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Abstract

The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex (ACC) is central to 

higher cognitive function and numerous clinical disorders, yet its basic function remains in 

dispute. Various competing theories of mPFC have treated effects of errors, conflict, error 

likelihood, volatility, and reward, based on findings from neuroimaging and neurophysiology in 

humans and monkeys. To date, no single theory has been able to reconcile and account for the 

variety of findings. Here we show that a simple model based on standard learning rules can 

simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets 

many known effects and suggests a new view of mPFC, as a region concerned with learning and 

predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural 

level is then seen as a result of evaluating the probable and actual outcomes of one's actions.

The medial prefrontal cortex (mPFC) is critically involved in both higher cognitive function 

and psychopathology1, yet the nature of its function remains in dispute. No one theory has 

been able to account for the variety of mPFC effects observed with a broad range of 

methods. Initial ERP findings of an error-related negativity (ERN)2, 3 have been 

reinterpreted with human neuroimaging studies to reflect a response conflict detector4, and 

the conflict model5 has been enormously influential despite some controversy. Nonetheless, 

monkey neurophysiology studies have found mixed evidence for pure conflict detection6, 7 

and have instead highlighted reinforcement-like reward and error signals7–11. Theories of 

mPFC function have multiplied beyond response conflict theories to include detecting 

discrepancies between actual and intended responses12 or outcomes7, 13, predicting error 

likelihood14, 15, detecting environmental volatility16, and predicting the value of 

actions17, 18. The diversity of findings and theories has led some to question whether the 

mPFC is functionally equivalent across humans and monkeys19, despite the fact that 

monkey fMRI reveals similar effects in mPFC relative to comparable tasks in humans20. 

Thus a central open question is whether all of these varied findings can be accounted for by 

a single theoretical framework. If so, the strongest test of a theory is whether it can provide a 
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rigorous quantitative account and yield useful predictions. In this paper we aim to provide 

such a quantitative model account.

The model begins with the premise that the medial prefrontal cortex (mPFC), and especially 

the dorsal aspects, may be central to forming expectations about actions and detecting 

surprising outcomes21. A growing body of literature casts mPFC as learning to anticipate the 

value of actions. This requires both a representation of possible outcomes and a training 

signal to drive learning as contingencies change16. New evidence suggests that mPFC 

represents the various likely outcomes of actions, whether positive9, negative14, 15, or 

both22, 23, and signals a composite cost-benefit analysis24, 25. This proposed function of 

mPFC as anticipating action values17, 18 is distinct from the role of orbitofrontal cortex in 

signaling stimulus values26. For mPFC to learn outcome predictions in a changing 

environment, a mechanism is needed to detect discrepancies between actual and predicted 

outcomes and update the outcome predictions appropriately. A number of studies suggest 

that mPFC, and anterior cingulate cortex (ACC) in particular, signal such 

discrepancies7, 10, 27, 28. Recent work further suggests that distinct effects of error detection, 

prediction and conflict are localized to the anterior and posterior rostral cingulate zones29.

Given the above, we propose a new theory and model of mPFC function, the predicted 

response-outcome (PRO) model (Fig.1a), to reconcile these findings. The model suggests 

that individual neurons generate signals reflecting a learned prediction of the probability and 

timing of the various possible outcomes of an action. These prediction signals are inhibited 

when the corresponding predicted outcome actually occurs. The resulting activity is 

therefore maximal when an expected outcome fails to occur, which suggests that mPFC 

signals in part the unexpected non-occurrence of a predicted outcome.

At its core, the PRO model is a generalization of standard reinforcement learning algorithms

1

that compute a temporal prediction error, δ, reflecting the discrepancy between a reward 

prediction, V, on successive time steps t and t+1, and the actual level of reward, r. γ is a 

temporal discount factor (0< γ<1) which describes how the value of delayed rewards is 

reduced.

The PRO model builds on reinforcement learning as a representative learning law, but this 

should not be taken to imply that mPFC does reinforcement learning per se. The PRO model 

differs from standard reinforcement learning algorithms in four ways. First, in contrast to 

typical reinforcement learning algorithms, the PRO model does not primarily train stimulus-

response (S-R) mappings. Instead, it maps existing action plans in a stimulus context to 

predictions of the responses and outcomes that are likely to result, i.e. response-outcome 

learning. This change to standard reinforcement learning learning conforms well to reports 

of single units in macaque ACC which learn action-outcome relationships10, 18, 30. Second, 

instead of a typical scalar prediction of future rewards and scalar prediction error, the PRO 

model implements a vector-valued prediction, Vi, and prediction error, δi, reflecting the 

hypothesized mPFC role in monitoring multiple potential outcomes, indexed by i. This 

allows multiple possible action outcomes to be predicted simultaneously, each with a 
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corresponding probability. Previous influential models of mPFC13, 31, similarly derived 

from reinforcement learning, employ scalar value and error signals that represent, 

respectively, a prediction and subsequent prediction error of reward. In these models, and 

reinforcement learning in general, positive value and error signals represent affectively 

positive outcomes, while negative value and error signals represent affectively negative 

outcomes. In contrast, the PRO model maintains separate predictions of all possible 

outcomes, including both rewarding and aversive outcomes. The signed vector prediction 

error, then, represents unexpected occurrences (positive) or unexpected non-occurrences 

