic experiments in mouse demonstrated that Lefty1 is the

more important antagonist and is essential for LR-axis formation

[9]. It is believed that Lefty1 expression in the midline prevents

Nodal from crossing the midline, blocking activation of Nodal

signalling in the right LPM. Indeed loss of Lefty1 expression caused

the ectopic expression of Nodal and other left-sided genes in the

right LPM and resulted in various laterality defects. It has been

suggested that Nodal and Lefty maintain the L/R asymmetry by a

self-enhancement and lateral-inhibition (SELI) mechanism [10].

With the SELI model it is possible to explain how a small

difference between two separated regions is converted into a

robust difference through local activation and long-range

inhibition [11].

Bmps have been implicated in LR patterning but data on their

precise role has been contradictory [12–22]. This is partly due to

Bmp ligands acting in opposite fashions, depending on the time

and place of action during LR-axis specification [13,16]. Bmp

proteins are members of the Tgf-ß superfamily of growth factors.

Extracellular antagonists of Bmp signalling are Noggin, Chordin

and Follistatin. Upon interaction with their serine/threonine

kinase type I and II Bmp receptors, Bmp ligands induce

intracellular phosphorylation of Smad1, 5 or 8 proteins [23].

Mouse embryos deficient for the type I Bmp receptor Bmpr1a/

Alk3 or Acvr1/Alk2 fail to form mesoderm, which has hampered

the study of their role during LR-axis specification [24–26].

In the current work we describe the identification of the linkspoot

(lin) mutant from a forward genetic screen for laterality mutants. A

missense mutation in the bmpr1aa gene is responsible for the LR

defect of lin mutant embryos. Due to a genome duplication event,

there is a second gene encoding a Bmpr1a (bmpr1ab) in the

zebrafish genome. By screening an ENU-mutagenized zebrafish

library we identified a nonsense allele in the bmpr1ab gene. Genetic

analysis reveals that a reduction in Bmpr1a activity results in left

isomerism of the viscera, demonstrating an essential and early role

in LR-axis specification. Previous genetic data has provided

evidence that Bmp signalling is required to repress Nodal

activation in the right LPM but various direct and indirect models

have been proposed to explain this activity [12–22,27]. Here we

provide evidence that Bmp signalling via Bmpr1a inhibits Nodal

activation in the right LPM indirectly by inducing lefty1 expression

in the midline, offering a new model of the interactions between

Nodal, Bmp and Lefty in induction and maintenance of LR

asymmetry.

Results

Identification of the laterality mutant, linkspoot, in a
forward genetic screen

From an ENU-mutagenesis screen, we identified a unique

mutant, linkspoot (linhu4087), that displayed a reduced ventral tail fin

in combination with a heart-specific laterality defect (Figure 1A,

1B, 1E and 1F). At 30 hours post fertilization (hpf), 24.6%

(n = 464) of the embryos derived from an incross of two lin

heterozygous carriers displayed the small but noticeable reduc-

tion of the ventral tail fin (Figure 1A and 1E). Whilst the majority

of lin mutant embryos with the ventral tail fin reduction had no

other obvious morphological defects and survived to adulthood,

29% (33 out of 114 lin mutant embryos) showed cardiac defects

resulting in cardiac failure and death at around 5 days post

fertilization (dpf) (Figure 1F, 1G). Examination of the cardiac

defect in lin mutant embryos revealed a midline positioning of the

heart in contrast to a leftward positioning in wild-type siblings at

28 hpf. Furthermore at 48 hpf, when the heart in wild-type

sibling embryos has completed looping toward the right, heart

looping in these lin mutant embryos was incomplete (n = 6/8)

(data not shown). Despite the aberrant heart looping in almost

30% of the lin mutant embryos, patterning of the myocardium

and endocardium was grossly normal. Expression of tbx2b and

has2 in the atrioventricular canal myocardium and endocardium,

respectively, was comparable between lin mutant and sibling

embryos (Figure S1). In addition, bmp4 expression was still

restricted (although slightly expanded) to the venous pole,

atrioventricular canal and arterial pole (Figure S1).

We observed that the laterality of the other visceral organs

(direction of gut looping, positioning of the liver and pancreas) was

unaffected in lin mutant embryos (30 out of 34) (Figure 1C, 1D, 1G

and 1H). Since lin mutant embryos that did not display the cardiac

defects described above survived up to adulthood we crossed

homozygous lin mutant females with heterozygous lin carrier

males. The resulting maternal and zygotic (MZ) lin mutant

embryos displayed a reduction of ventral structures such as the tail

fin and blood islands (Figure 1I). Such phenotypes have been

associated with aberrant dorsoventral patterning of the embryo

[28]. In addition, we observed in MZlin mutants, uncoordinated

Author Summary

Although vertebrates are bilaterally symmetric when
observed from the outside, inside the body cavity the
organs are positioned asymmetrically with respect to the
left and right sides. Cases where all the organs are mirror
imaged, known as situs inversus, are not associated with
any medical defects. Severe medical problems occur
however in infants with a partial organ reversal (situs
ambigious or heterotaxia), which arises during embryonic
development. Left-right asymmetry in the embryo is
established by unilateral expression of Nodal, a member
of the Tgf-ß superfamily of secreted growth factors, a role
that has been conserved from human to snails. By
performing a genetic screen in zebrafish for laterality
mutants, we have identified the linkspoot mutant, which
displayed partial defects in asymmetric left-right position-
ing of the internal organs. The gene disrupted in the
linkspoot mutant encodes a receptor for bone morphoge-
netic proteins (Bmp), another member of the Tgf-ß
superfamily of secreted growth factors. Further analysis
of Bmp over-expression or knock-down models demon-
strate that Bmp signalling is required for unilateral Nodal
expression, through the initiation and maintenance of an
embryonic midline barrier. Our results demonstrate a novel
and important mechanism by which left-right asymmetry
in the vertebrate embryo is established and regulated.

Bmp and Nodal Independently Regulate efty1
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laterality defects in the viscera (Figure 1J–1L). Aberrant position-

ing of the heart and other viscera can be caused by defects in

formation or function of the Kupffer’s vesicle, resulting in

disrupted LR patterning. We therefore examined cilia rotation

in the KV, and found that both in Zlin and MZlin mutant embryos

with a midline positioning of the heart, cilia rotation in the

Kupffer’s vesicle was unaffected (Figure S2 and Videos S1, S2, S3),

suggesting that the laterality defect was not due to a disruption of

Kupffer’s vesicle function. Together, these results suggest that the

affected gene product in lin mutants is required for dorsal-ventral

and left-right axis specification.

linkspoot encodes Bmpr1aa
To better understand the molecular nature of the lin mutant

phenotype, we positionally cloned the gene that is disrupted in the

lin mutant. Using bulk segregant analysis with SSLP markers we

placed the lin mutation onto chromosome 13. Mapping of the lin

locus using 570 mutant embryos resulted in the identification of a

chromosomal region containing a zebrafish orthologue of the

mammalian Bmpr1a/Alk3 gene, encoding a Bmp Type I receptor

(Figure 2A). Since Bmp signalling is instructive for cardiac

laterality as well as ventral tail fin formation [13,29,30], we

sequenced the coding region of the bmpr1aa gene for mutations.

