
Dosing of colistin – back to basic PK/PD

Phillip J. Bergen, Jian Li†, and Roger L. Nation*,†

Facility for Anti-infective Drug Development and Innovation, Monash Institute of Pharmaceutical
Sciences, Monash University, Melbourne, Australia

Abstract
The increasing prevalence of multidrug-resistant Gram-negative bacteria worldwide has led to a
re-evaluation of the previously discarded antibiotic, colistin. Despite its important role as salvage
therapy for otherwise untreatable infections, dosage guidelines for the prodrug colistin
methanesulfonate (CMS) are not scientifically based and have led to treatment failure and
increased colistin resistance. In this review we summarise the recent progress made in the
understanding of the pharmacokinetics of CMS and formed colistin with an emphasis on critically-
ill patients. The pharmacodynamics of colistin is also reviewed, with special attention given to the
relationship between pharmacokinetics and pharmacodynamics and how the emerging data can be
used to inform design of optimal dosage regimens. Recent data suggest the current dosage
regimens of CMS are sub-optimal in many critically-ill patients.

Introduction
Several highly resistant Gram-negative bacteria – namely Acinetobacter species,
Pseudomonas aeruginosa and carbapenem-resistant Klebsiella species – are emerging as
significant pathogens worldwide [1]. Therapeutic options for these pathogens are extremely
limited, a situation made worse by the drying up of the pharmaceutical development pipeline
for anti-infective agents [2]. This has forced clinicians to return to using older, previously
discarded drugs, such as the polymyxins [1,3,4**]. Of the two polymyxins used clinically
(polymyxin B and E), the latter also known as colistin is used most widely and is the subject
of this review. Having entered clinical use in 1959, colistin was never subjected to the
battery of drug development procedures now mandated by international drug regulatory
authorities. The result was a dearth of pharmacological information to inform rational use in
order to maximize antibacterial activity and minimize toxicity and development of resistance
[5]. Although colistin currently retains significant in vitro activity against many isolates of
the above-mentioned Gram-negative pathogens, resistance to this critical last-line therapy is
emerging [6–8].

Colistin is a cationic antimicrobial peptide. As a detailed review of the chemistry of colistin
is beyond the scope of this article, we refer interested readers elsewhere [5,9]. Given the
relatively high level of toxicity associated with parenteral administration of colistin (sulfate)
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in early studies, a less toxic sulfomethyl derivative, colistin methanesulfonate (CMS), was
developed [10]. Although CMS is the form administered parenterally, CMS undergoes
conversion in vivo to colistin as discussed below. Importantly, it is this formed colistin
which is responsible for antibacterial activity, not CMS, and thus CMS should be considered
an inactive prodrug [11*]. The active species, colistin, has a narrow antibacterial spectrum
mainly against common Gram-negative bacteria including P. aeruginosa, Acinetobacter spp.
and Klebsiella spp. [12]. It is against these organisms that colistin is most commonly used
clinically, particularly in critically-ill patients [1,5].

Recent investigations have unraveled key aspects of the pharmacokinetics (PK) and
pharmacodynamics (PD) of colistin, and these aspects are the focus of this brief review.

Pharmacokinetics of CMS and formed colistin
Despite its availability for over 50 years, it is only with the development of HPLC and LC/
MS/MS analytical methods in the last 5 – 10 years that an accurate picture of the PK of
CMS and formed colistin has emerged. The demonstration that antimicrobial activity results
from colistin, formed in vivo following administration of CMS, made the separate
quantification of the inactive prodrug (CMS) and active entity (colistin) a prerequisite for
accurate PK information. Prior to the development of these techniques, microbiological
assays incapable of separately quantifying CMS and colistin were employed for
measurement of ‘colistin’ concentrations. Importantly, the PK and prescribing information
supplied with currently available parenteral products was obtained using microbiological
assays.

All CMS/colistin PK data discussed below were obtained using HPLC or LC/MS/MS
analytical methods. This section will focus mainly on preclinical PK studies that have
involved separate administration of CMS and colistin and that have revealed key aspects of
the disposition of not only the prodrug but also the active entity (colistin) formed from it in
vivo. Clinical PK will be reviewed in a later section.