(negative), regardless of whether these events are rewarding or aversive, and the purpose of 

these prediction error signals is to provide a training signal to update the predictions of 

response outcomes. Third, rather than the typical reward signal used in standard 

reinforcement learning, the model uses a vector signal γi which reflects the actual response 

and outcome combination, again whether good or bad. This enables the PRO model to 

predict response-outcome conjunctions in proportion to the probability of their occurrence, 

similar to the Error Likelihood model15, with the addition that the PRO model learns 

representations of both rewarding as well as aversive events (for additional detail, see 

supplementary material). Fourth, and most crucial to the model's ability to account for a 

wide range of empirical findings, the model specifically detects the rectified negative 

prediction error defined as when an expected event fails to occur (whether good or bad), for 

example a reward that is unexpectedly absent. To detect such events, the model computes 

negative surprise, ωN, which reflects the probability of an expected outcome that 

nevertheless did not occur (i.e. unexpected non-occurrence):

2

The quantity ωN reflects the aggregate activity of individual units that compare actual 

outcomes against the probability of expected response-outcome conjunctions. In equation 

(2), when the probability of an expected event is higher, its failure to occur leads to a larger 

negative surprise signal. MPFC activity, then, indexes the extent to which experienced 

outcomes fail to correspond with outcomes that are predicted, i.e., negative surprise.

While several of the ideas underlying the PRO model have been presented previously in 

some form, we are not aware of any effort that has brought these ideas to bear 

simultaneously on the diverse effects observed in mPFC. The unique contribution of this 

paper, then, is twofold. First, we propose a novel hypothesis that suggests that mPFC signals 

unexpected non-occurrences of predicted outcomes. Second, we demonstrate that the 

proposed role of mPFC in monitoring observed outcomes and comparing them against 

predicted outcomes can account for an unprecedented array of cognitive control, behavioral, 

neuroimaging, ERP, and single-unit neurophysiology findings, and also provide a priori 

predictions for future empirical studies.
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Results

Representative Tasks

In order to test the ability of the PRO model to account for a diverse range of empirical 

results, we selected two representative tasks to simulate: the change signal task and the 

Eriksen Flanker task. These tasks have been widely used in the context of both behavioral 

and imaging methods, and reliably elicit markers of cognitive control, including increases in 

reaction time and error rate in behavioral data, and increased activity in brain regions 

associated with control in imaging data.

At the start of a trial in the change signal task (simulations 1, 2, 4, 5 & 9), a subject is cued 

to make one of two behavioral responses. On a subset of trials, a second change cue will be 

displayed shortly following the original cue, instructing the subject to cancel the original 

response and instead make the alternate response. By manipulating the delay between the 

original cue and the change cue, specific overall error rates can be obtained.

In the Eriksen Flanker task (simulations 3 & 7), subjects are cued to make one of two 

behavioral responses by a central target stimulus. Distractor cues are presented 

simultaneously on both sides of the central stimulus. On congruent trials, the distractors cue 

the same response as the target cue, whereas on incongruent trials, the distractors cue the 

alternate response.

Additionally, in order to test the sensitivity of the PRO model to environmental volatility 

effects16, we simulate the model in a 2-arm bandit task (simulation 6) similar to a previous 

report. In the 2-arm bandit task, subjects repeatedly choose from 1 of 2 options which yield 

rewards at preset rates for each option. In the task simulated, this rate shifts over the course 

of the experiment, with each option alternately yielding rewards at a high frequency or low 

frequency.

Our first goal is to ensure that the PRO model can replicate the basic effects observed in 

mPFC with these tasks and captured by competing models, including error, conflict, and 

error likelihood effects, as well as the error-related negativity and its relation to speed-

accuracy tradeoffs. Second, we seek to show that the PRO model accounts for additional 

data which are not addressed by competing models, including single-unit activity from 

monkey neurophysiology studies. In order to ensure that the effects observed in the PRO 

model do not depend on a specific, manually-tuned parameterization, we initially fit the 

model to behavioral data from the change signal task. It is essential to bear in mind that the 

model was only fit to behavioral data, so that all model predictions of ERP, fMRI, and 

monkey neurophysiology results should be considered qualitative predictions rather than 

quantitative fits. Except where noted, all simulations reported derive from the model with 

this single parameter set. Additional details regarding the simulations are given in Methods.

Simulation 1: Error, conflict, and error likelihood effects

In our first simulation, we show that the PRO model can reproduce effects of error, error 

likelihood, and conflict using the change signal task. Fig. 1b–c show that, over the course of 

the simulation, the PRO model generates a negative surprise signal corresponding to these 
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effects. The intuition behind error effects is that a correct outcome was predicted, but that 

prediction signal was not suppressed by signals of an actual correct outcome. Hence the 

error effect reflects negative surprise, i.e. an unexpected non-occurrence of a correct 

outcome. Moreover, error effects in the model were stronger for errors made in the low error 

likelihood condition, consistent with fMRI results not accounted for by previous 

models14, 15. The PRO model accounts for this effect as activity predicting a correct 

response is greater in the low error likelihood condition. Thus the absence of a correct 

outcome when a correct outcome is very likely yields stronger negative surprise. This 

reasoning applies equally well to findings that the ERN is observed to be larger on error 

trials in congruent conditions in an Erikson Flanker task12. For conflict effects, the intuition 

is that incongruent stimuli signal a prediction of responding to the distractor, in addition to 

the already strong prediction of a correct response, hence greater aggregate prediction-

related activity. The same logic accounts for error likelihood effects: activity representing 

the prediction of a correct response button-press is already high, and as the probability of an 

error increases, the activity predicting an additional button-press of the incorrect response 

also increases proportionally, hence greater aggregate prediction-related activity. Of note, 

the model suggests a reinterpretation of response conflict effects as not reflecting conflict 

per se. Rather, conflict effects in the model are due to the presence of a greater prediction of 

multiple responses, namely the correct and incorrect responses (Simulation 5 below).