We identified a base pair substitution (T . G) at position 1538

resulting in a leucine to arginine substitution at position 337

(L337R) in the kinase domain of the Bmpr1aa protein (Figure 2B).

The T1538G polymorphism was invariably linked with the mutant

phenotype (n = 570). No other non-synonymous substitutions were

identified in the coding region of bmpr1aa that were linked with the

mutant phenotype. Modelling of the corresponding region of

human BMPR1A suggested that the L312R (corresponding to

zebrafish L337R) substitution is incompatible with proper folding

of this region and thereby likely destabilizes the entire kinase

domain (Figure 2C, 2D).

To address the functional consequence of the L337R substitu-

tion, we introduced the lin mutation in the bmpr1aa gene and

generated synthetic mRNA for injection into embryos. Surpris-

ingly, injection of wild-type bmpr1aa mRNA into wild-type 1-cell

stage embryos resulted in a loss of the ventral tail fin (Table 1).

Injection of bmpr1aa L337R mRNA had a stronger inhibition of

Bmp signalling since more of the injected embryos displayed a

dorsalised phenotype, which was also stronger in its effect (Table 1).

These results suggest that increasing wild-type Bmpr1a beyond

physiological levels has a negative effect on Bmp signalling,

possibly by titrating out other components of the signalling

pathway. The dominant-negative effect is stronger for the

Bmpr1aa L337R most likely because Bmpr1aa L337R is still able

to form a receptor complex and interact with Bmp but it can no

longer phosphorylate the receptor Smad protein due to its

mutation in the kinase domain. To test this hypothesis we injected

Figure 1. Dorsoventral and laterality defects in zygotic and maternal zygotic lin mutant embryos. (A–D) Wild-type zygotic lin siblings
with normal ventral tail fin (A), left-positioned heart tube (B) and normal organ situs with liver on the left, pancreas on the right and left looped gut
tube (C). (D) Quantification of heart position (n = 14) and direction of gut looping (n = 40). (E–H) Zygotic lin (Zlin) mutant embryos displayed a mild
reduction of the ventral tail fin (n = 100/108) (E). In addition, in almost 30% of Zlin mutant embryos, the heart tube was positioned at the midline (F).
Gut laterality was unaffected in Zlin mutant embryos (G). Quantification of heart position (n = 108) and direction of gut looping (n = 100). (I–L)
Maternal zygotic lin (MZlin) mutant embryos derived from a cross of a homozygous lin mutant female and male showing the more severe posterior
truncation (I) compared to a Zlin mutant embryo (E). In addition, most MZlin mutant embryos displayed a laterality defect in the heart (J), liver
(bilateral, K) and in looping of the gut (K). (L) Quantification of heart positioning (n = 151) and direction of gut looping (n = 16).
doi:10.1371/journal.pgen.1002289.g001
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a lower dose of the wild-type bmpr1aa mRNA into embryos derived

from an incross of two lin heterozygous carriers to determine

whether we could rescue the tail fin defects of lin mutant embryos.

Indeed we observed that injection of low levels of wild-type

bmpr1aa was able to rescue the ventral tail fin defects in almost

50% of lin mutant embryos (Table 1). Consistent with our model

that Bmpr1aa L337R has reduced signalling activity, we never

observed a rescue of the tail fin defects of lin mutant embryos when

we injected the bmpr1aa L337R mRNA. From these results we

conclude that the gene that is disrupted in lin mutants encodes the

Bmp receptor, Bmpr1aa, and that the lin mutation inactivates

Bmpr1aa activity.

Bmpr1aa and Bmpr1ab are partially redundant during
dorsal-ventral and left-right axis formation

To further characterise the requirement for bmpr1a during

zebrafish development, we analysed its expression. Interestingly,

database searches revealed that due to a genome duplication

event, a paralogue of bmpr1aa existed in the form of bmpr1ab/alk3b

(exhibiting 80% identity at the protein level). We, therefore,

simultaneously analysed the expression pattern of these two closely

related genes. ISH analysis revealed that both bmpr1a paralogues

Figure 2. Genetic variations found in zebrafish bmpr1aa and bmpr1ab genes. (A) The lin mutation was mapped to a region on chromosome
13 that includes the bmpr1aa gene. (B) T.A basepair change that was found in all lin mutant embryos results in a Leu to Arg change at position 337
(L337R). (C) Crystal structure of human BMPR1B. The kinase domain from the human BMPR1B with the kinase inhibitor LDN-193189 (ball-and-stick
representation) bound to the ATP binding site (pdb entry 3MDY). Leu 312 (corresponding to Leu 337 in fish) is shown in red. Structural elements
providing residues to the hydrophobic core surrounding Leu 312 are highlighted in dark blue. (D) Detailed view of the hydrophobic core surrounding
Leu 312 (in red). Black labels refer to the structure of human BMPR1A, the corresponding residues in fish are indicated by grey italic labels.
Consequences of the L312R mutation are analyzed by replacing the leucine side chain in the structure model with arginine, of which five typical
rotamers are shown (yellow to green). All rotamers cause serious clashes with surrounding residue, which are highly conserved in fish. (E) C.A
basepair change in the bmpr1ab gene that results in a premature stop codon at position 84 in the extracellular domain of the receptor. (F) A
MZbmpr1ab mutant embryo at 2 dpf with no obvious phenotypes in the heart or tail region (magnified). (G) Bmpr1a dose-dependent effect on
dorsoventral and left-right patterning. Embryos derived from an incross of bmpr1aa+/2;bmpr1ab+/2 double carrier fish was analyzed and quantified
for the dorsoventral phenotypes (classified as C1 (mild) to C4 (strong)) and position of the heart (left or midline) if present. n/a, not applicable since
no heart tissue was present.
doi:10.1371/journal.pgen.1002289.g002

Table 1. Injection studies.

phenotype#

RNA
injection

conc.
ng/ml genotype n

wt
(%)

C1
(%)

C2
(%)

C3
(%)

C4
(%)

