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Abstract
The performance of several two-step scoring approaches for molecular docking were assessed for
their ability to predict binding geometries and free energies. Two new scoring functions designed
for “step 2 discrimination” were proposed and compared to our CHARMM implementation of the
linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume
(GBMV) implicit solvation model. A scoring function S1 was proposed by considering only
“interacting” ligand atoms as the “effective size” of the ligand, and extended to an empirical
regression-based pair potential S2. The S1 and S2 scoring schemes were trained and five-fold
cross validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database
(LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable
transferability in the CSARdock 2010 benchmark using a new dataset (NRC HiQ) of diverse
protein-ligand complexes. The ability of the scoring functions to accurately predict ligand
geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to
identify native poses. The parameters for the LIE scoring function with the optimal discriminative
power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit
parameters for binding free energy over a large number of protein-ligand complexes (step 2
discrimination). Reasonable performance of the scoring functions in enrichment of active
compounds in four different protein target classes established that the parameters for S1 and S2
provided reasonable accuracy and transferability. Additional analysis was performed to
definitively separate scoring function performance from molecular weight effects. This analysis
included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ
dataset where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy
atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world
drug design efforts.
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1. Introduction
The application of computational methods in drug discovery has been ever increasing with
the growth of computational power and accumulation of new experimental data. During the
past decade, various new methodologies have continued to improve in addressing the two
fundamental steps of computational drug design: docking1–3 and scoring.4, 5 Docking
generates and identifies native or native-like configurations of the receptor-ligand
complexes. Then an appropriate scoring function approximates the binding affinities using
their geometries. In a virtual screening process, these two steps are used to distinguish the
hits from a large library of small molecules. While numerous docking methods are capable
of producing near native docking poses,1–3 the development of a high-accuracy scoring
function still remains a challenge. A good scoring function has several requirements. 1) It
should be able to distinguish the near native poses from the non-native poses of a particular
ligand molecule. 2) The predicted protein-ligand binding affinities should correlate with the
experimentally derived values. 3) The scoring function should have a low computational
cost, making it applicable to a large set of ligand molecules. Ferrara et al. evaluated the
performance of 9 different scoring functions using 189 protein-ligand complexes from the
Ligand-Protein DataBase (LPDB).4 Several of the scoring functions, including CHARMm6,
DOCK-energy1, DrugScore7, ChemScore8, and AutoDock9, performed well in
distinguishing near-native poses from mis-docked poses. However, the binding affinities
predicted by most of the scoring functions correlated poorly with the experimental binding
energies. Among them, ChemScore performed the best with R2 = 0.51. Using 800 protein-
ligand complexes, Wang et al. evaluated 14 different scoring functions for their ability to
predict experimental binding affinities.5 They also concluded that the predicted and
experimental binding affinities correlated only moderately. Among the scoring functions, X-
Score10, DrugScore, Sybyl::ChemScore11, and Cerius2::PLP12 produced better correlations.
Even in an ideal case where all of the binding geometries are predicted with perfect
accuracy, an inaccurate scoring function for ranking compounds will still produce a large
number of false positives in the screening process. This impairs the utility of virtual
screening as a tool for drug discovery. Thus the development of a reliable and accurate
scoring function has been the focus of many ongoing studies.

Force-field based linear interaction energy (LIE) methods have been widely employed to
predict protein-ligand binding free energies with reasonable accuracy.13–18 Typical
implementation of a LIE estimates the binding free energy by averaging the interaction
energies of protein-ligand complexes extracted from molecular dynamics simulations. More
recently this method has been successfully applied using only single-point energy
minimizations along with high-accuracy continuum electrostatic solvent approaches (either
Poisson-Boltzmann or Generalized-Born implicit solvation). Different interaction energy
terms for van der Waals, electrostatic and solvation are scaled by empirical parameters that
are optimized using a set of protein-ligand complexes. The greatest advantage of the LIE
method compared to alchemical transformation methods (free energy perturbation and
thermodynamic integration) is that it may be applied over thousands of ligands with
dramatic differences in size and topology. In spite of this advantage, the application of the
LIE method still suffers from the fact that the parameters may not be perfectly transferable
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across significant variations in ligand classes and functional groups, and over significant
changes in binding sites.

Empirical scoring functions have been very useful for their simplicity and low
computational cost. The derivation of most standard empirical scoring functions is based on
the non-rigorous Kirkwood superposition approximation, namely that the binding affinity
can be estimated by the addition of individual interaction terms. In many of these
implementations, regression-based methods are applied to estimate the weights of the
individual terms using experimentally derived configurations and binding affinities of a set
of receptor-ligand complexes. ChemScore8, GOLD19 and AutoDock9 have been among the
most popular empirical scoring functions. In spite of their success, poor transferability of
parameters has been one of the major disadvantages of empirical scoring functions. As a
general rule, the parameters that regulate the relative contributions of the individual terms
are dependent on the training set used for the regression analysis. Several factors, including
molecular surface area, hydrogen bonds, ligand rotational entropy, ionic interactions,
hydrophobic interactions, and desolvation energies, were taken into account while
constructing empirical scoring functions.8, 9, 19 The exploration and incorporation of other
novel factors can also improve performance of empirical scoring approaches as experimental
datasets grow larger and more diverse.20

For ligands that bind with reasonable affinity, the size of the ligand correlates directly with
the protein-ligand binding affinity and thus it can be considered as a factor in the empirical
scoring scheme. Kuntz et al. surveyed the correlation between the sizes and the binding free
energies of a large number of ligands.21 They demonstrated that each non-hydrogen ligand
atom contributed a maximum of ~ −1.5 kcal/mol to the protein-ligand binding free energy.
The total binding free energy reached a limit of ~ −15 kcal/mol for larger number of heavy
atoms per molecule. They suggested that the decrease in the average contribution per atom
with increasing number of ligand atoms was due to the shielding of van der Waals and
hydrophobic interactions. Hajduk et al. deconstructed 18 highly optimized drug leads into
fragments and analyzed the consequent potency change.22 They observed a linear
relationship between the binding affinity and the ligand molecular weight. Both of these
studies suggest that as long as a given ligand is known to bind with a reasonable affinity, the
binding free energy scales as a function of ligand size. In the spirit of these observations, we
have developed a scoring function S1 based on a direct quantitative relationship between the
binding free energy and the ligand size. For large ligands that bind strongly to a receptor, the
contribution to ΔGbind from ligand atoms that are not strongly interacting with receptor
atoms are significantly reduced due to shielding effects.21 Therefore ligand atoms that form
close contacts are the major contributors to the binding free energy. Thus, in our derivation
of S1, we considered only these “interacting” ligand atoms in determining the “effective
size” of the ligand. We have demonstrated that this method is successful in removing the
non-linearity in the binding-affinity ligand-size relationship. We have further extended S1 in
order to construct an empirical pair potential-based scoring function S2, which was initially
trained and validated on a diverse set of 259 protein-ligand complexes from the Ligand
Protein Database (LPDB),23 and then additionally assessed in the CSARdock 2010
benchmark test (NCR HiQ set) (reference). In our pair interaction energy scheme S2, we
classified and counted only the directly interacting protein-ligand atomic pairs and used
them as variables in our derivation of binding free energy. S2 is entirely empirical in nature,
which is different from the knowledge-based pair potentials. Our primary objective of this
manuscript is to assess the performance of S1 and S2. In order to do this, we also compared
S1 and S2 results to other variations of these schemes (S3, S2h and S3w) in order to further
understand the origin of good or bad performance. For example, as a variation on S2, we
have also constructed S2h, which considers the interactions among only the heavy atoms.
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Many knowledge-based scoring functions are developed by systematic analyses of atomic
interactions between adjacent receptor and ligand surfaces. Using the crystal structures of 38
protein-ligand complexes, Wallqvist et al. determined the statistical preferences of the
atomic interactions between amino acids.24, 25 They constructed a model to estimate the
binding free energy based on the classifications of the atomic pairs buried in the interfacial
surface. Using the model, they could predict the binding free energies of 10 HIV protease
complexes with an accuracy of ±1.5 kcal/mol. Verkhivker et al. derived a knowledge-based
distance-dependent pair potential using 30 HIV-1, HIV-2 and SIV protein-ligand complexes
and were able to achieve a good correlation between the experimental and predicted
ΔGbind.26 DeWitte et al. developed an inter-atomic interaction-based scoring function using
a large set of protein-ligand crystal structures.27 They incorporated this knowledge-based
potential into a Metropolis Monte Carlo molecular growth algorithm, SMoG, for de novo
ligand design. DrugScore and DrugScore(CSD)28 are the most widely used and validated
distance dependent pair potential based scoring function for protein-ligand interactions.
DrugScore has been successful in identifying native poses of ligands7 as well as in
predicting their binding affinities28. As a control, we have compared our S1 and S2 scoring
schemes to a distance-dependent pair potential S3 that was derived from the same protein-
ligand dataset that was used for regression analysis to develop S1 and S2.

