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Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase after
exposure to pro-inflammatory stimuli and, therefore, represents a novel target for therapeutic
treatment of acute and chronic inflammatory disorders. It is essential to identify mPGES-1
inhibitors with novel scaffolds as new leads or hits for the purpose of drug design and discovery
that aim to develop the next-generation anti-inflammatory drugs. Herein we report novel
mPGES-1 inhibitors identified through a combination of large-scale structure-based virtual
screening, flexible docking, molecular dynamics simulations, binding free energy calculations, and
in vitro assays on the actual inhibitory activity of the computationally selected compounds. The
computational studies are based on our recently developed three-dimensional (3D) structural
model of mPGES-1 in its open state. The combined computational and experimental studies have
led to identification of new mPGES-1 inhibitors with new scaffolds. In particular, (Z)-5-
benzylidene-2-iminothiazolidin-4-one is a promising novel scaffold for the further rational design
and discovery of new mPGES-1 inhibitors. To our best knowledge, this is the first time a 3D
structural model of the open-state mPGES-1 is used in structure-based virtual screening of a large
library of available compounds for the mPGES-1 inhibitor identification. The positive
experimental results suggest that our recently modeled trimeric structure of mPGES-1 in its open
state is ready for the structure-based drug design and discovery.

Introduction
Prostaglandin E2 (PGE2) is one of the most important prostanoids with diverse biological
activity.1 The biosynthetic pathway of PGE2 has been well characterized and involves three
sequential enzymatic actions.2 The first step in this pathway, involves the release of
arachidonic acid (AA) from the membrane, by the action of phospholipase A2 (PLA2).2 This
is followed by the conversion of AA to prostaglandin H2 (PGH2) by the action of
cyclooxygenase COX-1 or COX-2.2 Finally, PGH2 is converted to PGE2 by the action of
terminal prostaglandin E synthase (PGES) enzymes,3 particularly microsomal PGES-1
(mPGES-1).4 It has been known that mPGES-1 couples with COX-25–6 and plays a key role
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in a number of disease conditions, including inflammation, arthritis, fever, pain, cancer,
stroke, and bone disorders.7–13 Human mPGES-1 has been recognized as a promising target
of next-generation therapeutics for the above diseases.14

As well known, the currently available non-steroidal anti-inflammatory drugs (NSAIDs)
inhibit either cyclooxygenase (COX)-1 or COX-2 or both.15 These inhibitors have several
deleterious side effects including ulcers, bleeding within the gastrointestinal tract, or
increased risk of cardiovascular events.16 The withdrawal of rofecoxib (Vioxx) due to side
effects further highlights the need to develop improved, safer anti-inflammatory drugs.15

The COX inhibitors prevent the production of all prostaglandins downstream of PGH2,
which results in a lot of problems. For example, blocking the production of prostaglandin-I2
(PGI2) has been reported to play a role in cardiovascular events.17 Unlike COX inhibition,
inhibition of terminal mPGES-1 will only block the production of PGE2 without affecting
the normal production of other prostaglandins including PGI2. Reported knock-out studies
identified mPGES-1 as an essential central switch in pyresis.18 The mPGES-1 knock-out
studies also revealed a decrease in inflammatory response in a collagen-induced arthritis
model.19 In contrast to COX-2, mPGES-1-deficient mice were reported to be viable, fertile
and have normal phenotype.19 Ischemic stroke induced in mPGES-1 null mice was reported
to show significant reduction in the infarct size and volume.10, 14 Thus, mPGES-1 inhibitors
are expected to retain the anti-inflammatory effect as COX inhibitors without the side effects
of COX inhibitors.

An effective approach to inhibit mPGES-1 is the blockage of its interaction with the PGH2
substrate. Therefore, molecules that show similar structure to the mPGES-1 substrate may
function as competitive inhibitors. Although mPGES-1 inhibitors are expected to be
potentially valuable therapeutic agents, few inhibitors of mPGES-1 were identified in
experimental screening efforts. The COX-2 inhibitor NS-398, 5-Lipoxygenase activating
protein (FLAP) inhibitor MK-886, and the active metabolite of another NSAID sulindac,
were found to inhibit mPGES-1 with an IC50 of 20, 1.6, and 80 μM, respectively.20–21,22

Leukotriene C4 was reported to inhibit mPGES-1 with micromolar IC50, probably by
competing with glutathione (GSH).20 In addition to small molecules,23 several
polyunsaturated fatty acids and stable analogs of PGE2 were reported to inhibit mPGES-1.24

Riendeau22 recently reported a series of mPGES-1 inhibitors. These compounds were
synthesized based on the scaffold of MK-886 (FLAP inhibitor). Some of these newly
synthesized mPGES-1 inhibitors are potent, with an IC50 value of a few nM in vitro.
Unfortunately, all of these inhibitors are inactive against mPGES-1 in vivo. It is highly
desirable to design and discover novel inhibitors of mPGES-1 with different scaffolds in
development of next-generation therapeutics for inflammation-related diseases.

Even though high-throughput screening has been used successfully with the goal of
identifying new leads in drug discovery, it remains a costly and time-consuming process.
Alternatively, virtual screening has emerged as a complementary approach.25 Structure-
based computational approaches for evaluating binding propensities within large ligand sets
are widely used in modern rational drug design.26–31 An important class of such methods is
based on virtual screening with a pharmacophore or a 2D pattern derived from known active
substances.