{
(%)

bmpr1a 10 +/+ 64 83 3 8 2 0 4

bmpr1a 20 +/+ 54 72 9 13 0 0 6

bmpr1a L337R 10 +/+ 70 46 4 14 7 10 19

bmpr1a L337R 20 +/+ 62 47 10 3 1 23 16

— lin +/+,+/2 84 100 0 0 0 0 0

lin 2/2 27 11 89 0 0 0 0

bmpr1a a 2 lin +/+,+/2 81 96 4 0 0 0 0

lin 2/2 32 47 53 0 0 0 0

bmpr1a L337R 2 lin +/+,+/2 78 90 10 0 0 0 0

lin 2/2 21 0 100 0 0 0 0

# Classified by strength of dorsalization according to [28].
doi:10.1371/journal.pgen.1002289.t001
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are expressed from the 2-cell stage, indicating maternal deposition

of the transcripts (Figure S3). Each paralogue was expressed in a

ubiquitous fashion up until the 10-somite stage, however the signal

for bmpr1aa was more intense compared to the signal of bmpr1ab

suggesting different levels of expression. From 20-somites onwards,

the expression of both paralogues became progressively restricted

to anterior regions.

The similar expression patterns observed for bmpr1aa and

bmpr1ab suggest comparable functions for the paralogues. To

analyse this possibility further we screened a mutagenesis library

for a bmpr1ab mutant. We identified a mutant harbouring a stop

codon (TAC.TAA) in the second exon of the gene, truncating the

protein 84 amino acids into the ligand-binding domain (Y84X)

(Figure 2E). Although a DV patterning defect was reported upon

morpholino knockdown of bmpr1ab [31], we observed no

morphological phenotype in the majority of bmpr1ab zygotic

mutants. Furthermore, maternal zygotic bmpr1ab mutants exhib-

ited no observable phenotype (Figure 2F).

We next tested for possible redundancy between the two

paralogues. By incrossing double heterozygous carriers for the two

mutations (bmpr1aa+/2;bmpr1ab+/2), we observed a spectrum of

dorsalised embryonic phenotypes, ranging from wild-type pheno-

types to C4 dorsalisation in the most severe instances (categorisa-

tion according to Mullins et al., [28]) (Figure 2G). Genotyping

revealed that the severity of the dorsalisation phenotype correlates

with decreasing gene dosage of bmpr1aa and bmpr1ab, with double

mutant embryos always exhibiting a C4 dorsalised phenotype.

Importantly, this gene dosage effect was also observed on LR

patterning, with 80% of embryos of genotype bmpr1aa2/2;

bmpr1ab+/2 presenting with a cardiac laterality defect

(Figure 2H). Interestingly, loss of the bmpr1aa paralogue affected

phenotypic severity more robustly than loss of the bmpr1ab.

Unfortunately, we were unable to score the cardiac laterality

phenotype of double mutant embryos as no cardiac field was

detected in these embryos (Figure S4), consistent with previous

observations that Bmp signalling is required for cardiac specifica-

tion [32,33]). These results demonstrate that the bmpr1a paralogues

play partially redundant roles in both dorsoventral and LR

patterning.

Bmp acts upstream of Nodal signalling during left-right
patterning

Since no role for Bmp1a in LR axis formation has been

reported thus far, we further investigated how Bmp signalling via

Bmpr1a regulates LR patterning. We analysed the expression

pattern of marker genes whose expression is controlled by LR

patterning in embryos derived from an incross of bmpr1aa+/2;

bmpr1ab+/2 parental fish. Expression analysis of the Nodal-related

gene spaw revealed that embryos that retained at least one wild-

type copy of bmpr1aa, displayed normal spaw expression

(Figure 3A). However, embryos that had lost both wild-type copy

of bmpr1aa and retained at least one wild-type copy of bmpr1ab

displayed strong and bilateral expression of spaw in the entire LPM

(Figure 3B). On the contrary, in embryos that had lost all wild-type

copies of bmpr1aa and bmpr1ab we observed a reduction of spaw

expression in the LPM by in situ hybridization (Figure 3C) and

quantitative RT-PCR (Figure S5). The bmpr1aa/bmpr1ab double

mutant embryos displayed a strong (C4) dorsalised phenotype

resulting in a curling of the tail region. Although a Kupffer’s

vesicle was present in these embryos (data not shown), the

structure of the tail is suspected to have physically intervened with

the potential of the Kupffer’s vesicle to activate and/or propagate

spaw expression in the posterior LPM.

Figure 3. Dose-dependent effect of Bmpr1a on the expression
of laterality genes. In situ hybridisation at 18-somites for spaw (in
LPM) and no tail (ntl) (in midline) (A–C), lefty1 at 23-somites (heart field
and midline) (D–F) and pitx2 at 23-somites (in LPM) (G–I). (A,D,G)
Embryos selected for normal ventral tail fin or C1 dorsalization
(genotypes: bmpr1aa +/+ or +/2; bmpr1ab +/+ or +/2 or 2/2).
(B,E,H) Embryos selected for C3 dorsalization (genotype bmpr1aa2/
2;bmp1ab+/2). (C,F,I) Embryos selected for C4 dorsalization (genotype
bmpr1aa2/2;bmpr1ab2/2). All embryos are shown as dorsal views
with anterior to the top and left to the left. Number of embryos
examined is presented in Table 2.
doi:10.1371/journal.pgen.1002289.g003

Table 2. Expression pattern of spaw, lefty1, and pitx2 in
bmpr1aa/ab genotypes.

probe
Bmpr1aa
Bmpr1ab

+/+
+/+

+/+
+/2

+/+
2/2

+/2
+/+

+/2
+/2

+/2
2/2

2/2
+/+

2/2
+/2

2/2
2/2 n

spaw left 1 6 1 3 6 6 3 0 0 26

bilateral 1 0 0 1 1 0 1 11 0 15

absent 0 0 0 0 0 0 0 3 15 18

lefty1 Left 1 7 3 6 12 2 3 0 0 34

(heart) bilateral 0 0 0 0 1 0 0 5 0 6

absent 0 0 0 0 2 1 0 0 4 7

pitx2 left 3 7 3 6 7 7 1 0 0 34

(LPM) bilateral 1 0 0 0 1 2 1 14 0 19

absent 0 0 0 0 0 0 0 0 3 3

doi:10.1371/journal.pgen.1002289.t002
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Similar disruptions to asymmetric gene expression were

observed upon analysis of lefty1 expression in the cardiac field

and pitx2 expression in the gut region. Expression of lefty1 was

restricted to the left cardiac field in embryos that retained at least

one wild-type copy of bmpr1aa (Figure 3D). Embryos that had lost

both wild-type copy of bmpr1aa and retained at least one wild-type

copy of bmpr1ab, however, displayed a clear bilateral expression of

lefty1 in the cardiac field (Figure 3E). Since embryos without any

wild-type bmpr1a gene lack the entire cardiac field, no lefty1

expression was observed in the cardiac region of these embryos

(Figure 3F). Furthermore, pitx2 is expressed in the posterior LPM

and its expression is regulated by Nodal activity; this expression

was unaltered in embryos that still possessed at least one wild-type

copy of bmpr1aa (Figure 3G). Consistent with the observed spaw

and lefty1 expression, pitx2 expression was also bilateral in the LPM

of embryos that had lost both wild-type copy of bmpr1aa and

retained at least one wild-type copy of bmpr1ab and was

compromised in embryos that had lost all 4 copies of the wild-

type bmpr1a gene (Figure 3H, 3I).