We have compared the performance of these scoring functions against our implementation
of LIE for several steps of the virtual drug screening process. The parameters of the LIE, S1,
S2, and S2h scoring functions demonstrate reasonable transferability in a five-fold cross-
validation for both the prediction of binding geometries and free energies. The performance
of S2 is significantly better than the performance of LIE for predicting the binding free
energies of a diverse set of 259 protein-ligand complexes from LPDB. We have evaluated
the ability of the scoring functions to discriminate the well-docked native-like poses from
the mis-docked poses and calculated the discriminative power (DP) of the scoring functions
to identify native poses. Finally, we have tested the scoring functions for their ability to
distinguish active compounds from the non-active decoy compounds in a virtual screening
process. We combined active and decoy ligands obtained from the directory of useful
decoys (DUD)29 that are specific for representative proteins from four target classes. The
results of this study demonstrate the usefulness of the S1, S2, and S2h scoring functions in
various stages of virtual screening process, especially compared to the S3 and S3w
variations.

2. Methods
2.1 Description of the data sets

259 protein-ligand complexes from the LPDB (LPDB259) are used for training and
validation of the scoring functions for their ability to predict binding free energies. The
scoring functions S1 and S2 are also examined using two new sets from the CSARdock
2010 benchmark test sets: NRC HiQ set1 consisting of 176 protein-ligand complexes and
NRC HiQ set2 consisting of 167 protein-ligand complexes. LPDB160, a subset of LPDB259
consisting of 160 complexes, is used for the calculations of discriminative power. Both of
the LPDB259 and LPDB160 datasets were randomly split into five separate groups for a
five-fold cross-validation study (see Supplementary Materials).

2.2 CHARMM-based molecular docking method
Our approach to molecular docking uses the program CHARMM3, 30, 31 for an all-atom
force field potential energy description of the protein-ligand complexes. CHARMM has
been used extensively over the past two decades to model the structure and dynamics of
biological macromolecules (proteins, DNA, RNA, lipids, small molecules, and solvent
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molecules), as well as for multi-scale modeling in structural biology32, and has been widely
validated for numerous systems. A significant advantage of using CHARMM as an engine
for molecular docking is that many different conformational searching strategies have been
implemented, such as MD and Monte Carlo (MC) simulation techniques, which can be
applied to the docking problem. The docking and the scoring methods are summarized in
Figure 1. Docking consists of a sequence of independent trials that are composed of a large
number of individual docking attempts (where a single conformation of a ligand is docked to
the protein). An independent docking trial proceeds by generating a series of random initial
ligand conformations, and then generating a series of random orientations that are docked to
the protein binding site. In our docking method, a 3-D grid is used to describe the static
conformation of the protein binding site, in which the interaction energy among 20 types of
probe atoms is calculated for every point on the grid. The granularity of this grid is 1.0 Å.
The flexible ligand is modeled with an all-atom representation including all hydrogen atoms.
The CHARMm force field originally parameterized by Momany and Rone has been
extended to describe ligands in the Ligand-Protein Database (LPDB) and was used to build
potential energy functions for all ligands.6, 23 During a docking trial, random configurations
of the flexible ligand are generated by running one thousand 2-fs time steps of MD at 1,000
K in vacuo. During this generation of alternative starting conformations, all electrostatic
interactions are turned off to avoid favorable intermolecular electrostatic interactions, which
lead to significant errors in docking. For each random conformation generated, random
rigid-body rotations about the center of mass are used as the initial orientations in the grid
representation of the binding site. The all-atom model of the ligand interacts with the
potential energy of the grid using a soft-core repulsion term for both van der Waals (VDW)
and electrostatic interactions. The soft-core repulsion term allows the ligand to penetrate into
the interior of the protein with a relatively small energetic penalty. This lowers the energy of
conformational transition barriers and facilitates a more efficient conformational search
within the 3-D grid. MD simulated annealing is used, starting from the generated ligand
conformations, to search for low energy conformations of the all-atom ligand on the grid.
The heating phase consists of four thousand 2-fs MD steps heating from a temperature of
300–700 K. The cooling phase consists of ten thousand 2-fs MD steps from 700 K back
down to 300 K. The potential energy is then minimized with steepest descent minimization
of 1,000 steps. Then, the 3-D grid potential of the protein is removed and the all-atom
representation of the rigid protein is restored. The potential energy in the all-atom protein-
ligand representation is then minimized, fixing the coordinates of the protein, using the
standard hard-core repulsion for both VDW and electrostatics with a distance-dependent
dielectric function (Rdie). Other extensive details of the setup and protocol have been
published previously.3, 33–35 Various components of the final minimized potential energy
are employed to construct CHARMm-based scores for ranking the final ligand pose. Several
of these CHARMm-based scoring functions have been previously assessed by Ferrara et al.
and compared to other widely used potential functions.4 In this manuscript, we assess six
CHARMm-based scores for geometry discrimination: Cdie(Tot) [total interaction energy
with a constant dielectric], Rdie(Tot) [total interaction energy with a distance dependent
dielectric], Rdie(Tot)+LigInt [Total Rdie interaction energy and the ligand internal energy
(angles, bonds, torsions, impropers)], GBMV(Tot) [Total interaction energy including gbmv
solvation term], LIE(Rdie) [α*(ΔVDW))+β(Δelec)], LIE(GBMV) [α(ΔVDW)+β(Δ(elec
+gbmv)+γ(Nrot)]. The initial use and implementation of LIE(Rdie) and LIE(GBMV) has
been described previously.36, 37

2.3 Binding free energy calculation using scoring schemes (step 2 discrimination)
At the end of docking, the lowest energy poses of the protein-ligand complexes were scored
by five scoring functions:
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2.31. Linear Interaction Energy: LIE(GBMV)—Energy minimization of the protein-
ligand complex was performed to construct a LIE score starting from each of the lowest
energy poses. A Generalized Born using Molecular Volume (GBMV)38, 39 method was used
to account for the solvent effect implicitly, which is the most accurate of the CHARMM
Generalized Born implicit solvent methods.38, 39 Following the minimization with the
GBMV implicit solvent, van der Waals (VDW), electrostatic (ELEC) and solvation (SOLV)
energy components were calculated for the “free” and “bound” states from the single
minimized configuration of the protein-ligand complex. A three-parameter form of the
LIE13–18 scheme was used to calculate the binding free energy (ΔGbind) from these
components:

(1)

The empirical scaling parameters α, β and γ were optimized to match the calculated ΔGbind
with the experimental ΔGbind of the LPDB complexes. Nrot represents the number of
rotatable bonds in the ligand.

2.3.2 S1 scoring function: based on effective ligand size—We developed S1
following the work of Kuntz et al.21 However, S1 is different from the function used by
Kuntz et al. in several respects. They considered the total number of heavy atoms in the
ligand. Instead, we counted the number of interacting ligand atoms (Nint) for each of the
lowest energy protein-ligand complexes. We also included the light (hydrogen) atoms in the
counting. A ligand atom was counted as “interacting” if any protein atom was found within
a sphere of a constant radius (cutoff) from it. Then the binding free energy was estimated
using the equation:

(2)

The empirical scaling parameter δ was optimized to match the calculated ΔGbind with the
experimental ΔGbind of LPDB complexes. We note that S1 has a logarithmic form which
was not used by Kuntz et al.21

2.3.3 S2 scoring function: an empirical regression-based pair potential—
Interacting atom-pairs were counted for each of the lowest energy protein-ligand complexes.
In an atom-pair, one atom belongs to the protein and the other atom belongs to the ligand.
All possible atom-pairs were considered, using a very “naïve” atom typing strategy where
each atomic atom only has one atom type. For example, there is only one atom type for
hydrogen and there is no difference between a polar hydrogen and a non-polar hydrogen.
This is in contrast with many other strategies that use complex atom typing. An atom-pair
was counted as “interacting” if the distance between the two atoms was less than a cutoff
value. The interacting atom-pairs were then classified in several groups. A scoring function
S2 was constructed to derive ΔGbind by scaling the number of a particular atom-pair type
with a weight and adding their contributions:

(3)

The empirical scaling parameters σ and λi (i = OH, CH, HH, NH, CC, ON, OO, OC, NC,
other) were optimized to match the calculated ΔGbind with the experimental ΔGbind of the
LPDB complexes. For example, NOH is the number of atom-pairs containing one O and one
H and λOH is its scaling factor. Atom-pairs that did not match with the above-mentioned 9
types were naively counted as “other” pairs. “Other” pairs include interactions involving
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halogens (F, Cl, Br), phosphorus (P), and metals (Zn, Ca, Na). We selected these 9 types of
atom-pairs considering their high frequencies of occurrence. The next most frequent pair
types in order of frequency were: HF, NN, PC, CF, PN, and PO.