A second class of virtual screening methods is provided by docking and scoring techniques
that predict the positions of bound ligands and the related binding affinities for cases where
the 3D structure of the protein target is known. Advanced docking algorithms can in general
accurately sample the conformational space of protein–ligand complexes, including those of
conformationally flexible binders. Analytical scoring functions of differing composition and
accuracy are used for estimating protein–ligand interaction energies and to rank the binding
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affinities of the docked protein-ligand complexes. Both high-throughput virtual library
screen and docking methods may generate false hits and miss promising compounds.27

Nevertheless, despite the inherent limitations, virtual screening methods provide a valuable
tool for rational selection of potential hits for bioassay studies.

While all docking programs use the structure of the target protein to detect active molecules,
they differ greatly in the details of their implementation. Two of the basic parts of any
docking program are the docking algorithm that creates trial poses within the active site and
the scoring function that evaluates the fitness of each pose and the relative fitness of
different ligands. However, several analyses32–34 revealed that most docking programs are
effective overall but highly inconsistent; one program might work well for one target
protein, but poorly for another.

Despite the obvious limitations, rigid-body docking methods implemented in FRED35 or
DOCK36–38 are interesting because they are much faster than the flexible docking
algorithms and because significant noise can be generated with fully flexible docking of
large collections. A common approach to improve the results (decrease the false positive
hits) from rigid-body docking is to further simulate the obtained ligand binding poses using
MD simulations.

Recently, as part of a large program of design, synthesis, in silico, and in vitro screening of
new classes of mPGES-1 inhibitors, we reported the 3D structural model of the mPGES-1
trimer and its binding with substrates and inhibitors.39 Further experimental and
computational studies40 of the mPGES-1 were carried out to validate and identify the
specific residues of the enzyme’s active site involved in the binding of the substrate and
cofactor ligands. The present study has three mains goals: (I) validation of the constructed
mPGES-1 trimeric structure and identification of the key residues involved in the inhibition
mechanism; (II) assessment of how our improved structure-based design protocol is suited
for inhibitor design and docking experiments; and (III) identification of novel mPGES-1
inhibitors with new scaffolds.

Although several compounds have been recently identified through the ligand-based
modeling approach,41–42 the optimization process of the lead compounds will be an
elaborate step without knowing the binding mode of the ligands with the mPGES-1 target.

The ultimate goal of this study is to identify new classes of mPGES-1 inhibitors using
structure-based computational approaches with subsequent bioassay experiments to provide
a starting point for lead optimization and preclinical drug development. Lead optimization
will be required to produce more drug-like inhibitors which should possess biological
activity at clinically relevant concentrations.

In order to identify novel compounds that can inhibit mPGES-1 and to develop a predictive
tool for the design of more potent mPGES-1 inhibitors, we have developed a hierarchical,
combined computational/experimental procedure which includes a robust and efficient
structure-based drug design route using our recently developed trimer model of mPGES-1 in
its open state, leading to identification of novel mPGES-1 inhibitors with new scaffolds.

Methods
Structure-based virtual screening

We have used the ligand-based screening, rigid docking, flexible docking, and molecular
dynamics (MD) simulations followed by MM-GBSA calculations as screening filters in
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virtual screening. The flow chart of steps used in our virtual screening strategy is given in
Figure 1.

To identify potential inhibitors of human mPGES-1, the trimeric structure of mPGES-1 was
retrieved from our previous computational modeling work.39–40 The compounds screened
were available in a compound library at Genomics Research Institute (GRI) at the University
of Cincinnati (UC). The UC/GRI compound library containing structural information for
345,447 compounds was provided by Procter & Gamble (P&G) and belonged to a
Consortium including University of Kentucky as a member. In our virtual screening of the
compound library (database), initially, the database was cleaned by removing waters,
solvent, counter ions, etc. Subsequent ligand preparation, including generation of tautomers,
stereoisomers, ring conformations, and a variety of ionization states, resulted in a total of
~2.1 million structures.

For our virtual screening study, we decided to use the previously identified binding pocket
of mPGES-1 as the target of interest.40 The active site was defined as all atoms within a
radius of ~12 Ǻ from the ligand in the binding pocket.

Generation of conformations
Starting from the structural data (SD) files available, we first generated various molecular
orientations and multiple conformations of each ligand in the database by using OMEGA
(OpenEye Scientific Software).43–45 OMEGA sampling is capable of selecting a ligand
conformation similar to that of the targeted X-ray crystal structure by using an appropriate
option (default) including a low-energy cutoff to discard high-energy conformations, a low
root-mean-square deviation (RMSD) value below which two conformations are considered
to be similar.45 Atom typing, energy calculations, and geometry optimization in OMEGA
were performed using the Merck Molecular Force Field (MMFF). The maximum allowed
conformations per compound was set to 200 and the energy window (the value used to
discard high-energy conformations) was set to 10 kcal/mol. The default values of the
OMEGA program were used for other parameters.