These results suggest that during LR patterning Bmp signalling

via Bmpr1a regulates Nodal activity. To address the interrelation

between Bmp and Nodal signalling we tested the possibility that

Nodal acts downstream of Bmp signalling during cardiac laterality.

Therefore we attempted to rescue the Bmp-dependent cardiac

laterality defect by implanting Nodal-soaked beads in the anterior

LPM (ALPM), in order to induce ectopic Nodal signalling. To

block Bmp signalling, Tg(hsp70l:nog3) embryos were heat-shocked

at 16 hpf which resulted in a cardiac laterality defect in almost all

embryos (6 out of 7; Figure 4A–4C). Interestingly, when a Nodal

bead was placed in the right ALPM of non-heat-shocked embryos

the heart tube was displaced from the left side towards the midline

in approximately 50% of the embryos (Figure 4C, 4F). This effect

of the Nodal bead was even stronger when the bead was placed in

heat-shocked Tg(hsp70l:nog3) embryos. The cardiac tube in such

embryos with reduced Bmp signalling was directed towards the

right-sided bead in nearly 70% of cases (Figure 4D–4G). In a

similar experiment using MZbmpr1aa mutant embryos we again

observed that the cardiac tube was directed towards the Nodal

bead in 75% of embryos examined (Figure 4H–4J). Together these

results suggest that during generation of cardiac laterality Bmp and

Bmpr1a act upstream of, or in parallel with, Nodal.

Expression of lefty1 in the midline is regulated by Bmp
Our observation that spaw is ectopically expressed in the right

LPM mesoderm in embryos that had lost 2–3 copies of their wild-

type bmpr1a indicated that Bmpr1a is normally required to repress

spaw expression in the right LPM. For this to be a direct effect of

Bmp signalling it is expected that Bmp signalling is elevated in the

right LPM, as recently reported studying mouse embryos [17].

Although we previously reported on elevated Bmp activity in the

left anterior LPM before the cardiac tube is formed (22-somite

stage)[34], we never observed enhanced Bmp activity in the right

posterior LPM using an anti phospho-Smad1,5,8 antibody (data

not shown). An alternative to the model in which Bmp activity

directly regulates spaw expression in the right LPM is a model in

which Bmp activity regulates spaw expression in an indirect

manner. It is well established that Lefty1 in the midline is required

to prevent Nodal protein produced in the left LPM from crossing

the midline and inducing Nodal expression ectopically in the right

LPM [9]. We, therefore, systematically analysed lefty1 expression

in the midline of embryos with a gradual loss of Bmpr1a signalling.

Doing so, we observed that embryos with 4 or 3 copies of the wild-

type bmpr1a gene displayed normal and robust lefty1 expression in

the embryonic midline (Figure 5A). Analysis of lefty1 expression in

embryos that had lost 2 or 3 copies of the wild-type receptor gene,

we observed an increase in the number of embryos with reduced

lefty1 expression levels in the midline. Embryos that had lost all 4

copies of the wild-type bmpr1a gene consistently showed a near loss

of all lefty1 expression (Figure 5A).

To address whether a disruption of fluid flow in Kupffer’s

vesicle might explain the reduced lefty1 expression we analyzed the

lrrc50hu255h mutant, a loss-of-function allele of a conserved cilia

protein that is required for cilia motility [35]. We observed that in

the majority of lrrc50hu255h mutant embryos lefty1 was robustly

expressed in the midline (Figure S6), suggesting that the observed

reduction of lefty1 expression in bmpr1a mutant embryos was not a

consequence of a disruption in Kupffer’s vesicle function.

To test whether Bmp activity can regulate lefty1 expression in

the midline we analysed lefty1 expression in embryos with

increased or reduced Bmp activity. We manipulated levels of

Bmp signalling by performing heat-shock experiments on embryos

carrying the Tg(hsp70l:bmp2b) or Tg(hsp70l:nog3) transgenes,

allowing temporally controlled upregulation or downregulation

of Bmp signalling, respectively. The embryos were heat-shocked

after gastrulation to prevent strong effects on dorsal-ventral

patterning due to altered Bmp signalling levels and lefty1

expression was analysed at somitogenesis stages. Consistent with

the data from the bmpr1a mutant analysis, we observed an

upregulation of lefty1 expression in embryos with ectopic Bmp

activity, intermediate levels of lefty1 in wild-type embryos and

reduced lefty1 expression in embryos with reduced Bmp activity

(Figure 5B). These results demonstrate that Bmp signalling is both

required and sufficient for lefty1 expression in the midline.

Bmp and Nodal regulate lefty1 expression independently
Thus far it has been proposed that lefty1 expression in the

midline is directly regulated by Nodal protein produced in the

LPM [36]. Importantly, our observations demonstrate that lefty1

expression also requires Bmp signalling. Next, we wanted to

address whether the regulation of lefty1 by Bmp is Nodal (in)-

dependent. The suggestion that Nodal activity itself is not sufficient

to induce lefty1 expression in the midline arises from our

observation that upon reduction of Bmp signalling, lefty1

expression was reduced while spaw was still strongly expressed in

the LPM. In addition, our observation that upon ectopic

expression of bmp2b, lefty1 expression is induced while spaw

expression is lost goes further to suggests that Bmp signalling can

induce lefty1 expression in the absence of Nodal activity. We,

therefore, wanted to address whether Bmp signalling regulates

lefty1 expression in the midline independent from its regulation by

Nodal activity. To investigate further the possibility that Bmp

induces lefty1 expression in a Nodal-independent manner, we

incubated embryos with the Nodal inhibitor SB431542 from tail-

bud stage until the time point of analysis (18 hpf) [37]. As

expected, we observed that in wild-type embryos treated with

SB431542, spaw expression was compromised in the LPM,

indicating the efficiency of the SB431542 treatment in blocking

Nodal signalling (data not shown). When wild-type embryos or

Tg(hsp70l:bmp2b) that were not subjected to heat-shock (both

exhibiting wild-type Bmp levels) were treated with SB431542, we

observed a loss of lefty1 expression from the midline. These results

demonstrate that Nodal activity is indeed required for lefty1

expression at this stage, which is consistent with previous reports

[5,38]. However, when heat-shock induced Tg(hsp70l:bmp2b)

embryos were directly treated with SB431542, lefty1 expression

was induced in the midline. From these results we can conclude

that in embryos with wild-type Bmp activity, Nodal is essential to

drive robust expression of lefty1 in the midline. In addition, these
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results demonstrate that when Bmp signalling is ectopically

activated, lefty1 expression is induced independently of Nodal.