Simulation 2: The error-related negativity

One of the earliest findings in medial prefrontal cortex is the ERN2, 3, 13 and the related 

feedback ERN (i.e. fERN)13, 32, in which the scalp potential overlying mPFC is significantly 

more negative for errors than correct responses or outcomes. The PRO model simulates the 

difference-wave fERN, which is not confounded with the P30031, as the negative surprise at 

each time step during a trial. Fig. 2a shows the simulated fERN compared with an actual 

ERN31. The model not only qualitatively simulates the fERN but also simulates the 

increasing size of the fERN in proportion to the unexpectedness of the error.

Simulation 3: Speed-Accuracy Tradeoff and the N2

Recent attempts to distinguish between conflict and error likelihood accounts of mPFC 

function find that the amplitude of the N2 component of the ERP reflects the widely-

observed speed-accuracy tradeoff (SATF)33. The conflict account of the N2 suggests trials 

with longer RTs reflect longer ongoing competition between potential responses, resulting in 

higher levels of conflict than for trials with short RTs (although this explanation is not 

without controversy34). In contrast, the PRO model intuition for this effect is that longer 

RTs also entail a greater period of time during which the expectation of a correct response is 

unmet, which in turn yields larger N2 signals. Thus, the model accounts for N2 amplitude 

effects as a simple positive correlation with RT (Fig. 2c).The PRO model simulates the 

SATF in a simulated version of a flanker task (Fig. 2b); the negative surprise component of 

the PRO model is greatest for trials with a relatively long reaction time and is higher for 

incongruent than congruent trials, as in Simulation 1. The correlation of the simulated 

amplitude with error rate for the congruent (r=−0.725) and incongruent (r=−0.863) 

corresponds well with the pattern observed in previously reported data from humans33.The 
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model further captures how the temporal profile of the N2 component varies with reaction 

time33.

Simulation 4: Monkey single-unit performance monitoring data

Using the change signal task above, we also compared the model predictions with monkey 

single-unit neurophysiological data. A key challenge to the conflict model of mPFC has 

been the lack of evidence showing single-unit activity related to conflict in monkey ACC7. 

In contrast, by maintaining multiple predictions of specific response-outcome combinations, 

single units in the PRO model show activity similar to that of reward and error predicting 

neurons observed in single-unit neurophysiology data. Fig. 3 shows the average time course 

of negative surprise (ωN) and its complement, positive surprise (ωP, the unexpected 

occurrence of an outcome, see Methods), which can each reflect predictions of either reward 

or error outcomes. Similar to activity in monkey supplementary eye field28 (Fig. 3c), signals 

related to the prediction of reward increase steadily prior to the expected time of reward 

(Fig. 3a, left). On trials in which the reward is delivered as expected, the negative surprise is 

suppressed, while on trials in which the reward is not delivered, ωN peaks around the time of 

expected outcome and gradually decays. Surprise related to error prediction shows a similar 

pattern (Fig. 3a, right). Due to the nature of learned temporal predictions in the model, at 

equilibrium, activity in reward predicting cells will be proportional to the average 

probability of predicted rewards associated with an outcome27, 35, while activity of error 

predicting cells will be proportional to the average probability of error associated with an 

action. Regarding positive surprise, units in mPFC appear to respond to the detection of 

unpredicted events (Fig. 3b), and the strength with which they respond moderates as the 

event becomes more predictable10, 28, 36.

Simulation 5: Conflict effects as due to multiple responses

The computation underlying response conflict effects in mPFC has been disputed. Early 

models cast conflict as a multiplication of two mutually incompatible response processes5. 

More recent studies suggest that conflict may arise from a greater number of responses, 

regardless of mutual incompatibility37, 38. In a recent study37, both the Eriksen flanker task 

and the change signal task15 were modified to require simultaneous responses to both 

distracters and target stimuli. The results showed similar ACC activation in the same region 

for conditions in which the two possible responses were mutually incompatible as when the 

responses were required to be executed simultaneously. This suggests that mPFC may signal 

a greater number of predicted or actual responses or outcomes instead of a response conflict 

per se, as found previously with neurophysiological studies38.

The PRO model simulates these findings (Fig. 4a) with a modification of the change signal 

task in which lateral inhibition between response units is removed (see Methods), allowing 

both responses to be generated simultaneously when a change signal is presented. The PRO 

model then learns to associate go signals with a high probability of the corresponding 

anticipated left or right motor response. On trials with a “change” signal, the PRO model 

generates an additional prediction of the other motor response, which yields an overall net 

increase in signals predicting the correspondingly greater number of motor responses.
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Simulation 6: Volatility

A recent Bayesian model of ACC16 suggests that ACC activity reflects the estimated 

volatility (non-stationarity) of reinforcement contingencies of an environment. Subjects 

choosing between two gambles were found to more quickly adapt their strategies (i.e., 

displayed a higher learning rate) when the probabilities underlying the gambles changed 

frequently. Moreover, activity in ACC tracked environmental non-stationarity and was 

higher for subjects with a higher estimated learning rate.