In previous approaches to empirical scoring functions, it has been very common to perform
regression analysis to determine the weights for a series of protein-ligand complex
descriptor terms20 (for example, VDW energy, electrostatic energy, hydrogen bonds, SASA
descriptors, hydrophobicity, polar ligand surface, N rotatable bonds, etc), but less common
to perform regression analysis to determine the weights of contact pairs. Some examples of
widely used scoring functions that were developed using these common regression
approaches20 include ChemScore8, GOLD19 and AutoDock9. However, in most previous
contact pair potentials, it has been much more common to use a knowledge-based approach
rather than a regression approach to weight the terms. To the best of our knowledge, the
functional form of S2 is most similar to the previous work of Wallqvist et al. and DeWitte et
al., except that both of these approaches utilized statistical preferences of the atomic pair
interactions in their contact pair potential scores.24, 25, 27 S2 uses linear regression against
experimental binding affinities to determine the weights, λpair, that should be applied to each
contact pair, rather than statistical preferences. In the work of Wallqvist et al., the equivalent
of the S2 weight λpair is determined by both knowledge-based statistical probability for a
pair, Ppair, and two regression parameters (γ and δ), where λpair = γ + δ*ln(Ppair) where, the
regression parameters γ and δ are also optimized to a set of protein-ligand complex
structures to minimize the difference between predicted and experimental ΔGbind (see
Wallqvist equation 6).24 In the work of Dewitte et al., there are no regression terms and the
contact pairs are weighted only by a statistical probability for contact pairs.

2.3.4 S2h scoring function: an empirical regression-based pair potential using
heavy atoms—Following S2, another scoring function S2h was constructed that involved
the interactions between only the heavy atoms.

(4)

The constants φ and θ have similar meanings as in S2. The less-frequently occurring NN
interactions are also included in this scheme to account for all the heavy atom interactions.

2.3.5 Determination of cutoff value—The determination of the cutoff value is a crucial
step in developing the scoring functions S1, S2 and S2h. In the past, arbitrary values like 6
Å7 or 12 Å40 were used as cutoff for protein-ligand atomic interactions. Instead of adopting
a particular cutoff value, we assessed the performance of S1, S2 and S2h at different cutoff
values in order to identify the cutoff values that correspond to the best performance. For
each cutoff, the parameters of the scoring functions were optimized and the performances
were determined by the average unsigned errors (AUE) between the calculated and
experimental ΔGbind for LPDB complexes. AUE was calculated by taking an average of the
absolute values of the differences between calculated and experimental values (errors). AUE
is a measure of the average deviation of a predicted value from the experimentally observed
value. Thus, a low AUE reflects a high accuracy of the prediction. The lowest AUE was
observed at a cutoff of 3.75 Å for S1, and this cutoff value was applied for S1 in the rest of
this work. We note that the value of Nint in S1 steadily increases with the increment of the
cutoff value until it reaches the limit of the “total number of ligand atoms”. The performance
of S1 for predicting ΔGbind is optimal at shorter cutoff values. Obviously, using a cutoff
value in S1 improves the fitting of ΔGbind as compared to counting the total number of
ligand atoms, as done by Kuntz et al.21 Short contact distances (2.4 Å hydrophilic, 2.6–2.8
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Å hydrophobic) have been employed in the past to count protein-ligand contacts in various
implementations of the DOCK-contact score.41

For S2, the lowest AUE was observed at a longer cutoff of 5.25 Å. This cutoff value was
applied for S2 in the rest of the work reported here. The lowest AUE was observed for S2h
at a slightly higher cutoff value of 6.5 Å. The performance of scoring functions S1, S2, and
S2h in terms of AUE are plotted as a function of cutoff distance in Figure S1
(Supplementary Material). However, we applied the same cutoff value of 5.25 Å for S2h as
well. This should have an insignificant effect on the results due to the low variability of the
performance of S2h with different cutoff values. It is interesting to note that our optimal
cutoff of 5.25 Å for S2 is similar to the cutoff of 5.0 Å used by DeWitte et al. in their
knowledge-based contact potential in SMoG.27 DeWitte et al. proposed that by using an
interaction radius of 5.0 Å (which is similar to the correlation length of solvent ordering) the
statistical probabilities of specific contacts will include the effect of an average over the
contribution of solvation entropy to ΔGbind.27 In the spirit of this argument, it is also
possible that our regression weighted terms λpair for S2 may implicitly incorporate some
important contributions from solvation effects.

2.3.6 S3 scoring function: a distance dependent pair potential—The primary
objective of considering the scoring function S3, was to compare the regression-based
approach of S2 against the performance of a distance-dependent pair potential using the
exact same “naïve” atom typing with the exact same set of pairs, derived from the same
dataset of protein-ligand complexes. Interacting atom pairs were counted as a function of
distance for each of the lowest energy protein-ligand complexes in LPDB259, to construct
radial pair distribution functions gpair(r) using a bin size of 0.25 Å. Atom pairs that were
used to construct S2 were considered out to a distance of 6 Å. The radial pair distribution
functions are converted to a distance dependent pair potential, Wpair(r), by taking the natural
log of the ratio of the normalized pair distribution function gpair(r) for a given pair to the
normalized pair distribution function for all pairs gtotal(r),

(5)

This formulation for Wpair(r) is similar to the one that was used to construct the protein-
ligand scoring function DrugScore.7 Many others have taken similar approaches to construct
knowledge-based distance dependent pair potentials.26, 42, 43 A scoring function S3 was
constructed to approximate ΔGbind by adding the distance dependent score of each pair type
Σpair(Wpair(r)). An atom-pair was counted as “interacting” if the distance between the two
atoms was less than a cutoff distance of 6 Å:

(6)

Atom pairs that did not match with the above mentioned 9 types were naively counted as
“other” pairs. Unlike S2, the “other” atom pairs were ignored, as it was assumed that the
average gpair(r) of multiple atom types averaged together may introduce error. Distance
dependent pair potentials Wpair(r) were implemented as look-up tables using a bin size of
0.25 Å (Table S1 Supplementary Material). For unfavorable short-range contacts, each
distance dependent pair potential Wpair(r) was truncated at different short-range cutoffs to
have a maximum penalty of 2.0 kcal/mol so energetic penalties for short-range contacts are
not dominated by sparse data. All docking poses assessed by this scoring function are
assumed to be energy minimized by a hard-core CHARMM-based molecular mechanics
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energy function, so significantly unfavorable short-range repulsions should be minimal. We
carefully note that the good performance of other similar approaches to construct
knowledge-based distance dependent pair potentials in the literature is due to the use of
complex atom typing rather than our naïve atom typing, and it is expected that the naïve
atom typing may lead to a reduction in performance.26, 42, 43

2.3.7 S3w scoring function: a distance dependent pair potential including
regression weighting terms—Interacting atom-pairs were counted as a function of
distance for each of the lowest energy protein-ligand complexes in LPDB259, to construct
radial pair distribution functions gpair(r), and corresponding distance dependent pair
potentials Wpair(r) as above for S3. A very similar scoring function S3w was constructed to
approximate ΔGbind by adding the distance dependent score of each pair type, but also
including a regression-based weight λ for each distance dependent pair potential Wpair(r),
that is optimized by fitting the binding free energies, similar to S2:

(7)

The empirical scaling parameters λi (i = OH, CH, HH, NH, CC, ON, OO, OC, NC) were
optimized to match the calculated ΔGbind with the experimental ΔGbind of the LPDB
complexes (see Table S2 Supplementary Material).