When comparing the level of lefty1 induction in heat-shocked

Tg(hsp70l:bmp2b) embryos with or without the SB treatment we

observed less ectopic lefty1 expression in the presence of the SB

inhibitor (comparing Figure 6B and 6D). This result suggests a

synergistic effect of Nodal and Bmp on lefty1 expression.

Thus far our results suggest that Nodal and Bmp regulate lefty1

expression in the midline independent from each other. To

confirm such an independent regulation we tested whether Nodal

can regulate lefty1 expression independent from Bmp signalling.

To block Bmp activity Tg(hsp70l:nog3) embryos were heat-shocked

at tail-bud stage (10 hpf), which resulted in reduced expression of

lefty1 in the anterior midline at 18 hpf (Figure 6E, 6F). To induce

Nodal in Bmp-depleted embryos, a Nodal bead was placed in the

ALPM. As a consequence of Nodal bead implantation we

observed restoration of the anterior lefty1 expression even in the

absence of Bmp signalling (Figure 6G, 6H). These results

demonstrate that Nodal can activate lefty1 expression independent

from Bmp and confirm that Bmp and Nodal regulate lefty1

Figure 4. Rescue of Bmp-related cardiac laterality defects by Nodal beads. In situ hybridisation for myl7 to highlight the position of the
linear heart tube at 30 hpf. Tg(hsp70l:nog3) embryos with no heat-shock (A,D) or heat-shocked at 16 hpf (B,E). Beads (blue) preincubated with
recombinant Nodal protein placed in the right ALPM of non-heat-shocked (D) or heat-shocked (E) Tg(hsp70l:nog3) embryos at 17–18 hpf. Control
siblings (G,J) or MZbmpr1aa mutant embryos (H,K). Beads (blue) preincubated with Nodal protein placed in the right ALPM of siblings (J) or
MZbmpr1aa mutant embryos (K). Position of the inflow pole of the linear heart tube was determined for embryos without a Nodal bead (C) and for
embryos in which a Nodal bead was placed on the right side (F). Embryos are shown as dorsal views with anterior to the top and left to the left.
doi:10.1371/journal.pgen.1002289.g004
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expression independent from each other. Together these results

indicate that lefty1 expression is regulated by at least two parallel

pathways involving Nodal and Bmp.

Lefty1 is required for the suppression of spaw expression
by Bmp

Finally, we wanted to address whether the observed effect of

Bmp on spaw expression in the LPM is direct or indirect via its

proposed role in regulating lefty1 expression. In Tg(hsp70l:bmp2b)

embryos that were heat-shocked at the tail bud stage, we observed

a strong down-regulation of spaw expression in the LPM

(Figure 7A, 7B), which was coupled with ectopic lefty1 expression

(Figure 5B). To test whether the upregulation of lefty1 in the

midline was responsible for the downregulation of spaw expression

in the LPM, we performed lefty1 knock-down by injecting embryos

with a previously published morpholino that effectively targets

lefty1 [39]. Interestingly, injection of the lefty1 MO in heat-shock

induced Tg(hsp70l:bmp2b) embryos resulted in restoration of spaw

expression in the left LPM, with ectopic expression also observed

in the right LPM (Figure 7D), similar to non-heat-shocked

embryos (Figure 7C). These results demonstrate that lefty1

expression in the midline is required for Bmp to repress spaw

expression in the LPM and acts as an intermediary between Bmp

signalling and spaw expression.

Discussion

We describe here the identification of two novel zebrafish

bmpr1a mutants; a bmpr1aa mutant allele from a forward genetic

screen for laterality mutants and a bmpr1ab mutant allele by

screening a mutagenized library. By generating and analyzing

compound heterozygous and double mutant embryos for bmpr1aa

and bmpr1ab, we observed a strong correlation between the

number of wild-type bmpr1a gene copies being lost and the severity

of the LR patterning defects observed. Most strikingly we observed

a shift from the normal unilateral expression of the Nodal-related

spaw gene in the left LPM to a bilateral spaw expression in both the

left and the right LPM. This shift was accompanied by a reduction

in the expression of lefty1 at the midline. This demonstrates that

Bmp signalling regulates normal unilateral Nodal activation in the

LPM, an observation supported by Nodal bead implantation in

the LPM that restored cardiac laterality in Bmp-deficient embryos.

Mechanistically our data suggests that there are two parallel

pathways, a Bmp and a Nodal dependent pathway, to promote

lefty1 expression in the midline and regulate LR patterning (see

Figure 8 for proposed model). This model also explains the

observation made in several animal models that ectopic Bmp

signalling downregulates Nodal activation, suggesting that Bmp

signalling is required on the right side to repress Nodal activation

[13,20,22,38]. Our data now demonstrates that, at least in

zebrafish, this regulation of Nodal activity by Bmp is indirect

and depends on the activation of lefty1 expression, as was

demonstrated by knock-down of lefty1 in embryos with elevated

Bmp signalling (Figure 7). Expanding the previous reaction-

diffusion model of an agonist (Nodal) and antagonist (Lefty1), we

can now include an additional level of regulation, in which Bmp

induces Lefty1, which is required to establish unilateral Nodal

activity in the LPM.

Lefty1 is essential for formation of the LR axis [9]. Loss of Lefty1

in mouse embryos results in a left-isomerism, whereby left-sided

genes become expressed bilaterally. These described effects are

very similar to those observed upon reducing Bmpr1a levels or

Bmp signalling in the zebrafish embryo shown here. Others have

reported that expression of Lefty1 in the midline is dependent on

Nodal activity from the LPM in both zebrafish and mouse

embryos [5,36,38]. Detailed analysis of the Lefty1 promoter region

by Saijoh and colleagues identified a 1.2 kb upstream region of the

Lefty1 gene that was sufficient to drive its midline expression [40].