Shape filter
Shape-based screening using ROCS program46–47 was used as the first filter in our virtual
screening. The program was used to find the similarity between the molecules based on
shape. The basic idea behind ROCS is that two objects cannot have the same shape if their
volumes are not the same. This method tries to find and quantify the maximum overlap of
the volume of two molecules. The goal of this method is to find molecules that can adopt
shapes extraordinarily similar to the query without necessarily having similar atom types
and bonding patterns.46 Consequently, molecules are optimally aligned and matches are
based on volume overlap. Similarity is measured by the shape Tanimoto score. The shape
Tanimoto score has a value of 1.0 if two shapes are identical, and 0.0 if completely
different.46 In the present work, ROCS shape searching with chemical complementarity is
used. The chemical complementarities searches used the ImplicitMillsDean chemical
forcefield, (also called color forcefield) which defines six chemical types: hydrogen-bond
donors, hydrogen-bond acceptors, hydrophobes, anions, cations, and rings. Both shape
Tanimoto and color forcefield were used in the ranking of ligands by ROCS. Thus, the
multi-conformational database generated using OMEGA was filtered with ROCS program
and the AM1-bcc atomic partial charges of the ligands were determined by using the
Molcharge program (OpenEye Scientific Software).

We utilized molecular structures of two known mPGES-1 inhibitors, 3-(1-(4-
chlorobenzyl)-3-methyl-1H-indol-2-yl)-2,2-dimethylpropanoic acid (MK-886, 1) and its
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derivative 3-(1-(4-chlorobenzyl)-5-(2-fluoro-[1,1′-biphenyl]-4-yl)-3-methyl-1H-indol-2-
yl)-2,2-dimethylpropanoic acid (2) described by Riendeau et al.22 as the ligand query and
selected the top ~33% hits for each query (Figure 2). The two query molecules were
retrieved from our previous work.39

Rigid molecular docking
FRED (OpenEye Scientific Software) was used in this study to dock the generated ROCS
shape-based screening library mentioned above.35 The strategy of FRED is to exhaustively
dock and score all possible positions of each ligand in the binding site. This rigid docking
roughly consists of two steps, i.e. shape fitting and optimization. During the shape fitting,
the ligand was placed into a 0.5 Å-resolution grid box encompassing all active-site atoms
(including hydrogen atoms) using a smooth Gaussian potential.48 A series of two
optimization filters were then processed, consisting of a rigid-body optimization and
optimization of the ligand pose in the dihedral angle space.

In our study, FRED docking involves exhaustive docking of multi-conformer ligand and
generation of poses. The pose ensemble was then filtered to reject poses that do not have
sufficient shape complimentarily with the active site of the protein followed by rejection of
poses that do not have at least one heavy atom making a hydrogen bond with Arg110 side
chain. The top-ranked poses are optimized by solid body optimization and refined with
MMFF force field. In the optimization step, four scoring functions are available: Gaussian
shape scoring,48 ChemScore,49 PLP,50 and ScreenScore.51 Preliminary docking trials led us
to select the consensus score for the optimization filters. The resulting shape-filtered
database (693,000 non-redundant compounds) set was split into 3,600 sub-databases which
were docked separately using our in-house script programs for faster processing. The
binding pose of the top-ranked 100 hits (~50%) from each cluster (depending on the sub-
database size) were then merged into a set of 346,000 ligands which were refined (see below
for Flexible Molecular Docking) using MD simulations for a more accurate search routine.

The receptor file was setup up automatically by the interactive GUI interface of
FRED_receptor program using the structure of the target protein with ligand bound. The box
enclosing the active site was determined by creating an initial box around the bound ligand
and then extending each side of the box by 7 Å.

Flexible molecular docking
In separate docking runs, the ligand structures that passed the shape-fitting, optimization
filters, and hydrogen bonding to the Arg110 side chain were submitted for energy
minimization followed by 20 ps and 100 ps MD simulations using Amber10.52

The molecular mechanics parameters for the protein and ligands were assigned with
Antechamber module of Amber10. In particular, the ligand atoms were assigned generalized
amber force field (gaff)53 atom types, while Amber ff03 parameters were assigned to all the
protein atoms.

During the energy minimization and MD simulation, only the ligand and residue side chains
in the binding pocket were permitted to move freely. The nonbonded interaction cutoff and
the dielectric constant were set to a group-based 20 Ǻ cutoff distance and distance-
dependent (ε= 4r),54–55 respectively, so as to mimic the solvent environment. The last 5 to
20 snapshots of the simulated structure from 20 ps and 100 ps MD trajectory were used to
perform the MM-GBSA calculations (see below).
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MM-GBSA calculation
The binding free energies were calculated using the MM-GBSA method implemented in
Amber10.52 Our MM-GBSA calculation for each snapshot was carried out in the same way
as we did for other protein-ligand systems.40 Since the calculation of the entropic
contribution (−TΔS) requires some further approximations and because we only needed to
have a rough estimate of the relative binding free energies in this stage, the entropic
contribution was neglected in our binding free energy calculations.