2.4 Calculation of discriminative power (step 1 discrimination for binding geometry)
The scoring functions were evaluated for their abilities to discriminate between the near
native ligand poses (≤ 2 Å) and the misdocked decoy poses, following the previous work by
Ferrara et al.4 160 protein-ligand complexes were obtained from LPDB (LPDB160) along
with corresponding low-energy cluster representatives for misdocked and docked ligand
poses which were energy minimized using CHARMm and Rdie(Tot). Root Mean Square
Deviation (RMSD) was calculated for each pose to quantify its resemblance to the native
crystal structure, and the RMSD values for these docked and misdocked decoys range from
0.1 to greater than 40 Å RMSD from the native pose. The poses with RMSD ≤ 2 Å were
categorized as well-docked poses and poses with RMSD ≥ 4 Å were categorized as
misdocked poses. The Z score4, 34 was calculated for each pose using

(8)

where E is the binding energy of the protein-ligand complex, Ē is the mean and σ is the
standard deviation of the binding energy distribution of either the well-docked or misdocked
conformations. The Discriminative Power (DP)4 is defined as:

(9)

where i represents a particular protein-ligand complex and N is the total number of

complexes (=160).  and  are the Z scores of the lowest energy conformer among the
well-docked and misdocked conformations respectively. fi is the fraction of the well-docked
conformations with Z scores lower than those of the misdocked conformations. The scoring
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functions were applied to calculate the DP using the poses generated by CHARMm. A more
negative value of the DP implies better discriminative power of the scoring function.

2.5 Calculation of enrichment factors and ROC curves (step 2 discrimination)
Several scoring functions were evaluated for their abilities to separate actives from a large
set of decoys in a virtual screening process. Target specific sets of active and decoy ligands
were obtained from the “Directory of Useful Decoys” (DUD)29 for for eight protein targets:
androgen receptor, glutocorticoid receptor, thrombin, trypsin, cox1, cox2, p38α MAP
kinase, and vegfr2 kinase. The DUD target specific decoy sets contain decoys that are very
challenging for enrichment as decoys were selected based on similarity to actives in both
physical properties (molecular weight, number of hydrogen bond acceptors, number of
hydrogen bond donors, number of rotatable bonds and logP), as well as similarity of
important functional groups. Therefore, these target specific DUD decoy sets are more
challenging for enrichment than other random large databases. The p38a complex 1ouk was
recently shown to be able to provide a high docking accuracy for p38α ligands compared to
other p38a receptor conformations,36 and most results presented in this manuscript for
docking to the p38a 1ouk crystal structure conformation. Results are also presented for vgfr2
kinase ligands docking to the 2oh4 conformation, as the DUD receptor conformation was
outdated and did not include adequate electron density for the activation loop.

During the docking process, the ligand was flexible but the protein was kept rigid. For each
ligand’s top-ranked pose, ΔGbind was calculated using scoring functions with parameters
that were optimized using the LPDB complexes. Results for step 2 discrimination were
compared by calculating the scores [LIE(GBMV), S1, S2, S2h, S3, S3w ] for the top-scoring
pose identified by LIE(GBMV), as this latter scoring function had the optimal performance
in step 1 discrimination. The ligands were sorted according to their ranks (predicted ΔGbind).
The Enrichment Factors (EF) at different % of database was reported and the Receiver
Operating Characteristic (ROC) curves were constructed following44, 45:

(10)

(11)

where Actn is the number of true high affinity actives and Decn is the number of decoys in
the top n ranked compounds. Acttotal (=230) is the total number of high affinity actives and
Dectotal (=8942) is the total number of decoys in the dataset. The ROC curve is a two-
dimensional rendering of the performance of a scoring function in separating actives from
decoys. A scoring function that randomly assigns a score to a ligand without discriminating
between actives and decoys should coincide with the diagonal line. On the other hand, a
scoring function that favors the actives over decoys should have higher true positive rate
than false positive rate near the beginning of the database, producing a curve above the
diagonal line. For the sake of comparison, the performance of a scoring function in ROC
curve can be condensed in one scalar value, the area under the ROC curve (AUC). The value
of AUC can be anything between 0 and 1.0 because it measures an area under a unit square.
AUC of a perfectly random scoring function should be 0.5. A higher value of AUC
represents better enrichment of actives over decoys, such that excellent performance is
anything greater than 0.9 and modest performance is anything between 0.6 and 0.5.
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2.6 Cross validation
The robustness of the parameters of the scoring functions is examined by a K-fold cross
validation scheme. Considering the small size of the dataset, it is randomly divided into 5
subsets: group 1, 2, 3, 4 and 5. In trial 1, the scoring function parameters are optimized with
a training set consisting of the complexes in groups 2, 3, 4, and 5. Then these optimized
parameters are examined with set 1, which was not included in their training set. This
process was repeated 5 times in a similar fashion to validate all 5 sets. This analysis was
performed for both ΔGbind predictability as well as discriminative power. This cross-
validation procedure was performed for LIE(GBMV), S1, S2, and S2h, but was not
performed for S3 and S3w due to poor performance.

3. Results and Discussion
3.1 Binding free energy prediction

Table 1 shows the performance of the optimized scoring functions in predicting the
experimental ΔGbind for the LPDB259 dataset. The average unsigned error (AUE) in kcal/
mol and the best fit linear correlation coefficient (R2) were calculated for each fit (Table 1).
Table 2 shows the optimal parameters from least-squares fitting, and the predicted and
experimental values of ΔGbind are compared in Figure 2. Clearly, both in terms of AUE and
R2, the best overall performance is obtained with S2, the empirical regression-based pair
potential. The worst overall performance was for S3 and S3w, the two distance dependent
pair potentials. In terms of AUE, the scoring functions S1, S2, and S2h all outperformed
LIE(GBMV). LIE(GBMV) did have a slightly better linear correlation with the experimental
data than S1, but S1 had a lower AUE. The fact that the 1 parameter scheme S1 performs
better than one of the most accurate scoring functions, LIE, is quite surprising. This strongly
suggests that the functional form of S1 (Equation 2) correctly describes the relationship
between ΔGbind and the effective size of the ligand. The ligand size in the training set ranges
from 17 to 116 atoms. However, it is interesting that the scatter plot of experimental vs. S1-
predicted ΔGbind does not demonstrate a non-linearity for larger ligands as observed by
Kuntz et al.21 While Kuntz et al. compared experimental ΔGbind with the number of heavy
atoms in the ligand, S1 differs from their scheme in three respects: i) S1 considers only the
number of interacting ligand atoms (Nint) instead of all ligand atoms; ii) S1 includes the light
hydrogen atoms in addition to the heavy atoms; iii) S1 has a logarithmic form.

S2 performs the best among the scoring functions, with an AUE of 2.02 kcal/mol and R2 of
0.44. This performance is comparable with results obtained by Ferrara et al. who estimated
the ability of 9 scoring functions to predict experimental ΔGbind.

4 They used a set of 189
LPDB complexes (set 1a) and concluded that the performance of ChemScore8 was the best,
with an R2 value of 0.51. However, the R2 value was 0.43 when 69 complexes used to
calibrate ChemScore and Autodock were removed from the set (set 2). The success of S2
strongly suggests its ability to predict the experimental ΔGbind of protein-ligand complexes
of wide diversity. In Figure 2, two high-affinity outlier complexes can be seen for all of the
scoring functions. These two complexes are 7cpa (carboxypeptidase A) and 1stp
(streptavidin), both of which are very high affinity complexes that are known to have charge
transfer polarizability. When these two complexes are removed from the fitting and
comparison, S2 has an AUE of 1.95 kcal/mol and an R2 of 0.46 for the remaining 257
diverse LPDB complexes.

The performance of S1 for predicting binding affinity is impressive considering the fact that
it has only 1 adjustable parameter compared to 11 in S2 and 7 in S2h. A comparison among
the λi and θi for S2 and S2h respectively also suggests the relative importance of the atom-
pair types that reflect the strength of physical interactions (Table 2). Most importantly, the
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OO, ON and NN atom-pair types were the dominant attractive terms. These reflect the
strong electrostatic interactions between the polarized oxygen and nitrogen atoms. These
interactions are known to provide strong enthalpic contributions to the protein-ligand
interactions. For S2, λNH (= 0.0320) had the highest positive value and λOO (=−0.1130) had
the highest negative value, indicating the most repulsive and most attractive terms
contributing to the estimation of ΔGbind. These weights λNH and λOO for S2 can also be
rationalized from features of the S3 distance dependent pair potentials: WNH(r) did not
exhibit any strong energetically favorable minima, while WOO(r) exhibited a strong −1.6
kcal/mol minima at 3.0 Å, and a second −0.4 kcal/mol minima at 5.0 Å. For S2h, θNC
(=0.0412) had the highest positive value and θOO (= −0.1217) had the highest negative
value. Again, the S2h weight θNC can also be rationalized from the S3 distance dependent
pair potential: WNC(r) did not exhibit any strong energetically favorable minima, but is just
slightly more favorable at distances from 5.25 to 5.75 Å However, in S2 it is noteworthy that
the total contribution of each type of atom-pair interaction also depends on the number of
occurrences (NOO, etc.). Understanding the relative importance of the different atom-pair
types is further complicated by the large cutoff value of 5.25 Å. Currently S2 and S2h treat
the short-ranged and long-ranged atom-pair interactions equally, and do not incorporate
distance dependence.

