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We outline here a proof that a certain rational function Cn(q, t),
which has come to be known as the ‘‘q, t-Catalan,’’ is in fact a
polynomial with positive integer coefficients. This has been an
open problem since 1994. Because Cn(q, t) evaluates to the Catalan
number at t 5 q 5 1, it has also been an open problem to find a pair
of statistics a, b on the collection $n of Dyck paths P of length 2n
yielding Cn(q, t) 5 (p ta(P)qb(P). Our proof is based on a recursion
for Cn(q, t) suggested by a pair of statistics recently proposed by J.
Haglund. One of the byproducts of our results is a proof of the
validity of Haglund’s conjecture.

1. Preliminaries

A t the 1988 Alghero meeting of the Lotharingian Seminar,
Macdonald introduced a two-parameter symmetric func-

tion basis {Jm[X; q, t]}m that has since proved to be fundamental
in the Theory of Symmetric Functions. In recent years the
Theory of Symmetric Functions has acquired particular impor-
tance because of its relation to the Representation Theory of
Hecke algebras and the Symmetric Groups, and has been shown
to have applicability in a wide range of scientific and mathe-
matical disciplines. In many of these developments the Mac-
donald polynomials and some of their specializations have
played a central role. In the original paper (1) and in subsequent
work (2–7) a number of conjectures have been formulated that
assert that certain rational functions in q, t are in fact polyno-
mials with positive integer coefficients. For a decade these
conjectures have resisted several various attempts of proof by a
wide range of approaches. Although these conjectures lie
squarely within the Theory of Symmetric Functions, the ap-
proaches range from diagonal actions of the symmetric group on
polynomial rings in two sets of variables (2, 3, 5) to the Algebraic
Geometry of Hilbert schemes (8). Efforts to resolve these
conjectures within the Theory of Symmetric Functions have led
to the discovery of a variety of new methods to deal with
symmetric function identities (3, 4, 6, 8). In this paper we outline
an argument that yields a purely symmetric function proof of one
of these conjectures. To state the result we need some definitions
and notational conventions.

A partition m will always be identified with its Ferrers diagram.
The partition conjugate to m will be denoted m9. By the French
convention, if the parts of m are m1 $ m2 $ . . . $ mk . 0, the
Ferrers diagram has mi lattice cells in the ith row (from the
bottom up). Here umu and l(m) denote, respectively, the sum of
the parts and the number of nonzero parts of m. The symbol m
£ n will also be used to indicate that umu 5 n. Following
Macdonald, the arm, leg, coarm, and coleg of a lattice square s
are the parameters am(s), lm(s), a9m(s), and l9m(s), giving the
number of cells of m that are, respectively, strictly east, north,
west, and south of s in m.

Here and after, for a partition m 5 (m1, m2, . . . , mk) we set

Tm 5 P
s [ m

tl9m~s!qa9m~s!, Bm~q, t! 5 O
s [ m

tl9m~s!qa9m~s!,

Pm~q, t! 5 P
s [ m

~1 2 tl9m~s!qa9m~s!! [1.1]

and

h̃m~q, t! 5 P
s [ m

~qa9m~s! 2 tl9m~s! 1 1!,

h̃9m~q, t! 5 P
s [ m

~tl9m~s! 2 qa9m~s! 1 1!. [1.2]

This given we can show

THEOREM 1.1. For every n $ 1 the rational function

Cn~q, t! 5 O
m£n

Tm
2 ~1 2 t!~1 2 q!Bm~q, t!Pm~q, t!

h̃m~q, t!h̃9m~q, t!
[1.3]

evaluates to a polynomial with positive integer coefficients.
To show how this relates to Macdonald polynomials and to

outline our proof, we need to introduce plethystic notation. This
is a very powerful notational device that considerably facilitates
the manipulation of symmetric function identities. This device
can also be easily implemented in software such as MAPLE or
MATHEMATICA when we express symmetric functions in terms of
the power sum sequence {pk}k$1. To begin with, if E 5 E[t1, t2,
t3, . . .] is a formal Laurent series in the variables t1, t2, t3, . . .
(which may include the parameters q, t) we set

pk@E# 5 E@t1
k , t2

k , t3
k , . . .#.

More generally, if a certain symmetric function F is expressed as
the formal power series

F 5 Q@p1 , p2 , p3 , . . .#

then we simply let

F@E# 5 Q@p1 , p2 , p3 , . . .#upk3 E@t1
k , t2

k , t3
k , . . .# , [1.4]

and refer to it as ‘‘plethystic substitution’’ of E into the symmetric
function F. We also adopt the convention that inside the
plethystic bracket X and Xn stand for X 5 x1 1 x2 1 . . .
and Xn 5 x1 1 x2 1 . . . 1 xn. In particular, a symmetric
polynomial P 5 P(x1, x2, . . . , xn) may be simply written in the
form P 5 P[Xn]. We should mention that the present break-
through would not have been possible without the insight
provided by this notational device.