Following parenteral administration of CMS, the overall disposition of formed colistin is
rate limited by its elimination rather than its formation as indicated by the substantially
longer terminal half-life of formed colistin compared with that of the administered CMS, a
finding common to both preclinical [13,14*] and clinical [15,16,17**] studies. CMS appears
to be a relatively inefficient prodrug; in rats, only a very small proportion (~7 – 16%) of the
administered dose of CMS appears to be converted systemically to colistin [13,14*]. The PK
of CMS and formed colistin appear linear following IV administration of CMS to rats over a
range of doses generating clinically relevant plasma concentrations [14*]. In pivotal studies
conducted in rats, Li et al. demonstrated that CMS is predominantly renally cleared (~60%
of the dose) with a component of tubular secretion [13], whereas colistin is almost
exclusively non-renally cleared (<1% of the dose excreted in urine) and the very low renal
clearance involves very extensive renal tubular reabsorption that appears to be carrier
mediated [18]. The low in vivo conversion of CMS to colistin occurs because the formation
clearance of colistin is substantially less than the renal clearance of CMS [13]. Thus, the
overall disposition of CMS and formed colistin is very complex. It seems very likely that the
renal handling of CMS (net secretion, with the possibility of conversion of CMS to colistin
within tubular cells [13]) and formed colistin (avid tubular reabsorption [18–19]), processes
which serve to traffic CMS/colistin through tubular cells, may be related to the propensity
for CMS therapy to cause nephrotoxicity.
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Pharmacodynamics of colistin
While many early reports on antibacterial activity examined both colistin and its parenteral
form, CMS, it is important to note that CMS is an inactive prodrug of colistin [11*]. Thus,
activity reported with the use of CMS, whether from studies conducted in vitro or in vivo,
derives from the formation of the active species, colistin. Polymyxins show excellent in vitro
activity against ~97% of isolates of P. aeruginosa and Acinetobacter spp. (MIC50, ≤1 mg/L
and MIC90, 2 mg/L for both pathogens) [20]. The majority of PD data on colistin has been
generated using static time-kill studies and in vitro models. Colistin displays concentration-
dependent killing against susceptible strains of P. aeruginosa, A. baumannii and K.
pneumoniae, including MDR strains [21–24]. Colistin concentrations in the vicinity of MICs
or above result in extremely rapid initial killing, with large decreases in colony forming
units per mL (cfu/mL) occurring as early as 5 min following exposure. A very modest post-
antibiotic effect is seen only at high concentrations against P. aeruginosa [25]. Recently,
Bulitta et al. demonstrated both the rate and extent of killing by colistin are decreased at
high compared to low inocula [21]. Using a genetically characterized isolate of P.
aeruginosa (PAO1), killing of the susceptible population at an inoculum of 109 or 108 cfu/
mL was 23- and 6-fold slower, respectively, compared with an inoculum of 106 cfu/mL. At
the 109 inoculum, up to 32-fold higher concentrations were required to achieve bactericidal
activity (≥3-log10 cfu/mL decrease) compared with the 106 inoculum.

Despite the often extensive initial killing observed against colistin-susceptible strains with
exposure to colistin alone, regrowth is a common feature both in vitro [22,24,26–27] and in
vivo [28]. Regrowth of A. baumannii [23] and K. pneumoniae [24] has been reported in
static time-kill studies utilizing colistin concentrations up to 64× MIC, while Gunderson et
al. [22] reported regrowth of two MDR but colistin-susceptible clinical isolates of P.
aeruginosa with colistin concentrations up to 200 mg/L. Such concentrations are well in
excess of those which can be safely achieved clinically (discussed subsequently). Colistin
heteroresistance, the phenomenon whereby a strain deemed susceptible based upon standard
MIC measurements (i.e. MIC ≤2 mg/L) harbors a subpopulation of colistin-resistant cells
(i.e. MIC ≥4 mg/L), has been observed in A. baumannii [29], K. pneumoniae [24], and P.
aeruginosa (authors unpublished data), and is likely an important contributor to regrowth
and the emergence of colistin resistance. In an important study, Li et al. [30] demonstrated
that colistin-resistant subpopulations in colistin-heteroresistant strains of A. baumannii had
remarkably greater susceptibility, compared to their parent strains, to other antibiotics
including those that normally are not active against Gram-negative bacteria. The potential
presence of colistin-resistant subpopulations prior to therapy, and the observation of rapid
amplification of colistin-resistant subpopulations with colistin monotherapy, suggest caution
with the use of colistin monotherapy and highlight the importance of investigating rational
colistin combinations [4**,30].

