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Abstract
We recently reported that the natural cyclic lactone, parthenolide, and related analogs prevent the
expression of behavioral effects induced by cocaine in planarians and that parthenolide’s γ-lactone
ring is required for this effect. In the present work, we tested a series of alkyl γ-lactones with
varying chain length (1–8 carbons) to determine their ability to antagonize the planarian motility
decrease induced by 200 μM cocaine. Alkyl lactones with up to a 4-carbon alkyl chain did not
affect planarian motility or antagonized the cocaine-induced motility decrease; only the compound
γ-nonalactone (a γ-lactone with a 5-carbon chain) was able to prevent the cocaine-induced
behavioral patterns, while alkyl lactones with longer carbon chains failed to prevent the cocaine-
induced effects. Thus, we conclude that the optimal structural features of this family of
compounds to antagonize cocaine’s effect in this experimental system is a γ-lactone ring with at a
5-carbon long functional group.
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1. Introduction
A wide variety of organisms possess many desirable traits that allow them to be useful
animal models, however, planarians, non-parasitic worms of the phylum Platyhelminthes
(Sánchez Alvarado, 2004) display an ensemble of several distinct properties that make this
organism an unique animal model in developmental biology and more recently, in
neurobiology and pharmacology research.

Traditionally, planarians have been used as an animal model in developmental biology and
regeneration research, due to this organism’s extraordinary ability to regenerate lost body
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parts, including complete morphological and functional regeneration of the nervous system
(Cebrià, 2007; Cebrià et al., 2002; Reddien and Sánchez Alvarado, 2004; Sanchez Alvarado,
2006; Newmark et al., 2003; Sanchez Alvarado and Newmark, 1999). This extreme
regeneration capacity is not shared by any vertebrate or by common invertebrate animal
models. Thus, these organisms have the potential to contribute in multiple ways to
neurobiology research. In evolutionary terms, planarians are the simplest example of
organisms displaying bilateral symmetry and cephalization, including a primitive “brain”,
with many features similar to vertebrate nervous systems (Sarnat and Netsky, 1985, 2002).
In fact, planarian neurons are more similar to vertebrate neurons than to invertebrate neurons
(like insects, for example), in terms of cell morphology and physiology (Sarnat and Netsky,
1985, 2002). The planarian central nervous system consists of an anterior brain (sometimes
referred to as cephalic ganglia) and two longitudinal nerve cords, connected to each other
with nerve fibers resembling a ladder-like structure (Cebrià, 2007; Nakazawa at al., 2003;
Okamoto et al., 2005).

These flatworms also show promise in pharmacology research, particularly as an useful
animal model to study abused drugs, as these organisms display a series of behavioral
responses to psychoactive substances (reviewed in Buttarelli et al., 2008; Raffa and Rawls,
2008). Planarians also use every major neurotransmitter found in mammals, including
humans, and are therefore becoming increasingly popular in neuropharmacology research
(Buttarelli et al., 2008; Raffa and Rawls, 2008; Villar and Schaeffer, 1993). Moreover, with
these organisms, we can go all the way from behavioral studies to molecular biology. A
planarian genome project, using the planarian Schmidtea mediterranea, is well underway
(Robb et al., 2008). This database is posted at smedgd.neuro.utah.edu, and has allowed the
identification of many types of putative pharmacological targets homologous to human
proteins. The relatively high degree of conservation between human and planarian genomes
imply that planarians are potentially a very useful model to understand human biology
(Sanchez Alvarado, 2004). These facts establish these flatworms as excellent alternative
animal models in biomedical research.

Cocaine has been used to decrease motility in planarians (Heath, 1907); these worms also
display behaviors resembling withdrawal symptoms and show morphological changes in
their nervous system upon exposure to cocaine (Margotta et al., 1997; Raffa and Desai,
2005; Raffa and Valdez, 2001). Additionally, as in mammals, cocaine interacts with
dopaminergic systems in planarians (Palladini et al., 1996). More recently, the sesquiterpene
lactone parthenolide, and similar molecules (Figure 1) were reported to antagonize cocaine-
induced behavior in planarians of the Dugesia genus (Pagán, 2008; Rowlands and Pagán,
2008); furthermore, in these studies it was determined that the γ-lactone moiety of the
parthenolide-like molecules is essential for its anti-cocaine effects (Pagán, 2008). The γ-
lactone class of compounds is widely distributed in nature. Many of these compounds are
naturally found in dairy products, fruits and nuts among others, where they have been found
to contribute to their characteristic aroma (Aguedo et al., 2004; Mosandl and Günther 1989;
Labows et al., 1979). In fact, these compounds are common additives to tobacco products,
perfumes, and some processed foods (Baker et al., 2004; Mosandl and Günther 1989;
Okamoto et al., 2002). In the present work, we tested a series of alkyl γ-lactones with
varying chain length (1–8 carbons, Figure 1) for their ability to antagonize cocaine effects in
planarians.