The PRO model fits the observed pattern of greater mPFC activity in non-stationary 

environments (ωN, Fig. 4b, lower left panel). Essentially, as contingencies change, the 

outcome predictions based on the previous contingency persist even as new predictions form 

based on the new contingencies. As reversals occur, predictions of outcomes made by the 

PRO model are frequently upset, leading to a state of constant surprise and resulting in more 

frequent but weaker ωN signals. This pattern indicates environmental volatility and also 

serves to drive increased learning during periods of shifting environmental contingencies 

(Fig. 4b, upper left panel).

Simulation 7: mPFC activity reflects unexpected outcomes

The PRO model reinterprets error effects in mPFC as unexpected outcomes, as distinct from 

outcomes which are merely undesired. In most human studies, error rates are low. This 

confounds the interpretation of errors as unintended outcomes with errors as unexpected 

outcomes. These theories can be distinguished by a manipulation that causes error outcomes 

to be more likely than correct outcomes. In that case, an error may be expected as the most 

likely outcome even though it is unintended. If errors reflect unexpected outcomes, then 

error signals should reverse if correct outcomes are infrequent and therefore unexpected, and 

correct trials should instead yield greater “error” related activation in mPFC than error trials, 

and in the same mPFC regions that show error effects. Using a flanker task in which the 

error rate for incongruent trials was much higher than the rate of correct responses, we tested 

this prediction and found a striking reversal of the error effect (Fig. 4c), consistent with 

recent findings39, 40. This result presents a clear challenge to both the conflict account of 

mPFC function and models of mPFC which are based on standard formulations of 

reinforcement learning. It is not clear how the conflict account of the ERN can 

accommodate increased activity in mPFC following correctly executed trials in which 

behavioral conflict is presumed to be lower than for incorrect trials. Similarly, previous 

models based on reinforcement learning suggest that mPFC activity reflects only the 

detection and processing of errors. It is unclear how such a model could account for 

increased activity in response to correct trials relative to error trials.

Simulation 8: ACC activity reflects unexpected timing of feedback

Single units have been observed in ACC which show precisely timed patterns of activation 

prior to the occurrence of an outcome28, 41. The PRO model is capable of demonstrating 

activity consistent with such timed predictions (e.g., Fig. 3a). A further prediction of the 

model then is that outcomes which occur at unexpected times, even if the outcomes 

themselves are predicted, will lead to increased ACC activity (Fig. 4d). This prediction 

suggests another means by which the PRO model may be differentiated from the conflict 
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account, and additional experimental work is needed to test this prediction of the PRO 

model.

Simulation 9: Individual differences

We tested the effect of the salience of rewarding vs. aversive outcomes by parametrically 

adjusting the relative influence on learning of error and correct outcomes in the change 

signal task. The PRO model predicts that individuals who are particularly attentive to 

rewarding outcomes will exhibit increased mPFC activity in response to error trials (Fig. 4e) 

compared to individuals who are sensitive to aversive outcomes, while reward-sensitive 

individuals will exhibit a decrease in activity related to error likelihood (Fig. 4e). In the 

course of learning, the reward-sensitive model learns predictions primarily about rewarding 

outcomes, and so exhibits relatively weaker anticipation of errors. Consequently, a greater 

degree of activity occurs when, on error trials, the strong prediction of reward is not 

counteracted by the actual reward outcome.

Discussion

Overall, the model suggests a unified account of monkey and human mPFC which builds on 

widely accepted learning models. The simulation results demonstrate that a single term ωN, 

reflecting the surprise related to the non-occurrence of a predicted event, can capture a vast 

range of cognitive control and performance monitoring effects from multiple research 

methodologies. These effects have previously been marshaled as evidence in favor of 

competing theories, especially of conflict and error monitoring in humans, and, conversely, 

reward prediction and value in monkeys. Thus the PRO model suggests a reconciliation of 

debates in the literature based on different modalities. The model reinterprets several well-

known effects: error effects may represent a comparison of actual vs. expected outcomes, 

while conflict effects may result from the prediction of multiple possible responses and their 

outcomes rather than response conflict per se. Strikingly, the model derives these effects 

from a single mechanism, unexpected non-occurrence, which reflects the rectified negative 

component of a prediction error signal for both aversive and rewarding events. Furthermore, 

in the present model, the negative surprise signals consist of rich and context specific 

predictions and evaluations37. These might drive correspondingly specific proactive and 

reactive42 cognitive control adjustments that are appropriate to the specific context. Finally, 

the PRO model suggests that within the brain, temporal difference learning signals may be 

decomposed into their positive and negative components.

The PRO model builds on or relates to a number of existing model concepts, such as the 

Bayesian volatility model of ACC simulated above16. The negative surprise signal 

resembles the unexpected uncertainty signal that has been proposed to drive norepinephrine 

signals43, although unexpected uncertainty has not been proposed as a signal related to 

mPFC. The PRO model also resembles models of reinforcement learning in which the value 

of future states is determined by both the predicted level of reward and the potential actions 

available to a learning agent. Indeed, others have simulated ERP data related to mPFC with 

reinforcement learning models13, 44. Examples of other related reinforcement learning 

models include Q learning and SARSA45, 46. However, these models use a scalar learning 
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signal which combines predicted rewards and possible actions (which may in turn lead to 

additional rewards) into a composite value prediction. In contrast, our model represents 

individual rather than aggregate outcome probabilities and includes distinct representations 

of possible aversive as well as rewarding outcomes. The PRO model further diverges from 

models of reinforcement learning in that it learns a joint probability of responses and their 

outcomes for a given stimulus context, P(R,O|S), in contrast to reinforcement learning 

models that aim to learn the probability of an outcome given a response, P(O|R), in order to 

select appropriate behaviors. Other reinforcement learning models have been developed with 

vector rather than scalar based learning signals47. While these models are generally 

concerned with subdividing task control and learning among distinct reinforcement learning 

controls, the use of a vector-valued learning signal similar to ours has been previously 

recognized as being necessary for model-based reinforcement learning48. However, unlike 

this previous work, the PRO model suggests that positive and negative components of such a 

learning signal are maintained independently within the brain. Further comparisons with 

related models are drawn in the Supplementary Material.