This given, we will work here with the modified Macdonald
polynomial H̃m[X; q, t] obtained by setting

H̃m@X; q, t# 5 tn~m!JmF X
~1 2 1/t!

; q, 1/tG
Fwith n~m! 5 Os [ m l9m~s!G. [1.5]
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Another important ingredient here is the linear operator ¹
defined by setting for the basis {H̃m[X; q, t]}m:

¹H̃m@X; q, t# 5 TmH̃m@X; q, t#. [1.6]

Now it was shown in ref. 6 that the elementary symmetric
function en has the expansion

en@X# 5 O
m£n

H̃m@X; q, t#~1 2 t!~1 2 q!Bm~q, t!Pm~q, t!

h̃m~q, t!h̃9m~q, t!
[1.7]

so that Eq. 1.6 gives

¹en@X# 5 O
m£n

TmH̃m@X; q, t#~1 2 t!~1 2 q!Bm~q, t!Pm~q, t!

h̃m~q, t!h̃9m~q, t!
.

[1.8]

Equating coefficients of the Schur function Sl gives

¹en@X#uSl
5 O

m£n

TmK̃lm~q, t!~1 2 t!~1 2 q!Bm~q, t!Pm~q, t!

h̃m~q, t!h̃9m~q, t!
,

[1.9]

where from Eq. 1.5 we derive that K̃lm(q, t) is related to the
Macdonald q, t-Kostka coefficient Klm(q, t) by the simple
reversion

K̃lm~q, t! 5 tn~m!Klm~q, 1/t!.

In particular, it follows from Macdonald’s work (9) that (for
m £ n)

K̃1n, m~q, t! 5 Tm . [1.10]

By using this in Eq. 1.9 for l 5 1n, Eq. 1.3 becomes

Cn~q, t! 5 ¹en@X#uS1n . [1.11]

Our proof of Theorem 1.1 is based on this identity. The reader
is referred to refs. 6 and 7 for several conjectures concerning the
expressions in Eq. 1.9.

Here it suffices to know that it was shown in ref. 4 that ¹ acts
integrally on Schur functions. This implies that all the expres-
sions in Eq. 1.9, and in particular Cn(q, t), evaluate to polyno-
mials in q, t with integer coefficients. Our proof of Theorem 1.1
gives the positivity of the latter coefficients as well as a combi-
natorial interpretation of their values. This is obtained by
means of a recursion satisfied by the two-parameter family of
polynomials

Qn, s~q, t! 5 tn 2 sqS s
2D¹en 2 sFX

1 2 qs

1 2 q G uS1n 2 s . [1.12]

More precisely we show that

THEOREM 1.2. For any pair of integers n $ s $ 1 we have

Qn, s~q, t! 5 tn 2 sqS s
2D O

r 5 0

n 2 sF r 1 s 2 1
r G

q
Qn 2 s, r~q, t!,

[1.13]

where [k
n]q 5 [(q;q)n]y[(q;q)k(q;q)n2k] denotes the q-binomial

coefficient.
Note that since ¹1 5 1, Eq. 1.12 gives the initial conditions

Qn, n~q, t! 5 qS n
2D . [1.14]

It is then easily seen that Eq. 1.13 yields

Qn, s~q, t! [ N@q, t# ; n $ s $ 1.

Moreover, Eqs. 1.12 and 1.13 with n 3 n 1 1 and s 3 1 give

Cn~q, t! 5 ¹enuS1n 5 O
r 5 1

n

Qn, 1~q, t! [ N@q, t#. [1.15]

A remarkable corollary of Eqs. 1.13 and 1.15 is the combinatorial
formula

Cn~q, t! 5 O
P [ $n

tarea~P!qmaj~b~P!!, [1.16]

where $n is the collection of all Dyck paths of length 2n, area(P)
denotes the area under the path, and maj(b(P)) denotes the
‘‘major index’’ of a certain path b(P) associated to P. The reader
is referred to ref. 6 for a more detailed description of these
combinatorial structures.

We must mention that Eq. 1.16 had been previously conjec-
tured by J.H. in an article to appear in the journal Advances in
Mathematics and was in fact the starting point of the investiga-
tion that led to the present results.

2. Outline of the Argument
Because it can be shown that

F r 1 s 2 1
r G

q

5 hrF1 2 qs

1 2 q G [2.1]

we see that Eq. 1.13 simply states that the equality

¹emFX
1 2 z
1 2 qG uS1m

5 O
r 5 1

m

hrF 1 2 z
1 2 qG tm 2 rqS r

2D¹em 2 rFX
1 2 qr

1 2 q G uS1m 2 r [2.2]

must hold true for z 5 qs and all pairs m, s $ 1. This of course
implies (and is, in fact, equivalent to) the equality of the two
polynomials on both sides of Eq. 1.2.