2. Methods
2.1. Animals and chemicals

Brown planarian worms (Dugesia tigrina) were purchased from Ward’s (Rochester, NY).
General laboratory materials and supplies were from Fisher Scientific (Suwanee, GA) or
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Sigma-Aldrich (St. Louis, MO); (−)Cocaine hydrochloride was purchased from Sigma-
Aldrich (St. Louis, MO). The tested Alkyl γ-lactones (Figure 1) were purchased from
Chromadex (Irvine, CA).

2.2. General procedures
All graphs and statistical analyses were generated using the GraphPad Prism/InStat software
package (GraphPad Inc, San Diego, CA). Molecular modeling to explore the tested
compound’s liquid solubility parameters and to confirm the chirality of some atoms within
parthenolide and related molecules was done using the ChemSW software package
(ChemSW Inc., Fairfield, CA). Planarians were transferred to artificial pond water (APW,
NaCl, 6 mM; NaHCO3, 0.1 mM; CaCl2, 0.6 mM; pH 6.9) upon receipt and allowed to
acclimate to the laboratory environment for at least 24 hours before being tested. The worms
(1–1.5 cm long) were used within four weeks of arrival, and the APW was changed every
day. All the experiments shown here were in APW at room temperature with 0.1 %
dimethylsulfoxide (DMSO) as a solubility-aiding agent; 0.1 % DMSO (14 mM) does not
have any apparent behavioral or toxic effects in planaria (Pagán et al., 2006).

2.3. Motility measurement experiments
To measure planarian motility, we used a modification of a published behavioral protocol
(Raffa et al., 2001, as modified in Pagán et al., 2006; 2008; 2009a,b). This is a simple, useful
procedure that has been used to quantify planarian locomotor behavior in the presence of
experimental agents. Using a small paintbrush, a worm is gently transferred to an APW-
rinsed 6 cm polystyrene dish set on a grid (1 cm2 squares, Pagán et al., 2008), followed by
the addition of 5 mL of APW/0.1 % DMSO plus or minus the experimental compounds, as
indicated. After a 10-minute incubation period planarian motility is then measured by
counting each time the worm crossed a square, minute by minute, over a period of five
minutes. Each worm is used only once. The data is plotted as cumulative crosses vs. time,
and fit to a linear equation. In experiments where the worms are exposed to various
concentrations of the experimental compounds, the slopes obtained by the linear equation fit
are normalized to control slopes and graphed as the fraction of control vs. the experimental
compound concentration (Pagán et al., 2008). To analyze the concentration-effect curves, we
fit the data to an empirical Hill-type equation (Equation 1) in the form:

(Equation 1)

where F is the fraction of control, [compound] is the experimental compound concentration
in μM, IC50 is the compound concentration that decreased planarian motility by 50 % and n
is the Hill coefficient.

In the first series of experiments we tested the γ-lactones at various concentrations to
determine whether they were able to decrease planarian motility in the absence of any other
compounds. In a second set of experiments we tested each γ-lactone for their ability to
antagonize the 200 μM cocaine-induced decrease in planarian motility, and whether any
observed cocaine antagonistic effect is concentration-dependent. In this second set of
experiments, the γ-lactones were tested at concentrations at which they did not decrease
planarian motility.
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3. Results
3.1. Effect of γ-lactones on planarian motility

Figure 2 shows a series of concentration-response curves of planarian motility decrease as a
function of γ-lactone concentration. The lines were generated by fitting the data to Equation
1. The three smaller lactones (valero-, hexa- and hepta-γ-lactone) did not inhibit planarian
motility up to a concentration of 500 μM (Figure 2, Table 1). In contrast, the bigger lactones
(octa-, nona-, deca- and dodeca-γ-lactones) decreased planarian motility in a concentration-
dependent manner. The least potent of the compounds was γ-octalactone, which displayed
an IC50 of about 426 μM and the most active compound was γ-decalactone, which displayed
an IC50 of about 43 μM (Figure 2, Table 1).