In addition, it was reported that although Foxh1 binding sites are

present in this upstream promoter region, these were not required

to drive Lefty1 expression in the midline [36]. This suggests that,

besides Nodal, additional factors are required for inducing midline

Lefty1 expression. Indeed our data demonstrate that during

zebrafish LR axis formation, Bmp signalling is required and

sufficient to drive lefty1 expression in the midline. Firstly, we found

that in mutants with reduced copies of the wild-type bmpr1a gene,

lefty1 expression is gradually lost from the midline. Secondly, in

Figure 5. Bmp via Bmpr1a regulates lefty1 expression in the
midline. (A) In situ hybridisation for lefty1 at 15-somites on embryos
from an incross of bmpr1aa+/2;bmpr1ab+/2 double carrier fish.
Embryos were analysed for lefty1 expression and classified as robust
(blue boxed panel) or reduced (red boxed panel) expression after which
the embryos were genotyped. Quantification of the results is shown in
the stacked area graph (blue, robust lefty1; red reduced lefty1). (B) In situ
hybridisation for lefty1 at 10-somite stage. Embryos shown are
Tg(hsp70l:bmp2b) embryos either heat-shocked at 10 hpf to induce
bmp2b expression (left panel) or without heat-shock (middle panel) and
Tg(hsp70l:nog3) embryos heat-shocked at 10 hpf to inhibit Bmp
signalling (right panel). Lateral view of 10-somite stage embryos with
dorsal to the right and anterior up.
doi:10.1371/journal.pgen.1002289.g005
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transgenic embryos that ectopically express noggin3, a potent Bmp

antagonist, lefty1 expression is diminished from the midline while

Nodal signalling is still active (indicated by bilateral spaw

expression). Thirdly, ectopic activation of the Bmp signalling

pathway using a Tg(hsp70l:bmp2b) transgenic results in elevated

and ectopic expression of lefty1 in the midline.

Our experiment using ectopic Bmp signalling in the absence of

Nodal activity demonstrated that under conditions where Bmp

signalling is sufficiently high, Nodal is not required to induce lefty1

in the midline. This might be important during early stages of LR

axis formation. Based on the following observations, we hypoth-

esize that at the initiation of LR axis formation, lefty1 expression in

the midline is initiated by Bmp signalling independently of Spaw

activity. Firstly, in zebrafish embryos lefty1 expression in the

midline was observed at the 1–3 somite stage while spaw expression

is initiated only at the 5-somite stage in the perinode region and at

the 10-somite stage in the LPM ([5] and unpublished observations

M. Verhoeven, E. Noël and J. Bakkers). Secondly, this initial lefty1

expression was unaffected by the injection of MOs that efficiently

targeted spaw [5]. Thirdly, at these early somite stages expression

of Bmp ligands is very strong in the tail bud region [41]. When

blocking all Bmp signalling at this early stage in heat-shocked

Tg(hsp70l:nog3) embryos, lefty1 expression was indeed not initiated

in the midline. Together these results suggest that at the initiation

of LR axis formation, lefty1 expression in the midline is initiated by

Bmp while the maintenance of lefty1 expression in the midline

requires both Nodal and Bmp (see model in Figure 8).

Non-redundant roles for Bmp1a and Acvr1l during LR
patterning

Although the zebrafish has been used extensively to identify new

regulators by conducting forward genetic screens, there has been

very limited success identifying novel mutants displaying LR

patterning defects [42,43]. This might be due to the variability and

mixture of the phenotypes that can be observed (situs inversus,

situs ambigious or situs solitus) as well as the natural occurrence of

these phenotypes in the commonly used wild-type strains.

Alternatively, an earlier and essential function of the gene product

in embryo development masking any LR defects would hamper

the identification of such LR genes. In addition, redundancy with

paralogous genes often present in the zebrafish genome can mask

the full loss-of-function phenotype. In lin mutant embryos, two

copies of the wild-type bmp1aa gene are lost while the two wild-type

bmpr1ab copies are still present. The lin/bmpr1aa mutant embryos

displayed heart-specific laterality defects (although not fully

penetrant) without displaying any gut laterality defects. Previously,

we showed temporally distinct requirements for Bmp signalling

functions during both LR axis formation and heart morphogenesis

[13,34]. The heart-specific laterality defect of lin/bmpr1aa mutant

embryos (eg. loss of leftward cardiac jogging and rightward cardiac

Figure 6. Bmp and Nodal induce lefty1 independently. (A–D) Tg(hsp70l:bmp2b) embryos were left at 28uC (A,C) or heat-shocked at 10 hpf to
induce bmp2b expression (B,D). A subset of embryos were incubated in the presence of the Nodal inhibitor SB431542 directly after the heat-shock.
Embryos were analysed by in situ hybridisation for lefty1 expression at 15-somites. (E–H) Tg(hsp70l:nog3) embryos were left at 28uC (E,G) or heat-
shocked at 10 hpf to induce noggin3 expression (F,H). In a subset of embryos a bead preincubated with recombinant Nodal was placed in the ALPM.
Embryos were analysed by in situ hybridisation for lefty1 expression at 18-somites. All embryos are shown as lateral views with dorsal to the right and
anterior to the top. Arrows point to most anterior lefty1 expression domain. Numbers in lower right represents the number of embryos that displayed
the phenotype represented in the panels.
doi:10.1371/journal.pgen.1002289.g006
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looping) is very similar to the cardiac laterality defect previously

observed in the lost-a-fin/alk8 mutant. This suggests that during

these processes Bmpr1a/Alk3 and Acvrl1/Alk8 play non-redun-

dant functions similar to those described for these receptors during

dorsoventral patterning [31]. These results also imply that either

the regulation of heart laterality is more sensitive to reducing Bmp

signalling activity than the digestive system or that this process is

less compensated by wild-type maternal bmpr1aa RNA present in

the oocyte. In agreement with the latter suggestion are the

observations that bmpr1aa is maternally provided in the oocyte and

that maternal zygotic (MZ)lin/bmpr1aa mutant embryos (from

surviving lin/bmpr1aa homozygous females) displayed an increase

in the strength of the LR patterning defects, including gut laterality

defects.

Conservation of the Nodal-Bmp-Lefty1 pathway
To our knowledge, this is the first report describing the

requirement for Bmpr1a in regulating LR axis formation. Mouse

Bmpr1a mutant embryos do not form mesoderm at embryonic day

7.5 and subsequently die before embryonic day 9.5, preventing the

study of LR axis formation in these mutants [26]. Interestingly, the

closely related mouse Acvr1/Alk2 gene has been implicated in LR

patterning [16]. Since the Acvr1 mutant mouse embryos also die

early due to severe gastrulation defects, chimeric embryos were

produced and analysed for LR patterning. Depending on the

relative contribution of mutant cells to the chimeric embryos, a

variety of laterality defects were described. In chimeric embryos

with a relative high contribution of Acvr1 mutant cells, bilateral

expression of Nodal and Pitx2 in the LPM was observed in

combination with reduced expression of Lefty1 in the midline. The

phenotypes described for the chimeric embryos with Acvr1 mutant

cells corroborate our observations in the Bmpr1a compound

heterozygous/mutant embryos, suggesting a conserved role for

Bmp type I receptors during LR axis formation.