Now the polynomials

hrF 1 2 z
1 2 qG 5

~z;q!n

~q;q!n
[2.3]

have the ‘‘Taylor’’ expansion formula:

P~z! 5 O
r $ 0

~z;q!r

~q;q!r
qr~dq

r P~z!uz 5 1!, [2.4]

with dq the q-difference operator

dqP~z! 5
P~z! 2 P~z/q!

z
. [2.5]

By using Eq. 2.4 we immediately derive that Eq. 1.13 holds true
if and only if we have
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dq
k¹emFX

1 2 z
1 2 qG uS1muz 5 1

5
tm 2 k

qk qS k
2D¹em 2 kFX

1 2 qk

1 2 q G uS1m 2 k ; k 5 1, 2, . . . , m.

[2.6]

This identity is made more amenable to symmetric function
manipulations by means of the expansions

emFX
1 2 qk

1 2 q G
5 ~1 2 qk! O

m£m

H̃m@X; q, t#Pm~q, t!hk@~1 2 t!Bm~q, t!#

h̃m~q, t!h̃9m~q, t!
[2.7]

and

hmFX
1 2 qk

1 2 q G 5 ~2t!m 2 kqk~m 2 1!~1 2 qk!

z O
m£m

H̃m@X; q, t#Pm~q, t!ekF~1 2 t!BmS1
q

,
1
tDG

h̃m~q, t!h̃9m~q, t!
. [2.8]

By using these relations we were able to derive from Eq. 2.6 that
Theorem 1.1 is equivalent to the following:

THEOREM 2.1. For all 1 # k # m we have

O
i 5 1

k Fk
i G

q

qS i
2D 2 i~1 2 qi!tm 2 i O

m£m

Tm
2 Pm

h̃mh̃9m
eiF ~1 2 t!BmS1

q
,

1
tDG

5
tm 2 k

qk qS k
2D ~1 2 qk! O

n£m 2 k

Tn
2Pn hk@~1 2 t!Bn~q, t!#

h̃n~q, t!h̃9n~q, t!
.

[2.9]

Note that Eq. 2.9 for k 5 1 reduces to

O
m£m

Tm
2 Pm

h̃mh̃9m
BmS1

q
,

1
tD 5 O

n£m 2 1

Tn
2Pn

h̃n h̃9n
Bn~q, t!, [2.10]

and for k 5 2

t~1 2 t! O
m£m

Tm
2 Pm

h̃mh̃9m
BmS1

q
,

1
tD 1 O

m£m

Tm
2 Pm

h̃mh̃9m

z e2F ~1 2 t!BmS1
q

,
1
tDG

5 O
n£m 2 2

Tn
2Pn

h̃n h̃9n
h2@~1 2 t!Bn~q, t!#. [2.11]

To establish these identities we need a basic mechanism for
converting sums over partitions of size m to sums over partitions
of smaller size. Now, it develops that this can be achieved by
summation formulas involving ‘‘Pieri’’ coefficients. The latter
are the rational functions dmn

f (q, t) occurring in multiplication
rules of the form.

f @X#H̃n@X; q, t# 5 O
m $ n

k # umu # k 1 d

dmn
f ~q, t!H̃m@X; q, t#,

[2.12]

when n £ k and f [X] is a symmetric function of degree d. Stanley
for the Jack symmetric functions case (10) and Macdonald in ref.
1 give explicit formulas for dmn

f (q, t) when f 5 hd or f 5 ed for
some d $ 1. These formulas may be used to settle Eqs. 2.10 and
2.11. They should also yield what is needed for Eq. 2.9 as well,
because in principle the multiplication rules for any f may be
obtained by combining successive multiplications by the elemen-
tary (or homogeneous) symmetric functions. However, to carry
this out in full generality we run into a task of forbidding
complexity.

The breakthrough was the discovery that the necessary sum-
mation formulas may be directly obtained through the operator
¹. This shows once more that this remarkable operator somehow
encodes within its action a great deal of the combinatorial
complexity of Macdonald polynomials [see refs. 2–11] and (ref.
11 available at http://www.emis.de/journals/SLC/). To state our
summation formulas we need further notation.