3.1. Effect of γ-lactones on cocaine-induced planarian motility decrease
Table 2 show the results of parallel experiments using 200 μM cocaine in the absence and in
the presence of a single γ-lactone concentration at which the lactone did not induce motility
decrease by itself. Cocaine at a concentration of 200 μM decreased planarian motility by
about 50 % (Table 2, Figure 3), which is consistent with previously reported results (Pagán,
et al., 2008). The only compound capable of antagonizing the cocaine effect was γ-
nonalactone, which at a concentration of about 50 μM significantly alleviated the 200 μM
cocaine-induced motility decrease from about 51 % (cocaine alone) to about 12 % (cocaine
+ γ-nonalactone, Table 2, Figure 3). Figure 4 shows that the γ-nonalactone prevents the 200
μM cocaine-induced motility decrease in a concentration-dependent manner, within a
limited concentration range (25–50 μM γ-nonalactone). However, at a concentration range
between 75–100 μM, the γ-nonalactone does not inhibit the cocaine effects. Please note that
at this concentration range, the γ-nonalactone by itself does not decrease planarian motility
(Figure 2). Interestingly, the combination of 200 μM γ-nonalactone and 200 μM cocaine
seems to decrease the motility of the worms to a higher extent than either compound alone.

4. Discussion
In this work, we determined that the optimal structural features of the alkyl γ-lactone class
of compounds to antagonize the cocaine-induced motility decrease in planarians is the γ-
lactone moiety associated to a 5-carbon methyl tail attached to position 4 in the lactone ring
(γ-nonalactone, Figure 1). This is consistent with previous work which indicated that the
lactone ring in this class of compounds is essential for their cocaine-antagonist effect in this
experimental system (Pagán et al., 2008), however, our results indicate that the γ-lactone
moiety is not sufficient to antagonize cocaine effects, since none of the other tested lactones
were active against cocaine (Table 2). We also determined that the γ-nonalactone effect on
cocaine was concentration-dependent (Figure 4), suggesting that γ-nonalactone and cocaine
compete for a specific binding site in planarians, presumably a protein target.

A factor that may prove relevant in light of our results is that the γ-lactones tested in our
experiments possess a chiral carbon atom at position 4, as parthenolide and related
compounds do (Figure 1). In nature, γ-lactones are found predominantly as 4R-isomers
(Artho and Grob, 1990; Mosandl et al., 1990), however, the 4S-isomer is also found. The
chirality of the γ-lactone moiety is known to affect their aroma-inducing properties (Hwang
et al., 2000; Mosandl and Günther 1989). Interestingly, the carbon atom at position 4 in
parthenolide is found in the R-form (Bawdekar et al., 1966). We have confirmed that this
also applies to costunolide and santonin (Figure 1) which are active against cocaine (Pagán
et al., 2008) using molecular modeling software as described. Chirality may prove to be an
important factor on the γ-lactone/cocaine interactions, especially if this interaction takes
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place at a specific protein site, therefore future directions from this work may explore the
effects of chirality on the interaction of the γ-lactones with their possible targets.

Two additional considerations, common to many hydrophobic compounds, are solubility
and bioavailability issues. We addressed this by estimating the experimental compound’s
water solubility through two parameters, logP and the molar water solubility (Table 1). It is
to be noted that the actual water solubility of the tested compounds will be higher than the
indicated value, as the experimental solution used (APW) contained 0.1% (14mM) DMSO,
an established solubility enhancer (Vemula et al., 2010). The three smaller compounds
(valero-, hexa- and hepta-γ-lactones) were unable to induce motility decrease in our
experimental organism; they were also unable to antagonize the observed cocaine effects
(Figure 2, Table 2). These compounds, nonetheless, were the most soluble (Table 1). Their
bioavailability was not determined here. On the other hand, the larger compounds (octa-,
nona- deca- and dodeca-γ-lactones) were able to induce planarian motility decrease in a
concentration-dependent manner (Figure 2, Table 2). Interestingly, of these four compounds,
only the γ-nonalactone was able to antagonize the effects of cocaine in the worms (Figure 3,
Table 2); this alleviation was concentration-dependent (Figure 4). In the case of the octa-,
deca- and dodeca-γ-lactones, solubility and bioavailability are not an issue, since all of them
displayed motility decrease effects (Figure 2). We interpret our data as evidence for
common or overlapping binding sites for cocaine and the γ-nonalactone in our experimental
system. The fact that γ-lactones with alkyl chains longer than 5 carbons decrease motility by
themselves yet they are inactive against cocaine is somewhat reminiscent of the cutoff effect
observed in some types of general anesthetic molecules. The cutoff effect is the increase in
anesthetic potency of a homologous series of compounds, for example, n-alkanes or n-
alkanols among others, up to a point where a decrease (or even total loss) of the anesthetic
effect is observed in higher molecular weight compounds (Eckenhoff et al., 1999). This
effect is frequently used to estimate the molecular dimensions of protein targets (Eckenhoff
et al., 1999; Frank and Lieb, 1985), but other interpretations, including the interaction of the
anesthetic compounds with membranes, as opposed to proteins, has been proposed (Mohr et
al., 2005). It is possible that we are observing a mechanism similar to the cutoff effect in our
γ-lactones/cocaine experiments. Interestingly, the biggest lactone tested, dodecalactone, is
very similar to parthenolide in terms of its molecular weight, yet dodecalactone was inactive
against cocaine. This indicates that molecular size must not be the only property that
influences parthenolide’s (or the γ-lactones) anti-cocaine properties. The solubility
parameters for the previously tested compounds parthenolide, costunolide and β-eudesmol
(Pagán et al., 2008) are shown in table 1 for comparison purposes. Clearly, solubility and/or
bioavailability are not the only factors that contribute to the tested compounds effects, since
β-eudesmol is a very potent planarian motility inhibitor (Table 1) yet is completely inactive
against cocaine (Pagán et al., 2008).