The mPFC signals representing outcome prediction and negative surprise might have several 

effects on brain mechanisms and behavior. The PRO model currently simulates surprise 

signals ωN and ωP as modulating the effective learning rate for associating a stimulus with 

its likely responses and outcomes16,49. The prediction and surprise signals may also serve 

other roles not simulated here. As an impetus for proactive control, mPFC predictions of 

multiple likely outcomes may provide a basis for evaluating candidate actions and decisions 

prior to execution, weighing their anticipated risks14 against benefits24 especially in novel 

situations. Similarly, negative surprise signals may provide an important reactive control 

signal to other brain regions to drive a change in strategy when the current behavioral 

strategy is no longer appropriate8, 50.

Methods

Computational Model

The PRO model consists of three main components (see supplementary figure S1). The 

model constitutes a bridge between cognitive control and reinforcement learning theories in 

that the structure of the model resembles an actor-critic model, with a module responsible 

for generating actions (the “Actor”) architecturally segregated from a module which 

generates predictions and signals prediction errors (the “Critic”). An additional module 

learns a prediction of the frequency with which composite events are observed to occur 

within a task context (“Outcome Representation”). Unlike typical actor-critic architectures, 

the critic component is not involved directly in training the actor; rather, the critic indirectly 

influences the actor's policy by modulating the rate at which predictions of response-

outcome conjunctions, which serve as direct input into the actor component, are learned.

Representing events

The Outcome Representation component of the PRO model (Fig. S1) learns to associate 

observed conjunctions of responses and outcomes with the task-related stimuli that predict 

them. The number of total conjunctions which are available for learning may vary from task 
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to task depending on the particular responses required and potential outcomes. In the change 

signal task described below, for example, subjects may either make a 'go' or 'change' 

response, resulting in 'correct' or 'error' outcomes, for a total of 4 possible response-outcome 

conjunctions.

The PRO model (Fig. S1) learns a prediction of response-outcome conjunctions (Si,t) that 

may occur specifically in the current task, as a function of incoming task stimuli (Dj,t):

(1)

Where D is a vector representing current task stimuli, and WS is a matrix of weights which 

maintain a prediction of response-outcome conjunctions. S can be thought of as proportional 

to a conditional probability of a particular response-outcome conjunction given the current 

trial conditions D. The role of S is to provide an immediate prediction of the likely outcomes 

of actions and inhibit those that are predicted to yield an undesirable outcome (see equation 

11). Prediction weights are updated according to:

(2)

where O is a vector of actual response-outcomes conjunctions occurring at time t, G is a 

neuromodulatory gating signal equal to 1 if a behaviorally-relevant event is observed and 0 

otherwise, and A is a learning rate variable calculated as:

(3)

where α is a baseline learning rate and  and  are measures of positive and negative 

surprise, respectively (see below).

Temporal Difference Model of Outcome Prediction

In addition to the immediate outcome prediction signals S above that can quickly control 

behavior, the Critic unit (Fig. S1) also learns a complementary timed prediction of when an 

outcome is expected to occur. Unlike S, his timed prediction signal V is not immediately 

active but peaks at the time of the expected outcome. This in turn provides a critical basis 

for detecting when expected outcomes fail to occur, so that the outcome predictions S that 

control behavior can be updated. In general, the temporal difference error may be written as 

follows:

(4)

where rt is the level of reward at time t, γ is the temporal discount parameter, constrained by 

0 < γ ≤ 1, and V is the predicted value of current and future outcomes, typically rewards. In 

standard formulations of temporal difference learning, all values are scalars. The PRO 

model generalizes the temporal difference error by specifying that all variables are vector 

quantities. In addition, the reward term is replaced with a value which detects the predicted 
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response-outcome conjunction in proportion to the frequency of its occurrence in a given 

task and for a given model input:

(5)

Here ri,t is a function of observed response-outcome conjunctions Oi,t. For most simulations, 

ri,t = Oi,t except for simulation 9 in which ri,t = Oi,t × Fi, where F is a constant reflecting the 

salience of response-outcome conjunction i. In essence, equation (5) specifies a vector-

valued temporal difference model that learns a prediction proportional to the likelihood of a 

given response-outcome conjunction at a given time. Except where noted, γ = 0.95 for all 

simulations.