Molecular dynamics in explicitly solvated system
The general procedure for carrying out the MD simulations in water is essentially the same
as that used in our previously reported other computational studies.56–58 Briefly, the MD
simulations were performed using the Sander module from Amber10.52

The mPGES-1-ligand binding complex was neutralized by adding appropriate counter ions
and was solvated in a rectangular box of TIP3P water molecules with a minimum solute-
wall distance of 10 Å. The solvated systems were energy-minimized and carefully
equilibrated. These systems were gradually heated from T = 10 K to T = 298.15 K in 50 ps
before running an MD simulation. The MD simulations were performed with a periodic
boundary condition in the NPT ensemble at T = 298.15 K with Berendsen temperature
coupling59 and constant pressure (P = 1 atm) with isotropic molecule-based scaling. A time
step of 2.0 fs was used, with a cutoff of 12 Å for the nonbonded interactions, and the
SHAKE algorithm was employed to keep all bonds involving hydrogen atoms rigid.60 Long-
range interactions were handled using the particle mesh Ewald (PME) algorithm.61 During
the energy minimization and MD simulation, only the ligand and residue side chains in the
binding pocket were permitted to move. We used the constraint to prevent any changes in
the mPGES-1 structure due to the presence of residues in the loops on the top of the protein
active site. A residue-based cutoff of 12 Å was utilized for non-covalent interactions. MD
simulations were then carried out for 1 ns. During the simulations, the coordinates of the
system were collected every 1 ps. The last 50 snapshots of the simulated structure of the MD
trajectory were used to perform the MM-PB(GB)SA calculations (see below).

Binding free energy estimation using MM-PBSA method
The binding free energies ΔGbind were calculated by using the molecular mechanics-
Poisson-Boltzmann surface area (MM-PBSA) free energy calculation method. We have used
the Sietraj program to calculate the free energy of binding from the simulated trajectories.62

The program calculates the solvated interactions energies (SIE) using five terms and three
parameters that have been fitted to reproduce the binding free energies of a data set of 99
ligand protein complexes by Naim et al.62 The Sietraj
(http://www2.bri.nrc.ca/ccb/pub/sietraj_main.php) is a substitute of MM/PBSA
methodology.63 The SIE calculates the intermolecular coulomb and van der Waals (vdW)
interaction energies in the bound state, and the electrostatic contribution for solvation free
energy to the binding is the difference of reaction field energy between bound and free
states. The reaction field energy is computed by solving Poisson equation with the boundary
element method.64 The internal dielectric constant of 2.25 and a solvent dielectric constant
of 78.5 were used. The package calculates the free energy ΔGbind by using the solvated
interaction energy formula (Eq. 1).

(1)
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in which the standard scaling factor α value of 0.104758 was used.62 ΔECoul and ΔEvdw are
the intermolecular coulomb and van der Waals interaction energies, respectively, in the
bound state. The electrostatic contribution for solvation free energy ΔGreact.field to the
binding is the difference of reaction field energy between the bound and free states. The
ΔGnp term is the nonpolar solvation free energy, proportional to the solvent accessible
surface area (Eq. 2):

(2)

in which the standard scaling coefficient γ value (0.012894 kcal/mol.Å2)62 was used for the
non-polar solvation free energy calculation. The atomic radii were scaled by a value of
rscale = 1.1 for the reaction field energy calculations, and a fitting constant C of value −2.89
kcal mol−1 was used. The scaling can be considered a crude treatment of entropy-enthalpy
compensation.62,65 Here, we estimated ΔGbind by averaging the results calculated for the last
50 snapshots of the MD simulation on each protein-ligand complex.

In vitro experimental tests
Cloning of mPGES-1 and the protocol of the protein preparation were described in our
previous reports.40,66 Briefly, on the basis of our previous experimental work, FreeStyle
Max Expression System was used to express the wild-type mPGES-1. FreeStyle 293-F cells
were cultured following manufacturer’s manual in FreeStyle 293 expression medium on
orbit rotate shaker in 8% CO2 incubator at 37°C. Cells were transfected with 1.5 μg/mL of
mPGES-1/pcDNA3 construct using FreeStyle Max reagent at a cell density of 1 × 106 for 2
days. Transfected cells were collected, washed, and sonicated in TSES buffer (15 mM Tris-
HCl, pH 8.0 plus 0.25 M sucrose, 0.1 mM EDTA and 1 mM DTT) on ice. The broken cells
were first centrifuged at 12,500 × g for 10 min. The supernatant was further centrifuged at
105,000 × g for 1 hr at 4°C. The pellet was washed and homogenized in PBS buffer. The
crude microsomal mPGES-1 preparation was aliquoted and stored at −80°C. The crude
protein concentration was 8 mg/mL.

The enzyme activity assays were performed on ice in 1.5 ml microfuge tubes by using the
expressed mPGES-1. The reaction mixture contained: 0.2 M Na2HPO4/NaH2PO4, pH 7.2,
10 μL; 0.1 M GSH, 2.5 μL; diluted microsomal enzyme (80 μg/mL), 1 μL; PGH2 (0.31 mM
in DMF), 5 μL; 1 μL inhibitor; and H2O in a final reaction volume of 100 μL. PGH2 was
stored in dry ice and used to initiate the reaction. Compounds were incubated with the
enzyme for 15 min at room temperature before the addition of cold PGH2 (1 μM final) to
initiate the enzyme reaction. After 30 s, 10 μL of SnCl2 (40 mg/mL) in ethanol was added to
stop the reaction. The nonenzymatic conversion of PGH2 to PGE2 was performed in the
same buffer devoid of enzyme. The reaction mixture was placed on ice until PGE2
production was determined by the PGE2 enzyme immunoassay as described earlier. IC50
values of the inhibitors were calculated by using the GraphPad Prism 4.0 program.