The scoring functions S1 and S2 are applied to two new datasets NRC HiQ set1 and NRC
HiQ set2 to examine their abilities to predict ΔGbind. One of the desirable criteria in a
training set is a poor correlation between the experimental ΔGbind and the MW of the ligand
because it ensures that the good performance of a scoring function is not a direct
consequence of the fact that the scoring function assigns a higher score for a ligand with
high MW. The R2 values of experimental ΔGbind vs the MW of the ligand were 0.17 and
0.36 for set1 and set2, respectively. These reasonably low R2 values should make tests on
set 1 more difficult than set 2. The scoring function parameters were reoptimized for each
dataset using least square fits. Table 3 shows the performances of the scoring functions in
terms of AUE and R2 and Table 2 shows the optimized parameters. Figure 3A and B show
the correlation between the predicted and experimental ΔGbind for NRC HiQ set1 and set2,
respectively. Although, the performance of S1 was only average, S2 performed quite well
with R2 of 0.44 and 0.54 for set1 and set2, respectively. This illustrates the fact that S2 can
be trained using a completely new, diverse and difficult dataset to predict ΔGbind with good
accuracy. Later in the manuscript, we demonstrate that these parameter fits also exhibit
reasonable transferability.

3.2 Discrimination of well-docked and misdocked poses
In this section we analyze the abilities of the scoring functions in discriminating native-like
poses from decoy poses. The discriminative power (DP) of each scoring function is
calculated using LPDB160, a subset of LPDB259. Table 4 shows the calculated DP over the
LPDB160 set using the parameters optimized from LPDB259. For the CHARMm-based
scores it was found that Rdie(Tot)+LigInt < Rdie(Tot) < Cdie(Tot), which is in qualitative
and near quantitative agreement with the Ferrara et al. study.4 Compared to these three
CHARMm-based scores, both LIE variations were found to have improved discriminative
power, with LIE(GBMV) having the best DP (most negative). In comparison, applying the
equally weighted GBMV term to the total interaction energy [GBMV(Tot)] has significantly
worse discriminative power than using GBMV with the LIE weights. Figure 4A shows the
DP of the various CHARMM-based scores plotted as a function of ligand molecular weight
(MW). This comparison shows that the improved performace of Rdie(Tot) over Cdie(Tot) or
GBMV(Tot) holds up over the entire MW range. In comparing Rdie(Tot) to Rdie(Tot)
+LigInt, the largest improvement in DP for including the internal ligand internal energy
(angles, bonds, torsions, impropers) is in the higher molecular weight range, MW 400–1000,
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where the larger number of degrees of freedom can result in poses that have favorable
interaction energies but with more strained internal geometry. In general, LIE(GBMV) has
an improved DP over the entire MW range compared to LIE(Rdie), but the most significant
feature of this difference is over the range MW 200–600, where there is a significantly
improved average DP. Figure 4B compares LIE(GBMV) with three different values for the
electrostatic parameter β while the van der Waals parameter was fixed at α=0.20. This shows
that the LIE(GBMV) fit to the LPDB259 has an improved DP over the entire MW range
compared to using equally weighted VDW and electrostatics (β=0.20) or using only the
VDW interaction energy (b=0.00). Detailed examination of the DP of individual complexes
showed that the differences in average DP over the dataset are not from individual
complexes that dominate the average (e.g., as might occur if for some reason DP of an
individual complex could improve from −6 to −12).

In comparison to the CHARMm-based scores, S2 and S2h have very good average
discriminative power (Table 4), but S1, S3 and S3w all had very poor ability to predict
native-like binding poses. In comparing the performance of LIE(GBMV) with S2 and S2h
over the entire molecular weight range (Figure 4C), it is clear that LIE(GBMV) performs
better in the lower MW range, 200–500, while S2 and S2h perform better in the higher MW
range, 500–800. This may partially be rationalized by the fact that the greater number of
total protein-ligand interactions in the higher molecular weight range may be easier for the
S2 and S2h schemes to discriminate native from non-native, because strongly weighed atom
pairs may occur numerous times (multiple hydrogen bonds in for example peptidomimetic
inhibitors). In contrast, using the LIE(GBMV) it is possible for a decoy conformation with a
greater VDW interaction energy and fewer hydrogen bonds to score better. In examining
several peptidomimetic ligand complexes in the MW range of 500–800, there are several
complexes where the the two scoring functions have huge differences in DP.. For example,
[1ppk, 1epp, 1hih, 4phv, 1hps, 9hvp] have LIE(GBMV) DP values of [0.0, −0.7, −1.8, −1.9,
−3.0, −1.5] while corresponding values from S2 are [−5.3, −5.6, −15.2 −8.2, −16.1, and
−12.1]. These large improvements in DP seem to result from strong weights on pairs
involving numerous peptidomimetic ligand hydrogen bonds. Another factor that may
contribute to the improved performance of S2 and S2h over LIE(GBMV) is the neglect of
internal ligand energy (angles, bonds, torsions, impropers) in the LIE(GBMV) score.

The performance of S1 was poor for prediction of binding pose geometry, which can be
partially rationalized by the fact that the number of close contacts (distance < 3.75 Å) for
low energy, non-native ligand poses were found to be similar to the number for native poses.
However, we have shown that this metric of close contacts has a greater power to
discriminate between different ligands in an enrichment study (see below). We attribute the
poor performance of our S3 and S3w scoring functions to the fact that our dataset is very
small. Previous work on the performance of DrugScore has shown that sparse datasets result
in lower predictive power using this formalism, and the developers have demonstrated
impressive performance improvements with newer and very large datasets of protein-ligand
complexes.28 However, we have also demonstrated that the S2 functional form was able to
retrieve more predictive power with the same sparse dataset. The good performance of S2
compared to LIE(Rdie) and LIE(GBMV) was not expected, especially since there is no
direct incorporation of any implicit solvation information. However, it is likely that some
empirical information regarding solvation is contained in the fit for the parameters.

The calculation of DP using the parameters optimized with LPDB259 as well as with
LPDB160 are shown in Table 5. It is interesting that the DP of S2 and S2h were slightly
better with the parameters optimized with LPDB259 than with LPDB160. This suggests
that, for these schemes, the parameters that are optimized to reproduce the ΔGbind might not
be the best parameters for DP calculation. In this particular case, the parameters optimized

Rahaman et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to reproduce the ΔGbind of a larger data set (LPDB259) might produce better DP for a subset
(LPDB160). This was also true for LIE, but there was not much difference between the two
sets of optimized LIE α and β parameters. However, the best parameters for LPDB259
(α=0.2058, β=0.0517) give a slightly better DP than the best parameters for LPDB160
(α=0.2444, β=0.0504). The largest difference in the LIE fit to LPDB259 and LPDB160 was
in the LIE parameter γ, which does not affect the calculation of DP, as this parameter only
contributes to a step 2 discrimination between two ligands with different numbers of
rotatable bonds.

3.3 Cross-validation and parameter transferability
LPDB259 is used to cross validate the ability of the scoring functions to predict ΔGbind.
Table 6 summarizes the results of this analysis. In general, all the scoring functions
performed well when applied to the validation set using the parameters optimized using the
training set, demonstrating the robustness of the parameters. The average performance of the
5 trials was only slightly worse than the performance when optimizing the parameters with
the full dataset. During cross-validation the optimized LIE parameters for the 5 trials
remained quite close to (α=0.20, β=0.05), and the parameter γ had the widest variation, from
0.056 to 0.027 (Table 2). Of the 11 parameters for S2, weights λHH and λCH and λCC are the
least robust (λHH even changes sign), but they also have some of the smallest values. The
lack of robustness for λHH may also be partially rationalized from features of the S3 distance
dependent pair potentials: WHH(r) does exhibit a moderately strong 1.0 kcal/mol minimum
at 2.5 Å, but this pair potential trails off to zero by 4.0 Å. Thus, the observed variation in
λHH across training sets may reflect noise due to the long S2 cutoff distance (5.25 Å), and a
shorter cutoff distance for this pair may improve performance. In comparison, the S2h
parameters are more robust presumably because the heavy atom contacts typically have
minima in the range of 4.0 to 5.25 Å (Figure S2 Supplementary materials).