As in previous formulations of temporal difference learning, the representation of task-

related stimuli over time is modeled as a tapped delay chain, X, composed of multiple units, 

indexed by j, whose activity (value set to 1) tracks the number of model iterations (“time”) 

elapsed since the presentation of a task-related stimulus. Each iteration (dt) represents 10 

msec. of real time. Value predictions are computed as:

(6)

where j is the delay unit corresponding to the current time elapsed since the onset of a 

stimulus k and U is the learned prediction weight. Weights are updated according to:

(7)

where α is a learning rate parameter and constrained by Uijk > 0.  is an eligibility trace 

computed as:

(8)

Stimulus-Response Architecture

In the Actor unit (Fig. S1), activity in response units C is modeled as:

(9)

where dt is a time constant, β is a multiplicative factor, N is Gaussian noise with mean 0 and 

variance σ. E is the next excitatory input to the response units and I is net inhibitory input to 

response units. Excitatory input to the response units is determined by:

(10)

where D are task-related stimuli, WC are pre-specified weights describing hardwired 

responses indicated by task stimuli, and ρ is a scaling factor. Note that WC implement 

stimulus-response mappings which are the usual target of (model-free) reinforcement 

learning in other models. Here, learning in the PRO model instead updates outcome 

predictions S, which provide model-based control of actions C. The model is considered to 
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have generated a behavioral responses when the activity of any response unit exceeds a 

response threshold Γ. Subsequent response unit activity in a trial that exceeds the threshold 

is ignored (i.e., is not considered to be a behavioral response), whether it is a different 

response unit or the same response unit whose activity has returned to sub-threshold levels 

due to processing noise.

Cognitive Control Signal Architecture

Proactive control—The simulation of the change signal task requires a cognitive control 

signal based on outcome predictions S, which inhibits the model units that generate 

responses. The vector-valued control signal derived from predicted outcomes could be 

extended to provide a variety of different control signals in different conditions. In the 

present model, inhibition to the response units is determined by

(11)

where WI are fixed weights describing mutual inhibition between response units, WF are 

adjustable weights describing learned, top-down control from predicted-response-outcome 

representations, and ψ and ϕ are scaling factors. O is the vector of experienced response-

outcome representations (eqs 1 & 2). Adjustable weights WF are learned by

(12)

where Yt is an affective evaluation of the observed outcome. For errors, Yt = 1; for correct 

responses, Yt = −.1. The variable Ti,t implements a thresholding function such that Ti,t = 1 if 

Ci,t > Γ and 0 otherwise.

Reactive control—Reactive control signals in the model are generated whenever an 

actual outcome differs from an expected outcome. Their magnitude is greatest when an 

outcome is most unexpected. Signals from the PRO model corresponding to the two forms 

of surprise described in the main text are calculated as follows. For the first type, unexpected 

occurrences, the signal is calculated as:

(13)

while the second type of surprise, unexpected non-occurrence, is calculated as:

(14)

As noted above, ωP and ωN are used to modulate the effective learning rate for predictions 

of response-outcome conjunctions. The formulation of Eq. (3) modulates the learning rate of 

the model in proportion to uncertainty. In stable environments, infrequent surprises result in 

large values for ωP and ωN, which in turn reduce the effective learning rate, whereas in 

situations in which the model has only weak predictions of likely outcomes, ωP and ωN are 

relatively weak, resulting in increased learning rates. The rationale underlying this 

arrangement is that infrequent events, which are associated with increased ACC activity, are 
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likely to represent noise rather than a behaviorally significant shift in environmental 

contingencies, and therefore an individual should be slow to adjust their behavior.

Model Fitting: Model parameters were adjusted by gradient descent to optimize the least-

squares fit between human behavioral and model RT and error rate data. Free parameters 

and their best-fit values are given in table 1. The model was fit using a Change Signal Task 

using previously reported behavioral data15. There are seven free parameters in the model in 

table 1 and ten data points from the change signal task (eight for reaction time, and two for 

error rate). These parameters allowed the model to simulate the reaction time and error rate 

effects in the change signal data. The parameters were then fixed for the remaining 

simulations unless explicitly stated otherwise. Because the model was only fit to human 

behavioral data, the key model predictions of fMRI, ERP, and single-unit neurophysiology 

effects result from the qualitative properties of the model rather than from post-hoc data fits.

The best-fit parameters yielded model behavior that corresponded well with human results. 

The model was trained on 400 trials of the change signal task. Error rates for the model were 

52.03% and 5.2% for the high and low error likelihood conditions respectively, in line with 

human data. Effects of previous trial type on current trial reaction time were in agreement 

with human performance. For Go trials in which the previous and current trial were correct, 

the eight conditions yielded a correlation of r=0.96 (t(1,6)=27.17, p=0.00021) between 

human and model responses times, indicating that the model captured relevant behavioral 

effects observed in human data.

Simulation Details: In each simulation, trials were presented at intervals of 3 seconds of 

simulated time. Trials were initiated with the onset of a stimulus presented to the input 

vector D. All results presented in the main text were averaged over ten separate runs for 

each simulated task and reflect the derived measure of negative surprise ωN, except for Fig. 

3b, which reflects positive surprise (ωP). For results presented in bar graph form or results in 

which data were otherwise concatenated (simulations 1, 3, 5–8), the value of ωN for the first 

120 iterations (1.2 seconds) of a trial were averaged together when trials were aligned on 

stimulus onset (blue bars). When data were aligned on feedback (red bars), the value of ωN 

was taken from the 20 iterations preceding feedback and 80 iterations following feedback.

Simulations 1–2, 4: Change Signal Task—In the change signal task, participants must 

press a button corresponding to an arrow pointing left or right. On one-third of the trials, a 

second arrow is presented above the first, indicating that the subject must withhold the 

response to the first arrow and instead make the opposite response. The color of the arrows 

is an implicit cue that predicts the likelihood of error as follows: for conditions with high 

error likelihood, the onset delay of the second arrow is dynamically adjusted to enforce a 

high rate of error commission (50%). On trials with low error likelihood, the onset of the 

second arrow is shortened to allow a lower error rate of 5%. The error effect is the contrast 

between change/error and change/correct trials; the conflict effect is the contrast between 

change/correct vs. go/correct trials, and the error likelihood effect is the contrast of 

correct/go trials between high and low error likelihood color cues.
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The model was trained for 400 trials, presented randomly. Four task stimuli were used, 

indicating trial condition: High Error Likelihood/Go, High Error Likelihood/Change, Low 

Error Likelihood/Go, Low Error Likelihood/Change. On 'go' trials in either error likelihood 

condition, the stimulus unit (D) corresponding with the 'go' cue in that condition became 

active (D(go)=1) at 0 seconds and remained active for a total of 1000ms. On 'change' trials, a 

second input unit became active at either 130 ms (low error likelihood) or 330 ms (high 

error likelihood). On change trials, units representing both Go and Change cues were active 

simultaneously when the change signal was presented.