Integrated pharmacokinetics/pharmacodynamics
Recent studies investigating the relationship between the PK and PD of colistin have
employed dose fractionation to determine which PK/PD index best correlates with
antibacterial activity of colistin [28,31*,32**,33**]. Bergen et al. [31*] performed an
extensive investigation in an in vitro PK/PD model against three strains of P. aeruginosa
(including a colistin-susceptible but MDR strain) with analysis based upon unbound (ƒ)
indices (i.e. ƒCmax/MIC, ƒAUC/MIC, and ƒT>MIC). Overall killing was best correlated with
ƒAUC/MIC. In a study utilizing a neutropenic mouse thigh infection model, Ketthireddy et
al. [28] reported once-daily dosing of colistin was most effective against P. aeruginosa
suggesting that Cmax/MIC may be the PK/PD index most predictive of activity; however that
conclusion could not be confirmed since PK data were not available. Dudhani et al. [32**,

Bergen et al. Page 3

Curr Opin Pharmacol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



33**] employed neutropenic mouse thigh and lung infection models and determined the
time course of total (i.e. protein-bound plus unbound) and unbound plasma colistin
concentrations. This allowed the PK/PD analysis to be based upon unbound indices. Against
three strains of each of P. aeruginosa and A. baumannii (including MDR but colistin-
susceptible and, for A. baumannii, colistin-heteroresistant strains), ƒAUC/MIC was the
index most predictive of the antibacterial effect in both thigh and lung infection models
(Figure 1), in agreement with in vitro data [31*]. Thus it appears that time-averaged
exposure to colistin is important for its antibacterial activity. It is of note that the ƒAUC/
MIC values associated with a given magnitude of effect (e.g. 2-log10 reduction in viable
bacteria) were generally similar across the in vitro and in vivo models, the various strains of
the two bacterial species and the infection sites [31*,32**,33**]. For example, the colistin
ƒAUC/MIC values required to achieve 2-log10 kill against 3 strains of P. aeruginosa in both
thigh and lung infection models ranged from only 27.6 to 45.9 [32**]. The identification
that ƒAUC/MIC is the predictive index and the values of this index for different magnitudes
of effect will be key to designing optimal dosage regimens for patients as more information
arises on population PK in humans.

Are current dosage regimens optimal?
The simple answer to the abovementioned question is ‘no’ and much confusion has
surrounded the ‘optimal’ dosing of colistin [4**,5]. With its role as a ‘salvage’ therapy for
otherwise untreatable infections, and with resistance to colistin beginning to emerge, it is
crucial that CMS is administered in regimens that maximize antibacterial activity and
minimize resistance development, while also minimizing the potential for adverse effects
(e.g. nephrotoxicity). Fortunately, progress has been made recently in understanding of the
PK of CMS and formed colistin in various categories of patients.