Results and Discussion
Structure-based virtual screening is the most efficient way for identifying small-molecule
inhibitors from a large drug-like database. At the present time, no experimental structure has
been reported for an mPGES-1-inhibitor complex, which remains as a major obstacle in
structure-based virtual screening. Before the design of PGH2-competitive inhibitors of
mPGES-1, the active site of the trimeric structure was studied. We recently published the
construction of a three dimensional homology model of the bound state of mPGES-1
complexed with its substrate PGH2 and cofactor GSH or known inhibitors.39 We also
described its potential use in generating small-molecule inhibitors of mPGES-1. However,
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while a crystal structure of mPGES-1 became available more recently,67 we elected not to
use that structure since its compact conformation suggested an inactive form.40, 67

In an effort to address our overall objective, we first virtually screened a large database of
lead compounds to retrieve putative mPGES-1 inhibitors. From that screening, we generated
a primary topographical interaction model to guide the subsequent virtual screening process.
Through mutational studies and comparative affinity determinations based on known
compound binding,39–40 essential amino acids involved in antagonist recognition were
identified. In studying additional mutational studies performed on mPGES-1 by Jegerschold
et al.,67 we derived a reasonable topographical interaction model (Fig. 2). According to our
homology model and these mutational data, the plausible inhibitor’s binding pocket of the
mPGES-1 receptor overlaps with both the binding site of the PGH2 substrate and GSH
cofactor in MPGES-1 protein.

Thus, owing to the high affinity of these known mPGES-1 inhibitors, we reasoned that novel
inhibitors with differing scaffolds would need to participate in some of these key
interactions and compete for and displace PGH2 from the active site. Hence, an improved
virtual screening strategy was employed to identify small-molecules that favorably occupy
the active site of mPGES-1 (Fig. 1).

Results from the large-scale virtual screening
In the first stage of the virtual screening protocol, the generated approximately 2.1 million
structures from the database (corresponding to 345,447 compounds) were subjected to a
shape-based screening technique implemented in the ROC program.47 Recent reports have
shown success with ligand-based virtual screening approaches such as the ROCS in
identifying the known inhibitors and in new lead identification. Because of its speed and
excellent performance in previously reported virtual screening studies, ROCS was chosen as
the first ligand-based virtual screening filter.68–69

In this method, two previously proven active compounds are used as query molecules in
ROCS shape filter to search collections of molecules for “hits” that exhibit similar 3D
shapes (Fig. 2). One of these compounds is strongly active against mPGES-1 in vitro,
although both ligands are inactive in vivo. The objective of our shape filtering protocol here
was to use a highly active but “compromised” compound as a template to identify novel
molecular structures that exhibit similar 3D shapes but different scaffolds.

Furthermore, the reason for using two different scaffolds simultaneously is that the choice of
the ligand molecule will have a critical effect on the results from ligand-based screening and
the use of diverse ligands in their conformational binding state will help us to overcome the
bias of using any one ligand as the query molecule. Moreover, it has reported that similarity
searching is effective for recognizing active compounds within data sets of varying size and
compound diversity and has been successfully used to select compounds for experimental
screening, synthesis, and optimization.70–72 Our shape filtering search based on this strategy
identified ~693,000 preliminary hits (workflow depicted in Fig. 1). All of these hit structures
were subsequently docked into the mPGES-1 active site using the fast and rigid docking
protocol implemented in FRED program.35

Results from the rigid docking of the filtered ligand set
We started the search for mPGES-1 inhibitors by performing a pharmacophore search of the
generated shape-filtered database. To reduce the search space of the rigid docking procedure
and to obtain only docking poses that are in agreement with experimental data, distance
constraints were defined according to the interactions indicated in the Fig. 2. The search
queries were generated using information from mutational residues and compounds
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(MK-886 and its derivative) whose structures are complexed with mPGES-1
protein.22, 39-–40 The corresponding pharmacophore model consists of three hydrogen-bond
acceptors and two hydrophobic centers with a tolerance criterion of 2.5 Ǻ (Fig. 2).

All poses of the ensemble that pass the filtering steps are scored by the FRED exhaustive
scoring function. The poses returned from exhaustive docking and optional optimization
protocols are re-scored and ordered by consensus structure score. By using this
straightforward ligand ranking, we implicitly assumed that the computed docking scores
may at least partially reflect experimental binding affinities. Thus, the resulting molecular
structures from several clusters match sufficiently with the template position of the reference
structure. As a result, we select the top-346,000 ranked poses for further optimization and
filtering process. The docking and scoring results serve as a starting point for the next step,
identified as the selection strategy. The mPGES-1-ligand structures extracted from the rigid
docking were subject to subsequent flexible docking simulations via MD simulations as
discussed below.

Predictions from the flexible docking simulations
A critical issue in molecular docking includes the prediction of the reasonable binding pose
and the estimation of the corresponding binding affinity. Despite the enormous size of the
conformational space for a given ligand, current docking methodologies have been
successfully employed by our group in reproducing crystallographic evidences as well as to
predict putative binding modes.39, 57, 73–74

As a consequence, we selected molecular structures that could potentially fit into the binding
pocket based on the pharmacophore model criteria, shape complementarity (Fig. 1
workflow) and characterized by a similar docking mode in the putative binding site of the
mPGES-1. The conformational flexibility of the selected molecular candidates and
mPGES-1 was further taken into account, according to the Flexible Docking procedure
described in Methods Section.

All resulting mPGES-1-ligand complexes were further refined by conducting energy-
minimization followed by 20 ps MD simulations in implicit solvent model and the final
ligand binding structures were ranked according to the binding free energies obtained from
the MM-GBSA calculations.