LPDB160 is used for the cross validation of the scoring functions for discriminative power.
Table 7 summarizes the results of this analysis. The scoring functions retain their
discriminative power when the parameters optimized with the training set are applied to the
validation set. The average DP of the 5 trials is comparable to the DP obtained with the
parameters optimized with the full set. This demonstrates that the scoring function
parameters are robust for DP calculations. Of these four scoring functions, LIE(GBMV) was
found to have the most robust discriminative power (DP) during cross validation, and we
conclude that out of all of the scoring functions assessed in our study, LIE(GBMV) has the
best overall DP. The DP of S2 and S2h during cross validation are still quite good and are
comparable to the CHARMM-based scoring function Rdie(Tot)+LigInt, which was found to
have the best DP in the Ferrara et al study.4

As the parameters for LIE(GBMV) seemed to be quite similar over the cross-validation for
prediction of ΔGbind, and given the unexpectedly poor DP of the GBMV(Tot) scoring
function, we calculated the DP for the LPDB160 dataset as a function of the LIE
electrostatic parameter β (Figure 5), while keeping the van der Waals parameter α fixed at
0.20 (which is the average value of α from cross validation). For LIE(Rdie) the DP
improved (became more negative) linearly as the electrostatic contribution was reduced
from β=0.20 down to the minimum at β=0.02 (Figure 5A). Compared to all the other scoring
functions in this work, LIE(Ride) still retains a very good DP over this entire range of β. For
LIE(GBMV) the DP was quite poor with the full electrostatic contribution (β=0.20), but
improved substantially as the electrostatic contribution was reduced down to the minimum
at β=0.05. It was quite striking that the LIE parameters (α=0.20, and β=0.05), which provide
the maximum discriminative power (most negative DP), also are very similar to the
optimized LIE parameters for ΔGbind over 259 LPDB complexes (α=0.2058, and β=0.0517).
Basically the same optimal parameters were arrived at from two completely independent
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free energy assessments, one being for geometry discrimination, and one for binding free
energy discrimination. We also calculated the DP of LIE(GBMV) for the five random cross
validation groups from the LPDB160 dataset as a function of the LIE electrostatic parameter
β (Figure 5B), and demonstrate that for each of these cross-validation groups, the most
negative DP value always occurred for β in the range from 0.03 to 0.07. The most negative
DP was found at β=0.06, 0.04, 0.05, 0.03 and 0.07 for groups 1 through 5, respectively.
These values are also in reasonable agreement with other recent CHARMM-based LIE
implementations that have been reported by Caflisch and coworkers (kinases: α=0.2898, and
β=0.0442)15 and Karplus and coworkers (α=0.36, and β=0.16).46 They are also close to the
values from another LIE(GBMV) implementation using molecular dynamics rather than
energy minimizations by Armen et al. (α=0.165, and β=0.037).36 The LIE scheme
parameters are known to have small differences when optimized using different proteins.
For kinases the reported values are α=0.2898, and β=0.044215 while for aspartic proteases
they are α=0.274, and β=0.180.47 We observe the same characteristics here, with slight
differences of the values for α, β and γ when optimized using HIV protease, trypsin, or p38α
complexes (data not shown).

The results of the cross validation as shown in Table 6 and Table 7 suggest the robustness of
LIE(GBMV), S1, S2 and S2h. However, it is evident that the LIE(GBMV) parameters
change when optimized for specific receptors, likely due to the dominance of different types
of protein-ligand interactions in different types of complexes. In order to explore
comparable behavior in the other schemes (S1, S2 and S2h), we optimized them to
reproduce the experimental ΔGbind of 28 HIV PR, 25 trypsin and 12 p38α MAP kinase
complexes as separate groups as well as together. The S1 parameter δ, optimized using the
full data set was comparable to its values optimized using the individual complex type.
Similar to LIE(GBMV) parameters, the parameters of S2 and S2h changed moderately when
optimized for a specific receptor (data not shown).

The transferability of the S1 and S2 parameters were further investigated using the NRC
HiQ datasets. The parameters optimized using LPDB259 were transferred to the NRC HiQ
set1 and set2 datasets and the performance of S1 and S2 were examined (Table 3). The
performance of S1 remained the same, both in terms of AUE and R2; the performance of S2
deteriorated. This indicates that the parameters of S2 might not be transferable between two
completely different sets of protein-ligand complexes (i.e. LPDB and NRC HiQ here).
However, reoptimization of the parameters using a particular dataset produced good
performance of S2. The NRC HiQ set1 and set2 were constructed in part as a way to
benchmark the transferability of parameters, particularly for a regression based scoring
function like S1 and S2 (reference). Thus, we transferred the parameters optimized using
HiQset1 and applied to HiQset2 and vice versa (Figure 3C and D). Table 3 shows that the
performance of S1 remains the same if the parameters are exchanged. The performance of
S2 deteriorates both in terms of AUE and R2 values. This suggests that the S1 parameter is
absolutely transferable and S2 parameters are reasonably transferable between these two
datasets. Because the NRC HiQ set1 and set2 are proposed as benchmarks for the test of
scoring function parameter transferability, the transferability of S1 and S2 parameters can be
compared directly with those of other standard scoring functions.

We have further analyzed the size dependence of S1 and S2 by comparing the predicted and
experimental ligand binding efficiencies using a narrow dataset consisting of ligands with
sizes relevant to drug discovery. The range of 17–35 heavy atoms is where it is most
important to calculate ligand efficiencies with high accuracy in order to have an impact on
real world drug design optimization and fragment based design efforts. Protein-ligand
complexes with ligands containing 17–35 heavy atoms (HA) were separated from NRC HiQ
set1 and set2 to construct two smaller datasets. In these two new subsets of set1 and set2
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there was a very low correlation between the experimental ΔGbind and the MW of the
ligands (R2 = 0.03 and 0.05 for set1 and set2, respectively). The experimental ligand binding
efficiencies were calculated by dividing experimental ΔGbind by HA and the predicted
ligand binding efficiencies were calculated by dividing S1 or S2 scores by HA. For the new
subset of NRC HiQ set1, the R2 between S1 ligand efficiency and experimental ligand
efficiency was 0.22 and the R2 between S2 ligand efficiency and experimental ligand
efficiency was 0.62. These values for the new subset of NRC HiQ set2 were 0.23 and 0.44,
respectively. These results clearly show that the good performance of these scoring
functions, especially S2 are not due to their dependencies on the ligand size but due to their
abilities to measure the strength of specific protein-ligand interactions. This analysis has
been extended to address the issue of parameter transferability as well. The parameter
optimized using the two datasets were interchanged and the same procedure as before was
followed. This deteriorated the R2 values. For NRC HiQ set1, the R2 for S1 and S2 were
0.22 and 0.39, respectively. For set2, they were 0.23 and 0.33, respectively. These suggest
that the scoring functions, especially S2, have reasonable accuracy in predicting ligand
binding efficiencies even with the transferred parameters (Figure 6). These tests confirm the
robustness of these scoring functions, which are ligand size independent and transferable
between different datasets.

3.4 Enrichment of actives over decoys
Finally, we investigated the performance of the scoring functions in a virtual screening
process (see Methods section for details). In this virtual screening experiment, we used the
scoring function with the best discriminative power, LIE(GBMV), to identify the lowest
energy binding poses. Then for each ligand, the single lowest energy pose was used to
calculate the S1, S2, and S3 scores to rank the compounds. The parameters trained with
LPDB259 were used, and in addition, the S2 parameters trained from NRC HiQ set 1 and set
2. In this way, we assessed the transferability of the S2 parameters in the context of
enrichment performance over 8 protein targets representing 4 different target classes. We
calculated Receiver Operator Characteristic (ROC) curves and calculated the area under the
curve (AUC) and enrichment properties for each target shown in Table 8. The results of the
enrichment studies summarized in Table 8 represent a single consistent two-step scoring
strategy applied to all target classes. It is clear that specific parameter sets have improved
performance for individual targets, and it would be possible to optimize performance for any
specific target. As in the “Directory of Useful Decoys” (DUD)29 manuscript the best
enrichment results were obtained in the nuclear hormone receptor and cyclooxygenase target
classes, likely because these targets are characterized by more buried and lower dielectric
binding sites.