Future directions based on our results may include the study of alkyl δ-lactones, which are
also commercially available; these compounds may prove useful to further explore possible
structure-function relationships of lactone-containing compounds and their interaction with
cocaine. Also, we have no information about the importance of the saturation state of the
alkyl chains; we only tested alkyl lactones with saturated tails. It is possible that alkyl
analogs of δ- or γ-lactones with unsaturated hydrophobic tails may display different effects
in this experimental system.

Cocaine is the parent molecule of the local anesthetic family of compounds, which act on
voltage-gated sodium channels of nerve cells (Ruetsch et al., 2001; Scholz, 2002). Cocaine
can affect virtually all organ systems, with particularly evident effects on the nervous system
(Uhl et al., 2002). At the behavioral level, the accepted target for cocaine in vertebrates is
the monoamine transporter superfamily, which includes the dopamine transporter (DAT),
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the serotonin transporter (SERT) and the norepinephrine transporter (NET) among others
(Gainetdinov and Caron, 2003; Torres et al., 2003). Cocaine interacts primarily with the
DAT (Uhl et al., 2002). Using the planarian Schmidtea mediterranea database (Robb et al.,
2008) we found protein homologs for both voltage-gated ion channels as well as for
neurotransmitter transporters. The simplest explanation for our results is that cocaine
interacts with one or more of these target proteins in planarians.

Other laboratories have shown that dopaminergic neurons modulate planarian locomotion
and behavior. Nishimura et al., (2007) demonstrated that when the expression of the enzyme
tyrosine hydroxylase, an enzyme necessary for dopamine synthesis, was suppressed in
regenerating worms of species Dugesia japonica, normal locomotion in the fully-
regenerated worms was diminished. Moreover, in the same work, the authors showed that
when tyrosine hydroxylase was inhibited, methamphetamine-induced hyperkinesia was also
inhibited in D. japonica. As cocaine, methamphetamines inhibit the dopamine transporter,
albeit through a slightly different mechanism (Han and Gu, 2006). This suggests another
direction for further research. We can use RNA interference (RNAi) techniques, which have
been applied successfully to planarian research (Newmark, 2005; Newmark et al., 2003;
Oviedo et al., 2010) to inhibit the expression of established cocaine targets, like the
monoamine transporters. Using these techniques, we can examine the effects of cocaine and
the lactone-containing compounds studied in this work, in worms with suppressed
expression of these candidate target proteins, potentially gaining insights into the specific
molecular mechanism of action.