The Bmp signal that regulates Lefty1 expression in the midline

does so independent of Smad1, one of the three Bmp-specific

Smad proteins. Although Smad1 inactivation in mouse embryos

resulted in the activation of Nodal expression in the right LPM,

Lefty expression in the midline was unaffected in such embryos

[15]. Alternatively, Smad5 could be responsible for transducing

the Bmp signal. Embryos lacking Smad5 no longer express Lefty1

in the midline, which is accompanied by bilateral Nodal and Pitx2

expression in the LPM [12]. Several observations in mouse suggest

that during LR axis specification, Bmp signalling can also repress

Nodal activation in the right LPM more directly and indepen-

dently from its regulation of Lefty1 in the midline. As mentioned

above, Smad1-deficient embryos showed bilateral Nodal expres-

sion while Lefty expression in the midline was reported to be

unaffected [15]. In a study by Mine and co-workers, elevated

phospho-Smad1,5,8 levels in the right LPM compared with the left

LPM of mouse embryos was reported [17]. In addition, an

increase on the left side of phospho-Smad1,5,8 levels was observed

in Chordin and Noggin double mutant embryos, combined with a

loss of Nodal and Lefty1,2 expression. However in Chordin;Noggin

double mutant embryos, perinodal Nodal was also reduced and

defects in the morphology of the node and the density of cilia were

described, suggesting an additional defect in the transduction of a

signal from the node to the LPM in such embryos. This defect in

communication between the node and the LPM most likely also

explains why we observed a complete lack of spaw expression in the

LPM of bmpr1aa;bmp1ab double mutant embryos. In zebrafish

embryos, we did not observe a stronger phospho-Smad1,5,8 level

in the right LPM compared to the left side during LR

specification. However, at later stages we did observe the opposite

in the anterior LPM where phospho-Smad1,5,8 levels were

increased on the left side [34]. In addition, our observation that

ectopic Bmp signalling in the Tg(hsp70l:bmp2b) embryos can no

longer repress spaw activation in the LPM when Lefty1 is absent

makes it very unlikely that such a direct repression of Bmp

signalling on spaw expression exists in the zebrafish embryo.

Together this indicates that the regulation of lefty1 by Nodal and

Bmp during LR axis specification is conserved amongst various

vertebrate species. However there are species-specific differences

as to what other activities Bmp signalling has during this process.

Possibly, differences in geometry or scale of the embryos and speed

of their development might require additional regulatory mech-

anisms to maintain the crucial but very unstable unilateral Nodal

activation during LR axis specification.

Materials and Methods

Zebrafish strains and screen
All zebrafish strains were maintained in the Hubrecht Institute

using standard husbandry conditions. Animal experiments were

approved by the Animal Experimentation Committee (DEC) of the

Royal Netherlands Academy of Arts and Sciences. The bmpr1ahu4087

mutant was identified during a forward genetic screen performed at

the Hubrecht institute. ENU mutagenesis was performed as

Figure 7. Lefty1 is required for Bmp induced repression of
spaw. In situ hybridisation of spaw (in LPM) and ntl (in midline) at 18-
somites. Wild-type (A,C) or Tg(hsp70l:bmp2b) (B,D) embryos were heat-
shocked at 10 hpf to induce bmp2b expression (B,D). Ectopic expression
of bmp2b resulted in the loss of spaw expression in the LPM (B). A
subset of embryos were injected with a lefty1 MO (C,D), which resulted
in bilateral spaw expression even in the presence of ectopic bmp2b (D).
Embryos are shown as dorsal views with anterior to the top and left to
the left.
doi:10.1371/journal.pgen.1002289.g007
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previously described for the creation of the Hubrecht Institute target

selected mutagenesis library [44]. F1 progeny of mutagenised males

were outcrossed to create approximately 300 F2 families, which

were then incrossed. F3 progeny were screened for cardiac laterality

defects at 28–34 hpf. The bmpr1ahu4087 mutant can be identified

using nested PCR with the following primers:

PCR1

Forward primer: AGCTCATCCGGAGAAGTATG

Reverse primer: TCCACTTCATTTGTGTCACTG

PCR2

Forward primer: TGTAAAACGACGGCCAGT ATATG-

TACCCAGCCCTGATG

Reverse primer: AGGAAACAGCTATGACCAT AGCTTCA-

GATTCAGATCAACAC

The bmpr1absa0028 mutant was identified from the mutagenesis

library at the Sanger institute by screening finclip DNA using

nested PCR with the following primers:

PCR1:

Forward primer: CCAGACTACATGCTTCATG

Reverse Primer: ATTGTGACAGGCCTACAATG

PCR2:

Forward primer: TGTAAAACGACGGCCAGT CAGAA-

GATGCCACAAACAAC

Reverse primer: AGGAAACAGCTATGACCATGGTCA-

CACCGAGTAATTTCC

Products were then sequenced with M13F or M13R primers.

Published transgenic lines used were Tg(hsp70ll:nog3)fr14 and

Tg(hsp70ll:bmp2b)fr13 [13].

Genetic mapping and genotyping
Meiotic mapping of the linkspoot mutation was performed using

standard simple sequence length polymorphisms. The primers

used for SSLP can be found on www.ensembl.org.

Morpholino oligo and RNA synthesis
The lefty1 morpholino was described previously [39].

The coding region of the bmpr1aa gene was cloned into pCS2+
by PCR amplification. The lin mutation was introduced in the

pCS2+ bmpr1aa construct using the QuickChange kit (Stratagene).

In vitro transcription was performed from Acc65I digested template

using the SP6 mMessage mMachine kit for all injected mRNA

(Ambion).