Thus, in the initial 20 ps of the MD simulation of the mPGES-1 complexed with the
reference compound structures 1 and 2, the computed binding energy was ΔGGBSA(1) =
−38.1 kcal/mol and ΔGGBSA(2) = −43.1 kcal/mol, respectively. Therefore, all structures
with a threshold of −20 kcal/mol or lower were assembled to create a data set consisting of
~47,000 non-redundant compounds (Fig. 1). These simulated complexes were re-submitted
for 100 ps MD simulations and re-scored (Fig. 3). Among them, 21 compounds with a top
docking score (ΔGbind

GBSA) were selected for in vitro activity tests against mPGES-1 (see
Table S1 in Sup. Inf. for molecular structures).

Inhibitory activity against mPGES-1
All 21 compounds were assayed in vitro for their inhibitory activity against recombinant
mPGES-1. The initial in vitro assays were performed with a single concentration (10 μM) of
the inhibitor for all of the 21 compounds. Each of the 21 compounds at 10 μM assayed
showed some inhibitory activity against mPGES-1, ~10% to 83% inhibition of the
mPGES-1 activity (see Table 1). The most potent two compounds, i.e. 3 and 4, inhibited the
enzyme activity of mPGES-1 for ~83%. These two compounds were further assayed with
varying concentrations to determine their IC50 against mPGES-1, showing that IC50 = 3.5
μM for compound 3 and IC50 = 4.6 μM for compound 4. The same in vitro activity protocol

Hamza et al. Page 9

Bioorg Med Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



was also performed for compound 1, and we obtained IC50 = 2.6 μM for compound 1. Our
determined IC50 value of 2.6 μM for compound 1 is slightly larger than the previously
reported IC50 value of 1.6 μM.22 The in vitro data show that the predictions from the virtual
screening were not perfect, but it did lead to identification of the new hits with novel
scaffolds.

Binding modes of mPGES-1 with the new hits according to the MD simulations in the
implicit solvent

Based on the identification of the new hits with novel scaffolds, we further analyzed the
detailed binding modes for mPGES-1 binding with the computationally selected compounds
(particularly those depicted in Fig. 4), as understanding the binding modes of the hits will be
of great help in further lead identification and optimization studies in the future. The
simulated binding structures revealed that the carboxyl moiety of the compounds in both
structures form salt bridges with Arg110 side chain and hydrogen bond with Thr129, while
the (Z)-5-benzylidene-2-iminothiazolidin-4-one (compound 3) or phenyl acrylic acid
(compound 4) ring (scaffold) binds at the interface between the first two subunits of the
homotrimeric mPGES-1 enzyme. Figs. 5 & 6 show the binding modes of these compounds
with mPGES-1.

Inspection of the MD trajectories revealed that the RMSD of the positions of the heavy
atoms in both compounds 3 and 4 from those in the initial structure was small, ~0.5 Å. The
compounds fit into the pocket by establishing strong electrostatic interactions with the
guanidinium of Arg110 and hydroxyl group of Thr129 side chain. The scaffold ring of each
compound is stabilized in the pocket by two π–π stacking interactions with His72′ (i.e.
His72 of the second subunit of the trimer) and Arg126 residues, while the N-phenyl group of
3 or S-phenyl(Methyl) group of 4 plugs into a positively charged pocket surrounded by the
side chains of Arg73, Arg73′ (i.e. Arg73 of the second subunit of the trimer), Arg73″ (i.e.
Arg73 of the third subunit of the trimer), and Met76′ (i.e. Met76 of the second subunit of the
trimer) (Figs. 5 & 6). In addition, two significant dipole-quadrupole interactions are also
observed between the scaffold ring of the compounds and residues Arg126 and Arg73.

As observed in all virtual screening projects, the presence of the “false positive” inhibitors in
the final set of 21 selected compounds may be due to the protein side-chain distortion and/or
uncertain ligand binding mode that could overestimate the binding affinity of a ligand with
mPGES-1. In addition, the limitations of the docking scoring function associated with the
inaccuracy in the estimation of intramolecular, desolvation, and conformational entropy
penalties may overestimate the binding affinity of the ligand. Another possible factor is
associated with the lack of a term in the MM-GBSA scoring that describes enthalpy-entropy
compensation. A comparative molecular docking study conducted by Wang et al.75

demonstrated that the performance of different scoring functions is influenced by the nature
of the protein ligand interactions. In other words, the scoring functions tuned to a wide
variety of binding sites fail quite frequently, unless some weighting factors or some force
field parameters are corrected on a case-by-case basis.

Binding free energies estimated from the MD simulations in aqueous solution
In order to more reasonably simulate the binding modes and binding free energies of
compounds 2 to 4, for each inhibitor we further performed 1 ns MD simulations on the
explicitly solvated system to relax the binding complex and obtain deeper insights into the
positioning of the inhibitor in the mPGES-1 trimer. In this procedure, the computational
binding free energy data (ΔGbind

GBSA and ΔGbind
PBSA) were not intended to reproduce the

exact binding free energies of the compounds as measured experimentally. Here, our
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objective was to provide a detailed energetic estimate of the interactions between
compounds (2 to 4) and the key residues in the binding cavity of mPGES-1-ligand complex.