In conclusion, the γ-lactone class of compounds is a new tool to explore the effect of cocaine
in biological systems. In this work, we identified a series of structural features important in
this class of compounds that may prove important to design novel cocaine antagonists.
Further, we have provided additional evidence for the usefulness of planarians as animal
models in pharmacological research.
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Figure 1.
A. Parthenolide, related sesquiterpenes and cocaine. Redrawn from Pagán et al. (2008)
Pharmacology, Biochemistry and Behavior 89(2):160–170. Copyright, Elsevier. B.
Compounds discussed in this work. The γ-dodecalactone and parthenolide’s carbon atoms
are numbered for comparison purposes (see text).
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Figure 2.
Concentration-response curves of the effect of the tested alkyl lactones on planarian
motility, as indicated. The lines were generated by fitting the data to equation 1. The fit
parameters are shown in Table 1. Each data point represents the average of 8 to 14 worms;
the error bars represent the standard error of the mean.
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Figure 3.
Effect on planarian motility by 51 μM γ-nonalactone, 200 μM cocaine or by 200 μM cocaine
+ 51 μM γ-nonalactone, as indicated. The bars were generated from the average of 12
worms each. The error bars represent the standard error of the mean. The γ-nonalactone by
itself did not affect planarian motility compared to control worms (p > 0.05, two-tailed t-
test). On the other hand, cocaine significantly decreased planarian motility compared to
control worms (p < 0.001, two-tailed t-test). The presence of the γ-nonalactone decreased
the apparent potency of cocaine to decrease planarian motility (p < 0.001, two-tailed t-test).
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Figure 4.
The γ-nonalactone alleviation of the cocaine-induced motility decrease in planarians is
concentration-dependent. The Y-axis was generated by calculating the ratio of the fraction
of control of the lactone-cocaine combination and the fraction of control of cocaine alone.
The data points represent the average of 4–13 worms. The error bars represent the standard
error of the mean. The data point at 51 μM is another representation of the data shown in
Figure 3. The overall p-value (< 0.0001 by ANOVA) indicates that the variation of the mean
values is significantly greater than expected by chance. “*”, p < 0.05, “**”, p < 0.01 when
compared to 200 μM cocaine in the absence of γ-nonalactone (data point “0”).
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Table 1

IC50 values for decrease in planarian motility and solubility parameters for the tested γ-lactones and related
compounds.

Compound IC50 (μM ± s.e.m.1) logP Water solubility (mM)

γ-Valerolactone NI 0.603 251

γ-Hexalactone NI 0.981 76

γ-Heptalactone NI 1.335 22

γ-Octalactone 426 ± 438 1.668 7

γ-Nonalactone 181 ± 18 1.985 2

γ-Decalactone 43 ± 5 2.289 0.6

γ-Dodecalactone 146 ± 25 2.861 0.057

Parthenolide 105 ± 52 1.743 0.027

Costunolide 233 ± 132 2.826 0.004

Santonin 250 ± 312 1.598 0.285

β-Eudesmol 3 ± 0.72 3.475 0.062

This table shows the IC50 values for decrease in planarian motility induced by the tested γ-lactones, as obtained from fitting the data in Figure 3 to
equation 1. NI = No inhibition of movement.

1
Standard Error of the Mean.

2
From Pagán et al., (2008).
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Table 2

Effect of the tested γ-lactones on the motility decrease induced by 200 μM cocaine.

Compounds tested Fraction of control ± s.e.m1 Number of replicates P-value

Valerolactone (205 μM) 0.90 ± 0.31 18 0.1902

Cocaine (200 μM) 0.60 ± 0.34 0.000013

Cocaine (200 μM) + Valerolactone (205 μM) 0.55 ± 0.24 0.6244

Hexalactone (195 μM) 0.80 ± 0.19 11 0.0802

Cocaine (200 μM) 0.49 ± 0.15 0.0000073

Cocaine (200 μM) + Hexalactone (195 μM) 0.76 ± 0.21 0.1364

Heptalactone (100 μM) 0.93 ± 0.18 8 0.4062

Cocaine (200 μM) 0.48 ± 0.17 0.000033

Cocaine (200 μM) + Heptalactone (100 μM) 0.46 ± 0.17 0.8234

Octalactone (100 μM) 0.96 ± 0.18 8 0.5942

Cocaine (200 μM) 0.49 ± 0.18 0.000033

Cocaine (200 μM) + Octalactone (100 μM) 0.46 ± 0.12 0.8034

Nonalactone (51 μM) 0.96 ± 0.17 12 0.8212

Cocaine (200 μM) 0.49 ± 0.14 0.00000013

Cocaine (200 μM) + Nonalactone (51 μM) 0.88 ± 0.13 0.000354

Decalactone (10 μM) 1.13 ± 0.15 12 0.1202

Cocaine (200 μM) 0.46 ± 0.17 0.000053

Cocaine (200 μM) + Decalactone (10 μM) 0.46 ± 0.14 0.7704

Dodecalactone (7 μM) 0.91 ± 0.18 6 0.2852

Cocaine (200 μM) 0.64 ± 0.21 0.0103

Cocaine (200 μM) + Dodecalactone (7 μM) 0.81 ± 0.23 0.3494

This table shows the effect of the experimental compounds on planarian motility, as indicated. The γ-lactones were tested at concentrations in
which they have no effect on planarian motility.

1
Standard Error of the Mean.

2,3
Compared to control worms (2-tailed t-test).

4
Compared to 200 μM cocaine-exposed worms (2-tailed t-test).
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