Simulation 3: Speed-Accuracy tradeoff—The model architecture and parameters were 

the same as in simulation 1 except that connection weights from stimulus units 

corresponding to the central cue in a Flanker task were set to 1, while weights corresponding 

to distractor cues were set to .4., the noise parameter was set to 0.02, and the temporal 

discount factor was set to .85. The model was trained for 1000 trials on the Eriksen Flanker 

task. In the Flanker task, subjects are asked to make a response as cued by a central target 

stimulus. On 'congruent' trials in the task, additional stimuli which cue the same response as 

the target are presented to either side of the target stimulus. On 'incongruent' trials, the 

additional stimuli cued an alternate response. Incongruent and congruent trials were 

presented to the model pseudo-randomly, with approximately 1/2 of all trials being 

congruent.

Simulation 5: Multiple response effect—The model architecture remained the same as 

in simulation 1 except that lateral inhibition between response units (eq. 11) was removed to 

allow simultaneous generation of response. Two input representations were used to 

represent task stimuli, a 'single response' cue and a 'both response' cue. Hard-wired 

connections from stimulus representations to response units ensured that the single response 

cue could only result in generation of the appropriate solitary response, while the both 

response cue activated both response units at approximately the same rate. The model was 

trained for 400 trials, with approximately 1/2 of the trials being single response trials.

Simulation 6: Volatility—The model was trained on a 2-arm bandit task16 in which two 

responses, each representing a different gamble with different payoff frequencies, were 

possible. The model was trained in a series of 9 stages, divided into four epochs (Fig. 4b). In 

the first stage of 120 trials, the payoff frequencies of the two gambles were fixed such that 

one gamble paid off on 80% of the trials in which it was chosen, while the alternate gamble 

paid off on 20% of the trials in which it was chosen. Starting on trial 121, these payoff 

contingenices were switched, so that the first gamble paid off at a rate of 20% and the 

alternate gamble paid off at a rate of 80%. These contingencies were switched every 40 

trials a total of 7 times. Finally, the payoff contingencies were returned to their initial values 

for the final 180 trials. Top-down control weights, WC, were fixed such that weights 

associated with errors were 0.15, and weights associated with correct outcomes were −0.05. 

This was done so that estimates of learning rates were influenced by updates of response-

outcome representations alone, and not influenced by learning related to control.

Fig. 4b, lower left panel, shows the average magnitude of ωN over the total number of trials 

in each stage. During initial training, ωN remains low since learned predictions are rarely 
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upset. During subsequent contingency shifts, ωN increases for each successive stage, 

reflecting increased uncertainty about the underlying probabilities of the task. Finally, 

during the final stage of the task, the average magnitude of ωN decreases, reflecting 

increased confidence in the model's predictions. The model's choices and experienced 

outcomes were used as input to a Bayesian Learner16 to derive measures of volatility in each 

phase.

Choice behavior from the PRO model, as well as a version of the PRO model in which 

surprise signals were suppressed (“lesioned”), were used as input to a reinforcement learning 

model (see Supplementary Material) to derive effective learning rates. When surprise signals 

generated by the PRO model were used to modulate learning rates, the model adapted 

quickly to changing environmental contingencies as compared to more stable periods. In 

contrast, the lesioned model maintained the same learning rate regardless of environmental 

instability.

Simulation 7: Unexpected outcomes—The model architecture, task, and parameters 

were the same as described in simulation 3 except that weights from stimulus input units to 

response units were set to .5 and 2 for the response associated with, respectively, the central 

target cue and distractor cues in the Eriksen Flanker task. This manipulation is analogous to 

increasing the saliency of distractor cues in order to promote increased error rate. The model 

was simulated for 1000 trials a total of 10 times, and error rates for incongruent trials 

averaged about 70%. We find that average activity of ωN on correct, incongruent trials is 

greater than for error, incongruent trials (Fig. 4c), consistent with the theory of errors as 

reflecting unexpected non-occurrences of predicted outcomes.

Simulation 8: Unexpected timing—The PRO model simulation predicts that mPFC 

signals not only unexpected outcomes, but also expected outcomes that occur at an 

unexpected time. The model architecture was the same as for simulation 5. However, instead 

of manipulating the number of responses, feedback to the model (always correct) was given 

either after a short delay (200 ms) on 80% of the trials, while for the remaining 20% of the 

trials, feedback was given 600 ms after a response was generated. The model was trained on 

this task for 1000 trials. Fig. 4d shows ωN averaged over trials for long and short delay 

intervals, indicating a model prediction that unexpectedly delayed feedback should elicit 

increased mPFC activity.