A detailed check of the simulated binding structures revealed that the MD simulations in
aqueous solution did not significantly change the binding structures. The calculated binding
free energies of the active compounds and contributions from vdW, electrostatic interaction,
and solvation using the single MD trajectory and MM-PBSA method are listed in Table 2.
The detailed analysis of the energetic terms suggests that the major favorable contributions
to the binding are vdW and electrostatic terms, whereas polar solvation energies oppose
binding. On the other hand, nonpolar solvation free energies contribute favorably, albeit
slightly. As seen in Table 2, the predicted binding free energies are qualitatively consistent
with the experimental data (the relative magnitudes of the IC50 values) in terms of the
ranking, i.e. ΔGbind(2) < ΔGbind(3) < ΔGbind(4) corresponding to IC50(2) < IC50(3) <
IC50(4).

Decomposition of binding free energy on a per-residue basis
In order to gain a better understanding of the origin of the interaction energy between the
ligands and the residues in the mPGES-1 binding pocket, we carried out MM-GBSA
decomposition analysis on the binding energies following the MD simulation in aqueous
solution. The energy decomposition is used to probe which residues generate significant
intermolecular contributions to the binding ligands (2, 3, and 4) and serves as a more
computationally efficient alternative to the computational alanine scanning mutagenesis.
The per-atom contributions can be summed over atomic groups such as residues, backbones,
and side chains to obtain their contributions to the total binding free energy. Summarized in
Table 3 (and Table S2 in Sup. Inf.) are the decomposition of ΔGgas+solv on a per-residue
basis for mPGES-1.

As observed for mPGES-1 binding with compound 2,39 the ligand binding is also driven by
the salt bridges between the carboxylate group of the ligand and the Arg110 and Thr129 side
chains of mPGES-1 as well as by hydrophobic-hydrophobic interactions between the phenyl
group of the ligand and the binding cavity formed by the Arg73, Arg73′, and Arg73″ side
chains of mPGES-1. These interactions are accompanied by the π-π interaction between the
scaffold of the ligand and the H72′ side chain.

The decomposition of the binding energy of the mPGES-1–2 complex showed that Arg110
and Thr129 have the major contributions to the binding affinity of 2 (or 1) carboxylate
group, whereas H72′ is important for the ligand scaffold stability. The affinity of the ligand
to mPGES-1 is improved by the strong interaction of Arg73 and Arg73′ side chains. To gain
better insight into the interactions of compounds 3 and 4 in the mPGES-1 binding pocket,
we compared the decomposition of the binding energies of these ligands with that of 2.
From the analysis of the data in Table 3, we observed that the Arg73, Arg73′, Leu69′,
Arg110, and Thr129 residues showed the largest contributions, suggesting that they play an
important role in the ligand binding due primarily to the electrostatic energy term ΔEelec
(Table S2 in Sup. Inf.). The contributions of the Arg73 and Arg73′ residues arise more from
the side chains than the backbone atoms and are recognized as critical residues (Figs. 5 & 6).
Ignoring van der Waals contacts, electrostatic interactions from the side chain of these
residues contribute substantially to the binding free energy (Table 3). Arg73 contributes −.
51 kcal/mol to the binding affinity of 2, which originates from the guanidinium side chain,
according to the free energy decomposition.

Interestingly, the results of the energy decomposition show that most of the contribution of
Arg73 and Arg73′ for binding comes from electrostatic interaction and also appears to favor
the 3 and 4 binding, but to a lesser extent (−2.7 kcal/mol). Thus, in comparison with the Cl-
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phenyl group of 1 or 2, the missing Cl atom or the presence of a methyl group at position
para to the ligand phenyl group decreased the binding contribution of the residues in the
cavity due to the loss of a favorable electrostatic interaction between the ligand and the
Arg73 and Arg73′ side chains. This is in excellent agreement with the experimental data of
Riendeau et al.22 where the substitution of the Cl atom of the phenyl group by hydrogen or
methyl group decreased dramatically the binding affinity of the compound 1 to the
mPGES-1 enzyme.22 Therefore, these results may reasonably explain why the binding
affinity of compounds 3 and 4 to mPGES-1 is lower than that of compound 2.

More importantly, we noted some common protein-inhibitor interactions in the simulated
mPGES-1-inhibitor complexes for (compounds 2 to 4). In particular, the scaffolds of
compounds 2 to 4 are all stabilized by the π-π stacking interaction with the H72′ ring while,
on the opposite side, the carboxylate Glu77 side chain contributes unfavorably to the
mPGES-1-ligand binding. The results of the structure-based drug design associated with the
binding energy decomposition highlighted two new scaffolds (i.e. (Z)-5-benzylidene-2-
iminothiazolidin-4-one and phenyl acrylic groups) with up to 5-fold less unfavorable
interaction energy with the key Glu77 residues of the mPGES-1 binding cavity. Indeed, the
carboxylate group of Glu77 side chain added an unfavorable +4.88 kcal/mol contribution to
the binding free energy, derived mostly from the electrostatic term (ΔΔEelec = +17.33 kcal/
mol) with 2, while the same residue contributed +3.75 kcal/mol for 4, and only +1.0 kcal/
mol for 3 compound binding (Table 3 and Table S2 in Sup. Inf.). As a result, based on the
mPGES-1-inhibitor binding modes, the novel (Z)-5-benzylidene-2-iminothiazolidin-4-one
scaffold of compound 3 may be used as new starting point in future de novo drug design and
discovery efforts.