It is now evident that the currently used dosage regimens of CMS are likely to generate sub-
optimal exposure to colistin in many patients across various patient groups. Li et al. [15]
reported that cystic fibrosis patients administered intravenous CMS had a range of peak
plasma concentrations (Cmax) of formed colistin of 1.2 – 3.1 mg/L at steady-state.
Importantly, even before consideration of protein binding plasma colistin concentrations in
many cases failed to reach the CLSI breakpoint of 2 mg/L [34] defining susceptibility to
colistin for P. aeruginosa and A. baumannii. Dosage regimens of CMS are also sub-optimal
in many critically-ill patients. Markou et al. [35] and Imberti et al. [36] reported plasma
colistin Cmax at steady-state of 1.15 – 5.14 mg/L and 0.68 – 4.65 mg/L, respectively, in
critically-ill patients with moderate to good renal function. In 18 renally-competent
(creatinine clearance >41 mL/min) critically-ill patients, Plachouras et al. [17**] reported a
significant delay in attainment of steady-state plasma concentrations of formed colistin when
CMS therapy commenced with maintenance dosing, without administration of a loading
dose (Figure 2); plasma colistin concentrations were well below the MIC breakpoints for the
first several doses after commencing the maintenance dosage regimen with CMS. Even at
steady-state, the typical plasma colistin Cmax was estimated to be only 2.3 mg/L, with many
patients considerably below this concentration. The substantial delay between initiation of
CMS therapy and attainment of steady-state observed in that study is significant not only
because delayed initiation of appropriate antimicrobial therapy is associated with increased
mortality in critically-ill patients [37–38], but also because low colistin concentrations have
been associated with the amplification of colistin-resistant subpopulations [24,32**,39]. To
remedy this situation, the administration of a loading dose of CMS at the commencement of
therapy has been suggested [17**,40]. In support of this, mathematical modeling by Bulitta
et al. [21] predicted colistin regimens with a large colistin exposure during the first ~12 h
may be beneficial, providing enough net killing such that the immune system may be able to
eradicate any remaining colistin-resistant cells.
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In the largest population PK study to date, Garonzik et al. [41**,42] have revealed the
impact of renal function in critically-ill patients on the disposition of CMS and formed
colistin. In that study, 89 critically-ill patients with very diverse renal function not receiving
renal support had average steady-state plasma colistin concentrations of 0.48 – 10.0 mg/L
when receiving CMS daily doses selected by the treating physician (all but three patients
received CMS daily doses within the currently recommended range). This study is the first
to reveal that creatinine clearance is an important covariate for both the clearance of CMS
and the apparent clearance of colistin. As renal function declined in these patients so too did
the renal clearance of CMS, resulting in a greater fraction of the administered dose of CMS
converted to colistin (hence the apparent clearance of formed colistin was lower in patients
with poor renal function). Importantly, administration of CMS at the upper limit of the
current product-recommended dose range to patients with moderate to good renal function
resulted in low and potentially suboptimal plasma colistin concentrations. This is
particularly so if the MIC of the infecting organism is in the upper range (i.e. 2 mg/L), or the
infection is associated with high bacterial numbers. As suboptimal colistin concentrations
may result in amplification of colistin-resistant subpopulations, the most appropriate
approach is likely to be therapy with a rationally-selected colistin combination regimen
[4**,30]. In 15 additional patients receiving intermittent hemodialysis (11 patients) and
continuous renal replacement therapy (4 patients), both CMS and colistin underwent
relatively efficient extracorporeal clearance, which is in agreement with previous case
reports [16,43]. A very important practical outcome of this population PK study has been the
generation of suggested CMS maintenance doses for various categories of critically-ill
patients [41**,42].

Conclusion
As more data accumulate from clinical studies, the integration of PD (clinical cure,
bacteriological eradication, development of resistance) and toxicodynamic (e.g.
nephrotoxicity) endpoints, together with refinements in population PK models, will help to
optimize the administration of this last-line antibiotic in the various categories of patients
who require it.

Highlights

> We review the PK and PD of inactive CMS and the active colistin formed
from it.

> The ƒAUC/MIC of colistin is the PK/PD index most predictive of
antibacterial activity.

> Current dosage regimens of CMS are sub-optimal in critically-ill patients.

> Attainment of steady-state colistin concentrations is significantly delayed.

> Renal function is an important determinant of CMS maintenance dosing
requirements.
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FIG. 1.
Relationships for P. aeruginosa ATCC 27853 between the log10 CFU per thigh at 24 h and
the PK/PD indices (A) fAUC/MIC, (B) fCmax/MIC and (C) fT>MIC. Each symbol represents
the mean datum per mouse from two thighs. R2 is the coefficient of determination. The
dotted line represents the mean bacterial burden in thighs at the start of treatment.
Reproduced from Dudhani et al. [32] with permission.
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FIG. 2.
Observed individual concentrations of CMS (Panels A and B) and formed colistin (Panels C
and D) in plasma of critically-ill patients after the administration of the first (Panels A and
C; fourteen patients) and fourth (Panels B and D; 12 patients) dose of CMS. Reproduced
from Plachouras et al.[17] with permission.
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