Simulation 9: Individual differences—The model, task, and parameters were the same 

as described for simulation 1, with the exception that the effective salience to events was 

parametrically manipulated to explore the effect of sensitivity to rewarding and aversive 

events in the model. The salience factor F (see above) was varied from 0.2857 to 1.7143 for 

rewarding events, while the factor for aversive events was varied from 1.7143 to .2857, 

resulting in 11 conditions for which the ratio of reward to risk sensitivity ranged from 1/6 

(risk sensitive) to 6 (reward sensitive, Fig. 4e). For each condition, 10 simulated runs were 

included in calculating the mean for each data point. from 0.2857 to 1.7143 for rewarding 

events, while simultaneously varying αi for aversive events from 1.7143 to .2857, resulting 

in 11 conditions for which the ratio of reward to risk sensitivity ranged from 1/6 (risk 

Alexander and Brown Page 15

Nat Neurosci. Author manuscript; available in PMC 2012 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensitive) to 6 (reward sensitive; Fig 4E&F). For each condition, 10 simulated runs were 

included for each data point.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. (A) The Predicted Response Outcome (PRO) model
In an idealized experiment, a task-related stimulus (S) signaling the onset of a trial is 

presented. Over the course of a task, the model learns a timed prediction (V) of possible 

responses and outcomes (r). The temporal difference learning signal (δ) is decomposed into 

its positive and negative components (ωP and ωN, respectively), indicating unpredicted 

occurrences and unpredicted non-occurrences, respectively. (B) ωN accounts for typical 

effects observed in mPFC from human imaging studies. Conflict and error likelihood panels 

show activity magnitude aligned on trial onset; error and error unexpectedness panels show 

activity magnitude aligned on feedback. Model activity is in arbitrary units. EL is error 

likelihood (HEL=High EL; LEL=Low EL). Error bars indicate standard error of the mean 

(C) Typical time courses for components of the PRO model.
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Figure 2. ERP simulations
(A) Left panel: simulated feedback error-related negativity (fERN) difference wave. Effects 

of surprising outcomes (low error likelihood/error minus high error likelihood/correct) were 

larger than outcomes which were predictable (high error likelihood/error minus low error 

likelihood/correct). Right panel: observed ERP difference wave adapted with permission31, 

consistent with simulation results. (B) The effects of speed-accuracy tradeoffs on ERP 

amplitude are observed in the PRO model (left). Trials for incongruent and congruent 

conditions were divided into quintile bins by reaction time (large marker indicates slow 

reaction time, small marker indicates fastreaction time), and activity of the PRO model was 

calculated for correct trials in each bin. Accuracy and activity of the model were highest for 

trials with long reaction times, and lowest for trials with short reaction times, consistent with 

human EEG data (right). (C) The simulated activity of the PRO model (left) reflects 

amplitude and duration of the N2 component observed in humans EEG studies (right). 

Adapted with permission33.
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Figure 3. Single-unit neurophysiology simulation
(A) Calculation of the negative surprise signal ωN was performed for individual outcome 

predictions (indexed as i). For predictions of e.g. reward, the surprise signal increases 

steadily to the time at which the reward is predicted. The signal is suppressed on the 

occurrence of the predicted reward. Single units predicting error follow a similar pattern, 

with increased variance in the timing of the error. (B) The complement of negative surprise 

(i.e. positive surprise ωP) indicates unpredicted occurrences. (C) Reward-predicting and 

reward-detecting cells recorded in monkey mPFC consistent with simulation results. The top 

panel displays activity of a single unit consistent with the prediction of a reward. On error 

trials, activity peaks and gradually attenuates, potentially signaling an unsatisfied prediction 

of reward. The bottom panel shows single-unit activity related to the detection of a 

rewarding event. Adapted with permission28.
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Figure 4. fMRI simulations
(A) Multiple response effects. The change signal task is modified to require both change and 

go responses simultaneously when a change signal cue is presented. Change trials lead to 

greater prediction layer activity (aligned on trial onset) compared with go trials, even though 

response conflict is by definition absent. The incongruency effect in the absence of conflict 

is the multiple response effect23. (B) Volatility effects. When environmental contingencies 

change frequently, mPFC shows greater activity. This has been interpreted with a Bayesian 

model in which mPFC signals the expected volatility, right panel (adapted with 

permission16). In the PRO model, greater volatility in a block led to greater mean ωN, lower 

left panel. Surprise signals, in turn, dynamically modulate the effective learning rate of the 

model (upper left panel), yielding lower effective learning rates during periods of greater 

stability (F(1,3)=70.3. p=0.00). In the mPFC-lesioned model, learning rates did not 

significantly change between periods (F(1,3)=0.23, p=0.88). (C) mPFC signals 

discrepancies between actual and expected outcomes. If errors occur more frequently than 

correct trials (70% error rate here), mPFC is predicted to show an inversion of the error 

effect, i.e. greater activity (aligned on feedback) for correct than error trials. (D) Delayed 

feedback effect. Feedback that is delayed an extra 400 ms on a minority of trials (20% here) 

leads to timing discrepancies and greater surprise activation (aligned on feedback). (E) 
Effects of reward salience on error prediction and detection. As rewarding events influence 

learning to a greater degree, error likelihood effects (aligned on trial onset) decrease while 

error effects (aligned on feedback) increase. All error bars indicate standard error of the 

mean.
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Table 1

Model Parameters

Parameter Description Value Equation

α Learning rate 0.012 5

Γ Response threshold 0.313 12

ρ Input scaling factor 1.764 10

ϕ Control signal scaling factor 2.246 11

ψ Mutual inhibition scaling factor 0.724 11

β Rate coding scaling factor 1.038 9

σ Variance of noise in control units 0.005 9
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