Using the best-fit parameters to the LPDB database, overall the best performance was found
with S2, although S2 did not perform well for serine proteases. For the other six targets, S2
performed as well or outperformed LIE(GBMV). For serine proteases and p38α, S1 was
able to outperform LIE(GBMV). S3 showed the worst overall performance, although still
showing a reasonable performance for the less challenging targets. Good performance was
also observed for the S2 scoring function with parameters optimized for the NRC HiQ set 1
and set 2 datasets. A noteworthy example is for trypsin where the parameters optimized for
NRC HiQ set 1 and 2 performed better than for S2 optimized to the LPDB. Other than this
example, the S2 scoring function showed a reasonable transferability of performance among
the target classes. It is interesting to note that the S2 parameters optimized to the NRC HiQ
set 1 exhibited better performance in the nuclear hormone receptor and cyclooxygenase
targets (more buried and lower dielectric) while the S2 parameters optimized to set 2
exhibited better performance in the kinase targets.
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It is likely that the poor enrichment in serine proteases was a result of non-optimal LIE
parameters in prediction of binding geometry. As mentioned previously, the LIE scheme
parameters are known to have small differences when optimized using different proteins.
Other recent CHARMM-based LIE literature values reported for kinases were α=0.2898,
and β=0.044215 while for aspartic proteases they were α=0.274, and β=0.180.47 In this
manuscript, it was determined that the LIE parameters with the optimal discriminative
power over the LPDB160 datset were (α=0.20, and β=0.02) for LIE(Rdie) and (α=0.20, and
β=0.05) for LIE(GBMV). Eleven trypsin crystal structures of the LPDB160 dataset were
analyzed as a subset, and the LIE parameters with the optimal discriminative power for
trypsin were found to be (α=0.20, and β=0.11) for LIE(Rdie) and (α=0.20, and β=0.08) for
LIE(GBMV). These parameters both reflect that a stronger electrostatic component weight
was required for correct determination of ligand geometry. The DUD dataset for trypsin was
then redocked using these LIE(Rdie) and LIE(GBMV) parameters, and enrichment
properties were shown to improve, due to more accurately protein-ligand geometries.
Rescoring the new trypsin DUD dataset with S2 scoring function parameters optimized for
the HiQset1 and HiQset2 datasets, the ROC (AUC) improved to 0.64 and 0.61 for HiQ set 1
and 2 parameters respectively. This demonstrates that the same S2 scoring functions with
transferred parameters from HiQ were able to show improved enrichment performance when
the protein-ligand geometries were determined with greater accuracy.

3.5 Scoring function performance over high and low molecular weight ranges
Specifically for the p38α dataset, it was important to consider the molecular weight range of
both the actives and the decoys (Figure 7A). In our enrichment studies, the true enrichment
factor and Receiver Operator Characteristic (ROC) consider only actives and decoys in the
same MW range of 320–450, in order to avoid artificial enrichment that may occur from
actives that are higher in MW than the decoys.48 It is well known in enrichment studies that
the MW composition of the actives and decoys is crucial to the enrichment and ROC
properties, mainly because high MW actives or decoys can easily have lower scores than
both actives and decoys of lower MW.48 We have also split the dataset into two MW groups
(Figure 7B) to consider each scoring function’s ability to enrich actives in the low MW
range (320–375) and in the high MW range (375–450). The DUD decoys selected for p38a
have similar physical properties but different topology to p38a actives, so this represents a
challenging dataset for enrichment.

Early enrichment of the actives was assessed by plotting the enrichment factor (EF) at
different % of the database (Figure 8). For the entire MW range of 320–450 (Figure 8A), the
S1 and the S2 scoring function had by far the best enrichment over the initial 10% of the
database. For both S1 and S2 the EFs ranged from the maximum theoretical enrichment of
59, where S1 had an average EF of 19.8 over the initial 1% of the database, and S2 had an
average EF of 12.1. The next best scoring function for early enrichment was S3, but it had a
maximum EF of only 6.6 and an average EF of 1.6 over the initial 1% of the database. The
next best scoring function for early enrichment was LIE(GBMV), but it had a maximum EF
of 4.2 and an average EF of 1.9 over the initial 1% of the database. For the low MW range
of 320–375 (Figure 8B), the S2 scoring function had by far the best enrichment over the
initial 10% of the database, with EF ranging up to the maximum theoretical value of 46 and
an average EF of 14.8 over the initial 1% of the database. In this low MW range, over the
initial 1% of the database S1, LIE(GBMV) and S2h were the next best with average EF over
the top 1% of 5.8, 3.5, and 2.5 respectively. For the high MW range of 375–450 (Figure 8B),
the S1 scoring function had by far the best enrichment over the initial 10% of the database,
where the EFs ranged up to the maximum theoretical enrichment of 88. In this higher MW
range, S1 had an average EF of 40.3 over the initial 1% of the database, and S2 had an
average EF of 7.1. The average EF over the top 5% of the database is reported in Table 9,
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which also demonstrates that S1 and S2 have the best overall performance for early
enrichment.

ROC curves are also constructed to assess the performance of these scoring functions
(Figure 9). S2 retained the best enrichment of the actives throughout the database (Figure
9A). S1, LIE(GBMV) and S3w are all closer to the diagonal (random) line, indicating
performance that is not much better than random at various ranks in the database. The ROC
curve of S3 was below the diagonal (random) line, indicating poor enrichment where the
sign of the scoring function is actually incorrect, scoring decoys better than actives in a
systematic way. The area under the ROC curve (AUC) is calculated from the ROC curves of
the scoring functions and compared with each other (Table 9). For p38α over the entire MW
range 320–450, the performance of S2 was the best (AUC=0.75) followed by S2h
(AUC=0.65), and then S1 (AUC=0.59). In the low MW range S2 is the best by far
(AUC=0.77), followed by S2h (AUC=0.66). In the high MW range S1 is the best
(AUC=0.80), followed by S2 (AUC=0.73). The LIE(GBMV) scoring function had improved
performance in the high MW range (AUC=0.60), compared to the low MW range (0.57).
For the two distance dependent pair potentials, the overall performance was quite poor, but
S3w exhibited improved performance in the low MW range (AUC=0.62). Although data is
only presented for docking the actives against the DUD dataset to one p38a crystal structure
conformation for clarity, our results docking to several other p38a crystal structure
conformations (1a9u, 1ouk, 1oz1, 1w84, 1kv2, and 1w83) also verify a similar assessment
of the performance of S1 and S2.

These observations were also found to hold true if the entire p38α dataset was re-ranked
with different step 1 scoring functions to identify the single lowest energy scoring poses, and
then the step 2 scores were recalculated and re-ranked. This procedure was performed for
the p38α dataset with the three best performing CHARMM-based scoring for step 1
geometry discrimination [Rdie(Tot), LIE(Rdie), and LIE(GBMV) ], and the overall
conclusions regarding step 2 performance did not change (Supplementary Table S3). In this
analysis, we also assessed enrichment using the entire low MW range of the actives
including MW 200–320, and were able to show that S2 also had the best performance in
separating low MW actives (MW 200–375) against the range of low MW decoys (MW 320–
375) (Supplementary Table S3). The overall conclusion remains that S2 has an improved
ability to separate actives from decoys over a large MW range, including the low MW range,
while S1 exhibits optimal ability to separate actives from decoys in the higher MW range.
This observation was also similar for the other target classes. One reason for improved
performance of S1 in the higher MW range may be that for higher MW ligands, it is likely
that decoys have a larger percentage of non-interacting atoms than actives, and thus the
shorter distance cutoff of S1 is more discriminating than the larger cutoff for S2. On the
other hand, in the lower MW region more of the total ligand surface may participate in
favorable and specific contacts, and thus the short distance contact is not sufficient to
discriminate as actives are now more similar to decoys in the number of interactions that
they contribute.48

3.6 Separation of scoring function performance from molecular weight effects
It is very important to separate the performance of a scoring function from its correlation
with MW effects. When comparing the predicted ΔGBind to experimental ΔGBind from
protein-ligand crystal structures, it is important that a scoring function perform well not only
when there is a strong correlation between experimental ΔGBind and MW, but also when
there is very low correlation. We demonstrated a reasonable performance for S1 and S2 in
subsets of NRC HiQ datasets that has very low correlation of ΔGBind and MW in section
3.3, where it was straightforward that the scoring function outperformed MW effects. As
mentioned previously, in critical analysis of enrichment studies, the MW composition of a
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data set is very important. Artificial enrichment may result from a large number of high MW
actives competing against a much larger number of low MW decoys.48 On the other hand, in
a different dataset lower values of ROC (AUC) may result from the scores of many high
molecular weight decoys competing against a large number of low molecular weight actives.
In an ideal world, these low MW actives should be able to be separated from high MW
actives, but this does not always happen even using the best scoring functions. One strategy
that can definitively separate the effects of MW composition of a dataset from the true
performance of a scoring function is to compare the enrichment of actives against only
decoys of identical MW.