Figure 8. Schematic representation of lefty1 regulation during LR axis specification. Two phases of lefty1 regulation can be distinguished.
i) At the 1–3 somite stage the KV (shown in red) is formed but the nodal flow (indicated by blue arrows) has not yet been initiated. While at this stage
lefty1 is already expressed in midline (shown in blue) spaw expression is still absent from the embryo. Thus, this early lefty1 expression is induced
independent of Nodal but does depend on Bmp activity. Most likely, robust lefty1 expression is required prior to the initiation of LR axis specification
to prevent ectopic activation of spaw in the right LPM later on. ii) At the 5-somite stage spaw expression becomes apparent in the perinode region
(yellow area flanking the KV) and from the 10-somite stage onward (up to the 25-somite stage) spaw is expressed unilateral in the left LPM (yellow-
boxed area). Our results demonstrate that at this second phase both Spaw/Nodal and Bmp activity are required independently to maintain lefty1
expression in the midline. Lefty1 in the midline antagonises Spaw and prevents it from crossing the midline where it would induce its own expression
in the right LPM.
doi:10.1371/journal.pgen.1002289.g008
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SB431542 treatment
SB431542 (Sigma) was resuspended in DMSO to a concentra-

tion of 10 mM, and subsequently diluted to a working concen-

tration of 150 mM in embryo medium. Control embryos were

treated with an equal volume of DMSO. 30 embryos were treated

per 5 ml of SB/DMSO solution.

In situ hybridization
In situ hybridization was carried out as previously described

[45]. Embryos were cleared in MetOH and mounted in

benzylbenzoate/benzylalcohol (2:1) before pictures were taken.

Riboprobes were generated by transcription from a linearized

template in the presence of 11-UTP.

Bead implants
Agarose beads (Affigel blue, BioRad) were rinsed twice in PBS

and incubated for 1 hr at 37uC with 50 mg/ml recombinant

mouse Nodal protein (R&D systems). Implants were performed as

previously described [46].

Supporting Information

Figure S1 Formation of the cardiac atrioventricular canal is

unaffected in bmpr1aa mutant embryos. (A,B) In situ hybridization

for bmp4 in the heart of wild-type and bmpr1aa mutant embryos at 48

hpf. Bmp4 is expressed in the inflow region, atrioventricular (AV)

canal (arrow) and outflow region of the heart. Although cardiac

looping was affected in bmpr1aa mutant embryos, expression of bmp4

was unaffected. (C,D) In situ hybridization for tbx2b, which was

expressed in the AV canal in wild-type siblings (C) and bmpr1aa

mutant embryos (D). (E,F) In situ hybridization for has2, which was

expressed in the endocardial cushion cells that will form the AV

valves. Has2 expression was unaffected in bmpr1aa mutant embryos

(F) compared to its wild-type siblings (E).

(PDF)

Figure S2 Cilia rotation in Kupffer’s vesicle of Zlin mutant is

unaffected. Brightfield images of the heart of wt and zygotic lin

mutants after imaging cilia in the KV. Zygotic lin mutants display

defects in positioning of the heart, however cilia motility in the KV

is unaffected (Videos S1 and S2), demonstrating cilia-independent

heart defects.

(PDF)

Figure S3 Expression of bmpr1aa and bmpr1ab. In situ hybrid-

ization for bmpr1aa (upper row) and bmpr1ab (lower row) at the

indicated stages from 2-cells up to 24 hpf. Both maternal bmpr1aa

mRNA and bmpr1ab mRNA was detected at the 2-cell stage.

mRNA for both Bmp receptors was detected at the various

developmental stages up to 24 hpf. Whilst expression of both Bmp

receptors was distributed ubiquitously up to the 10-somite stage, it

became progressively more intense in anterior structures at the 20-

somite stages and later.

(PDF)

Figure S4 bmpr1aa/bmpr1ab double mutant embryos lack myocar-

dial tissue. In situ hybridization for myl7 (cmlc2) expressed in the

myocardium of wild-type, bmpr1aa mutant or bmpr1ab mutant

embryos. Myl7 expression was not detected in bmpr1aa/bmpr1ab

double mutant embryos. All embryos shown as dorsal views at 30 hpf.

(PDF)

Figure S5 spaw expression is affected in bmpr1aa;bmpr1ab embryos.

RT-PCR analysis of spaw expression in wild type – C2, C3 and C4

dorsalised embryos derived from an incross of bmpr1aa+/- and

bmpr1ab+/- heterozygous fish (see Text S1 for detailed protocol). C3

dorsalised embryos (bmpr1aa-/-;bmpr1ab+/-) exhibit a 1.6-fold

increase in spaw expression, while C4 dorsalised embryos

(bmpr1aa-/-;bmpr1ab-/-) have a 6.9-fold decrease in spaw expression,

consistent with in situ analysis of spaw expression. MyoD expression is

gradually reduced in C3 and C4 dorsalised embryos when

compared to controls, consistent with a reduction in tail structures.

(PDF)

Figure S6 lefty1 expression in lrcc50 mutant embryos. In situ

hybridization analysis of lefty1 expression in lrrc50 mutant embryos

at 16 somites. The majority of wild type embryos express lefty1

from the posterior tip of the notochord anteriorly to around the

middle of the trunk (A). The majority of lrrc50 mutants express

lefty1 in a similar domain to wild type embryos (B). A subset of

lrrc50 mutants either express lefty1 in a domain restricted to the

posterior tip of the notochord (C), or do not expression lefty1 (D).

Lateral views, dorsal to the right.

(PDF)

Text S1 Supplemental methods.

(DOC)

Video S1 High speed image of cilia rotation in the KV of a wild

type embryo at 8 somites. See Text S1 for technical details related

to the videos.

(AVI)

Video S2 High speed image of cilia rotation in the KV of a

zygotic lin-/- embryo at 8 somites.

(AVI)

Video S3 High speed image of cilia rotation in the KV of a

maternal-zygotic lin-/- embryo at 8 somites.

(AVI)
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41. Martı́nez-Barberá JP, Toresson H, Da Rocha S, Krauss S (1997) Cloning and

expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and

Bmp4. Gene 198: 53–59.

42. Chen JN, van Bebber F, Goldstein AM, Serluca FC, Jackson D, et al. (2001)

Genetic steps to organ laterality in zebrafish. Comp Funct Genomics 2: 60–68.

43. Chen JN, van Eeden FJ, Warren KS, Chin A, Nüsslein-Volhard C, et al. (1997)

Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in

zebrafish. Development 124: 4373–4382.

44. Wienholds E (2003) Efficient Target-Selected Mutagenesis in Zebrafish.

Genome Research 13: 2700–2707.

45. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount

zebrafish embryos. Nat Protoc 3: 59–69.

46. von der Hardt S, Bakkers J, Inbal A, Carvalho L, Solnica-Krezel L, et al. (2007)

The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by

regulating cell-cell adhesion. Curr Biol 17: 475–487.

Bmp and Nodal Independently Regulate efty1

PLoS Genetics | www.plosgenetics.org 13 September 2011 | Volume 7 | Issue 9 | e1002289

l