Let us recall that the so called ‘‘Hall’’ scalar product ^,& is
defined by setting for the power basis

^pm , pn& 5 x~m 5 n!zm , [2.13]

where for a partition m 5 1a12a23a3 . . . we set zm 5
1a1a1!2a2a2!3a3a3! . . . Our versions of the Macdonald polyno-
mials H̃m are orthogonal with respect to the scalar product ^,&p

defined by setting

^pm , pn&p 5 ~21!umu 2 l~m!x~m 5 n!zmpm@~1 2 t!~1 2 q!#.
[2.14]

To be precise we have

^H̃m , H̃n&p 5 h̃mh̃9mx~m 5 n!. [2.15]

Now, companions to the Pieri rules in Eq. 2.12 are their dual
forms

f'H̃m@X; q, t# 5 O
n # m

m 2 d # unu # m

cmn
f'

~q, t!H̃n@X; q, t#,

[2.16]

where m £ m, f is any symmetric function of degree d, and f'

denotes the operator that is the Hall-adjoint of multiplication by
f. We should note that the Pieri coefficients and their dual
counterparts are related by the identity

cmn
f'

~q, t!h̃n h̃9n 5 dmn
vf*~q, t!h̃mh̃9m , [2.17]

where v as customary denotes the fundamental involution of
symmetric functions and for any symmetric polynomial f we set

f*@X# 5 fF X
~1 2 t!~1 2 q!G . [2.18]

This is an easy consequence of Eq. 2.15 and the definitions in
Eqs. 2.12 and 2.16.

This given, our proof of the recursion in Eq. 1.13 is based on
the following two remarkable summation formulas.

THEOREM 2.2. For g a symmetric polynomial of degree d and
m £ m we have
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O
n # m

m 2 d # unu # m

cmn
~vg!'

~q, t!Tn

5 TmGFS1 2
1
tDS1 2

1
qDBmS1

q
,

1
tD 2 1G [2.19]

with

G@X# 5 v¹SgFX 1 1

M̃ GD . [2.20]

THEOREM 2.3. For f a symmetric polynomial of degree d and
n £ k we have

O
m $ n

k # umu # k 1 d

dm, n
f TmPm 5 TnPn~¹f!@MBn#. [2.21]

We should mention that both Eq. 2.19 and Eq. 2.21 are
ultimate consequences of the following result (proved in ref. 11):

THEOREM 2.4. For a given symmetric function P set

PP@X; q, t# 5 ¹21P@X 2 «#u« 5 21 .

Then for all partitions m we get

^P, H̃m@X 1 1; q, t#&p 5 PP@~1 2 t!~1 2 q!Bm~q, t! 2 1; q, t#.

To give an idea of the manner in which Eqs. 2.19 and 2.21 are
used to obtain Eq. 2.9, we shall use them to prove Eqs. 2.10 and
2.11.

To begin, the case vg 5 h1 of Eq. 2.19 gives

TmBmS1
q

,
1
tD 5 O

n3 m

cmn

h1
'

~q, t!Tn ,

where the symbol n 3 m is to indicate that n is obtained by
removing one of the corners of m. Substituting this in the left
hand side of Eq. 2.10 gives

O
m£m

Tm
2 Pm

h̃mh̃9m
BmS1

q
,

1
tD 5 O

m£m

TmPm

h̃mh̃9m
O

n3 m

cmn

h1
'

~q, t!Tn

5 O
n£m 2 1

Tn

h̃n h̃9n
O

m4 n

cmn

h1
'h̃mh̃9m

h̃mh̃9m
TmPm

~by Eq. 2.17! 5 O
n£m 2 1

Tn

h̃nh̃9n
O

m4 n

dmn
e*1 ~q, t!TmPm .

[2.22]

Now Eq. 2.21 gives

O
m4 n

dmn
e*1 ~q, t!TmPm 5 TnPnBn~q, t!,

which when substituted in Eq. 2.22 immediately yields Eq. 2.10.
For Eq. 2.11 we use Eq. 2.19 with

vg 5 e2@~1 2 t!X#

and obtain

1
q O

n # 2m

cmn
vg'Tn 5 t~1 2 t!TmBmS1

t
,

1
qD

1 Tme2F ~1 2 t!BmS1
t

,
1
qDG ,

where the symbol n #2 m means that n is obtained by removing
two corners from m. Substituting this in the left hand side of Eq.
2.11 gives

left hand side of Eq. 2.11 5 O
m£m

TmPm

h̃mh̃9m

1
q O

n # 2m

cmn
vg'Tn

5
1
q O

n£m 2 2

Tn

h̃n h̃9n
O

m $ 2n

dmn
f TmPm

with

f 5 h2F X
1 2 qG

and Eq. 2.21 gives

1
q O

m $ 2n

dmn
f TmPm 5 TnPn h2@~1 2 t!Bn~q, t!#

and proves Eq. 2.11.
The details of all these calculations and the complete proof of

Theorem 1.2 will appear in the proceedings of the September
2000 Montreal Colloquium in Algebraic Combinatorics, which is
to be published by Discrete Mathematics.
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