Conclusion
A robust virtual screening cascade protocol coupled with biochemical assays was applied to
identify new inhibitors of human mPGES-1. The protocol, which is a combination of large-
scale structure-based virtual screening, flexible docking, molecular dynamics simulations,
and binding free energy calculations, was based on the use of our previously modeled
trimeric structure of mPGES-1 in its open state. The combined computational and
experimental studies have led to identification of novel mPGES-1 inhibitors, including
compound 3 (IC50 = 3.5 μM) and compound 4 (IC50 = 4.6 μM), with new scaffolds. The
positive experimental results suggest that the modeled trimeric structure of mPGES-1 in its
open state and the simulated enzyme-inhibitor binding mode are ready for the structure-
based drug design and discovery. A detailed analysis of the binding structures and the
corresponding energetics reveals valuable clues for future rational design of new, more
potent inhibitors of mPGES-1 starting from the identified new hits.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structure-based virtual screening workflow
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Figure 2.
(Left) Molecular structures of known inhibitors of mPGES-1: compounds 1 and 2. (Right)
Topographical interaction model of compound 2 with mPGES-1 active site.
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Figure 3.
Diagram view of the scored ligands (21 compounds + 2 references), i.e. compounds 1 to 23,
according to the calculated binding energies (ΔGbind

GBSA) after 100-ps MD simulation in an
implicit solvent model. The references (1 and 2) and the currently identified new active
compounds (3 and 4) are indicated.
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Figure 4.
Molecular structures of novel mPGES-1 inhibitors (compounds 3 and 4) identified by virtual
screening. (IC50(3) = 3.5 μM, IC50(4) = 4.6 μM). The scaffold ((Z)-5-benzylidene-2-
iminothiazolidin-4-one) of compound 3 is also displayed.
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Figure 5.
Views of the binding mode for the MD-simulated structures of compounds 3 and 4 in the
active site of mPGES-1 trimer.
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Figure 6.
Views from two different orientations of the binding mode for the MD-simulated structure
of compound 4 in the active site of mPGES-1 trimer. Solvent accessible surface area of the
active site of mPGES-1–4 complex is also displayed.
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Table 1

The estimated binding energies (ΔGbind in kcal/mol) and experimentally determined actual inhibitory activity
of the 21 compounds selected from the virtual screening. Standard Deviation of ΔGbind is in parentheses.

Compound ΔGbind (Calc.) Inhibition % at 10 μMa IC50 (μM)

3 −42.93 (±1.21) 83% 3.5

4 −31.14 (±0.98) 83% 4.6

5 −46.32 (±1.10) 45% -

6 −46.02 (±1.11) 20% -

7 −45.00 (±0.89) 38% -

8 −42.17 (±1.30)) 15% -

9 −40.34 (±1.14) 26% -

10 −37.32 (±0.97) 28% -

11 −36.98 (±1.11) 43% -

12 −36.06 (±1.13) 31% -

13 −34.33 (±1.10) 34% -

14 −32.28 (±1.00) 50% -

15 −32.27 (±1.21) 40% -

16 −31.12 (±1.13) 41% -

17 −29.15 (±1.24) 39% -

18 −28.97 (±1.27) 10% -

19 −28.60 (±0.98) 12% -

20 −28.28 (±1.28) 36% -

21 −27.84 (±1.21) 45% -

22 −25.94 (±1.13) 16% -

23 −19.35 (±1.15) 39% -

a
The inhibition was based on the measured decrease in the concentration of the produced reaction product.
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Table 2

Components of the binding free energies (kcal/mol) of compounds 2 to 4 with mPGES-1. Standard Deviation
of ΔGbind

Calc is in parentheses. The experimental binding affinities, IC50 (μM) and ΔGbind
Exp are also

reported. ΔGbind
Exp (kcal/mol) = −RTln(Kd) ≈ −RTln (IC50), where R is the ideal gas constant and T is the

temperature in K.

(2) (3) (4)

ΔEvdW −62.51 (±0.71) −63.77 (±0.35) −47.03 (±0.62)

ΔECoul −175.55 (±0.45) −172.49 (±0.71) −163.32 (±0.84)

ΔEReac. field 174.06 (±0.58) 181.03 (±0.64) 164.92 (±0.68)

ΔECavity −11.28 (±0.10) −11.07 (±0.09) −8.44 (±0.11)

ΔGbind
Calc. −10.78 (±0.65) −9.84 (±0.58) −8.53 (±0.71)

IC50 (μM) 0.007 3.5 4.6

ΔGbind
Exp −11.13 (±) −7.44 −7.29

(±)
The experimental value for 2 is from reference:22
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Table 3

Decomposition of ΔGbind
GBSA (kcal/mol) on a per-residue basis for the interaction of compounds 2, 3, and 4

with mPGES-1 (see Sup. Inf. for the detailed results). The key residues are displayed in bold.

(2) (3) (4)

R110 −5.09 −2.12 −2.49

T129 −2.07 −0.73 −1.26

R126 −0.87 −0.85 −1.19

I125 −1.07 −1.05 −0.90

Y117 0.01 −0.27 −0.01

H72′ −0.97 −0.23 0.02

L69′ −0.97 −1.66 −0.65

M76′ −0.91 −0.87 −0.68

Y80′ −0.56 −0.51 1.05

R73′ −2.12 −1.35 −0.92

R73″ −0.12 −0.02 0.01

R73 −4.51 −2.61 −2.93

E77 4.88 0.98 3.75
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