Ideally, it would be possible to create a set of decoys that have the same valence of an
active, but with a different topology and identical MW. In analyzing our DUD decoy sets,
we found that there were an insufficient number of decoys with the identical valence as the
actives. However, we performed a test that was very similar to this. In each target specific
DUD sets, we identified groups of 5 or more decoys that had the same valence (identical
MW and molecular formula). These groups of similar decoys varied in size from 5 to up to
40 decoys. The enrichment of actives against these sets of similar decoys was calculated
within very narrow molecular weight ranges (bins of 5 daltons). In this way, the enrichment
of active ligands was compared against groups of similar decoys with nearly identical MW.
The ROC (AUC) for each of these bins for the various scoring functions were then
compared to merely sorting the bins by MW. This analysis is presented for p38a (Table 10)
and cox2 (Table 11) as these datasets were the largest and had the most DUD decoys. The
results demonstrate that S1 and S2 both clearly are able to separate actives out of these
groups of decoys independent of MW effects. This result is robust for both p38a and cox2
over a large MW range: 330–425 (where it was possible to perform this analysis). Overall, it
is clear that S2 had the best performance in this test. However, these results are also a
convincing demonstration that the performance of S1 to separate actives from decoys is
independent of MW effects.

4. Conclusions
The performance of several two-step scoring approaches for molecular docking were
assessed for their ability to predict binding geometries and free energies. Two new scoring
functions, S1 and S2, designed for “step 2 discrimination” were compared to CHARMM-
based scoring functions including two LIE variations. The LIE(GBMV), S1, S2, and S2h
scoring functions were trained and five-fold cross-validated on a diverse set of 259 protein-
ligand complexes from the Ligand Protein Database (LPDB). The parameters for the LIE
scoring function with the optimal (DP) for geometry were also very similar to the best-fit
parameters for binding free energy over a large number of protein-ligand complexes.
Although it is well-known that LIE fits to individual receptor-ligand series can dramatically
improve LIE model performance, the convergence of LIE parameters in independent
assessments for step 1 and step 2 discrimination indicate that these are the optimally
transferable parameters for virtual screening with widely diverse ligands and receptors.
However despite this convergence of parameters for LIE(GBMV), both the S1 and S2
scoring functions were also shown to demonstrate improved prediction of binding free
energy and separation of actives from decoys compared to LIE(GBMV). The transferability
of the S1 and S2 parameters was established using several assessment strategies: prediction
of binding affinity (using cross-validation and transfer of optimized parameters), prediction
of ligand efficiency, and separation of active compounds from decoys.

The performance of these scoring functions was also assessed over various MW ranges, and
analysis was performed to separate scoring function performance from MW effects. Of all of
the scoring functions, LIE(GBMV) had the best DP in the lower MW range, 200–500, while
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S2 and S2h show improved performance in the higher MW range, 500–800. The S1 scoring
function was shown to have improved separation of actives in the higher molecular weight
range, and S2 has superior performance over the entire molecular weight range and in the
low molecular weight range (MW 200–375). This study shows how a two-step scoring
function scheme can be trained and optimized for performance in specific MW ranges of
interest. This approach would be applicable for improved accuracy in fragment docking in
the low MW range or for efficient virtual screening for high MW hits from large databases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of CHARMM-based molecular docking protocol and scoring functions used for
step 1 (geometry) and step 2 (binding free energy) discrimination.
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Figure 2.
Comparison of predicted and experimental ΔGbind (kcal/mol) for six scoring functions
optimized for LPDB259: (A) LIE(GBMV), (B) S1, (C) S2, (D) S2h, (E) S3, (F) S3w.
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Figure 3.
Comparison of predicted and experimental ΔGbind (kcal/mol) for the S2 scoring function for
NRC HiQ data sets. (A) S2 parameters optimized on HiQ set 1 (B) S2 parameters optimized
on NRC HiQ set 2 (C) S2 rescore set 1 (with parameters optimized from set 2) (D) S2
rescore set 2 (with parameters optimized from set 1).
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Figure 4.
Average discriminative power (DP) of various scoring functions as a function of molecular
weight. DP has been averaged over LPDB entries using a 50 dalton window of ligand size,
and interpolated for windows with less than three LPDB entries to produce a smooth plot.
(A) DP of several CHARMM-based scoring functions compared to LIE(Rdie) and
LIE(GBMV) fit to the LPDB259. (B) DP of LIE(GBMV) with three different values of the
electrostatic parameter β, while the van der Waals parameter is fixed at α=0.20. (C) DP of
LIE(GBMV), S1, S2, S2h, S3, S3w all fit to LPDB259.
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Figure 5.
Discriminative power (DP) of LIE scoring functions as a function of the LIE electrostatic
parameter β, keeping the van der Waals parameter α fixed at 0.20. (A) DP for LIE(GBMV)
and LIE(Rdie) over the LPDB160 dataset. (B) DP for LIE(GBMV) calculated across 5 cross
validation subgroups of LPDB160.
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Figure 6.
Comparison of predicted and experimental ligand efficiencies for subsets of the NRC HiQ
data sets containing 17–35 heavy atoms. (A) S1 rescore NRC HiQ set 1 (parameters
optimized on set 2) (B) S1 rescore NRC HiQ set 2 (parameters optimized on set 1 (C) S2
rescore set 1 (with parameters optimized from set 2) (D) S2 rescore set 2 (with parameters
optimized from set 1). For these data subsets there is a very low correlation between binding
affinity and molecular weight.
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Figure 7.
Distribution of the molecular weight (MW) for p38a MAP kinase active ligands and decoy
ligands taken from the DUD. (A) Distribution of the entire MW range of actives from 200–
700 using 10 dalton bins. DUD decoys only cover the range MW 320–450. (B) Distribution
of the MW range from 200 to 450 using 5 dalton bins. The molecular weight range of 320–
450 is shown broken into two groups for Enrichment Factor and ROC curve analysis: low
MW range (320–375) and high MW range (375–450).
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Figure 8.
Early enrichment for the top 10 percent of the database. EF factors are shown for the six
scoring functions over three molecular weight (MW) ranges: (A) MW: 320–450 which
reflects the true total enrichment over the database (B) low MW range from 320–375 (C)
high MW range from 375–450.
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Figure 9.
Receiver Operating Characteristic (ROC) curve for database. ROC curves are shown for the
six scoring functions over three molecular weight (MW) ranges: (A) MW: 320–450 which
reflects the true total enrichment over the database (B) low MW range from 320–375 (C)
high MW range from 375–450. ROC of random is shown as a black line on the diagonal.
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Table 1

Comparison of predicted and experimental ΔGbind for different scoring functions optimized to the LPDB259
dataset.

Scoring Function AUE (kcal/mol) R2

LIE (GBMV) 2.86 0.32

S1 2.26 0.29

S2 2.02 0.44

S2h 2.17 0.35

S3 4.16 0.25

S3w 3.64 0.27
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Table 4

Discriminative power (DP) for the LPDB160 test set of scoring functions S1, S2, S2h, S3, S3w, trained on
LPDB259, compared to various CHARMm based scoring functions: Cdie(Tot) [total interaction energy with a
constant dielectric], Rdie(Tot) [total interaction energy with a distance dependent dielectric], Rdie(Tot)+LigInt
[Total Rdie interaction energy and the ligand internal energy (angles, bonds, torsions, impropers)],
GBMV(Tot) [Total interaction energy including gbmv solvation term], LIE(Rdie) [α*(ΔVDW))+β(Δelec)],
LIE(GBMV) [α(ΔVDW)+β(Δ(elec+gbmv)+γ(Nrot)].

Scoring Function DP

Cdie(Tot) −0.57

Rdie(Tot) −1.21

Rdie(Tot)+LigInt −1.40

GBMV(Tot) −0.53

LIE (Rdie) −1.53

LIE (GBMV) −1.62

S1 −0.12

S2 −1.64

S2h −1.52

S3 −0.19

S3w −0.18
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