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Abstract
Enlargement of the vestibular aqueduct (EVA) is one of the most common inner ear
malformations associated with sensorineural hearing loss in children. The delayed onset and
progressive nature of this phenotype offer a window of opportunity to prevent or retard
progression of hearing loss. EVA is not the direct cause of hearing loss in these patients, but rather
is a radiologic marker for some underlying pathogenetic defect. Mutations of the SLC26A4 gene
are a common cause of EVA. Studies of an Slc26a4 knockout mouse demonstrate that
enlargement of the scala media is a key event in the pathogenesis of deafness. The enlargement is
driven by fluid secretion in the vestibular labyrinth and a failure of fluid absorption in the
embryonic endolymphatic sac. Elucidating the mechanism of hearing loss may offer clues to
potential therapeutic strategies.

1. Clinical Phenotypes Associated with EVA
Enlargement of the vestibular aqueduct (EVA) is a common malformation identified in ears
of children undergoing high-resolution imaging for sensorineural hearing loss (Fig. 1A). An
enlarged vestibular aqueduct is also sometimes referred to as a dilated or large vestibular
aqueduct (DVA or LVA). Valvassori and Clemis established the modern radiologic
definition of EVA as a midpoint diameter of >1.5 mm or a grossly malformed overall
morphology (Valvassori et al., 1978). These criteria have been adopted by a majority of
studies. Computed tomography (CT) is the best radiologic modality to image bony structures
such as the vestibular aqueduct. A single axial CT section can show the full length of the J-
shaped vestibular aqueduct coursing from its aperture on the posterior aspect of the temporal
bone to the medial aspect of the vestibule. The normal vestibular aqueduct is often so
narrow that it is not visible in CT images. Magnetic resonance (MR) imaging provides
complementary visualization of the soft tissue and fluid contents of an enlarged vestibular
aqueduct: an enlarged endolymphatic sac and duct (Fig. 1B) (Phelps et al., 1998). The
relationship of the vestibular aqueduct with the endolymphatic duct and sac is shown in Fig.
2.
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Two studies published in 1989 described a distinctive auditory phenotype associated with
isolated EVA (Jackler et al., 1989; Levenson et al., 1989). The hearing loss is predominantly
sensorineural, variable in severity, asymmetric or unilateral, with a pre- or peri-lingual onset
(before or near the time of speech and language acquisition). Many EVA patients have
evidence of a conductive hearing loss component associated with normal middle ear
findings (Arjmand et al., 2004; Govaerts et al., 1999; Nakashima et al., 2000). This is
thought to be a cochlear conductive hearing loss due to a “third window” effect of the EVA
upon sound transmission within the labyrinth (Merchant et al., 2007).

The sensorineural hearing loss associated with EVA can fluctuate or progress in a stepwise
incremental fashion (Jackler et al., 1989; Levenson et al., 1989). In some patients, sudden
hearing loss can be precipitated by minor head trauma or barotrauma. Although original
reports emphasized EVA as the sole radiologic abnormality in these ears, this phenotype
may also be observed in ears with EVA and cochlear anomalies. Associated cochlear
anomalies can include a “Mondini” cochlea with reduced number of cochlear turns and an
incomplete osseous partition of the turns. A more commonly observed anomaly in EVA ears
is a hypoplastic cochlear modiolus (Lemmerling et al., 1997). There are differing
conclusions on whether the presence or absence of cochlear malformations is related to the
severity of hearing loss (Azaiez et al., 2007). However, in a study in which other underlying
genotypic and phenotypic correlations were statistically accounted for, the presence of an
associated cochlear anomaly was not independently associated with severity of hearing loss
in ears with EVA (King et al., 2010).

The delayed onset and progressive nature of hearing loss associated with EVA provides a
therapeutic window for interventions to prevent or slow the progression of hearing loss.
Such strategies could be of particular benefit during the critical period of speech and
language acquisition in young children. Current strategies for patients with EVA include
counseling to avoid head trauma and barotrauma, and rehabilitation of communication. The
latter can be achieved with conventional hearing amplification or cochlear implantation
according to the degree of hearing loss. Corticosteroids have been used to treat hearing loss
associated with EVA (Lin et al., 2005). The results of these studies are difficult to interpret
because the natural history of hearing loss associated with EVA is unpredictable and
idiosyncratic. Rigorous clinical trials will be required to evaluate these or other interventions
for EVA.

The distinctive hearing loss phenotype associated with EVA has spawned a variety of
hypotheses for the mechanism of hearing loss. One early theory proposed that trauma or
barotrauma increases intracranial pressure with reflux of the contents of the endolymphatic
sac and duct into the scala media where it damages hair cells and hearing (Jackler et al.,
1989). This theory lost favor because operations to obliterate or decompress the
endolymphatic sac were either ineffective or detrimental to hearing (Wilson et al., 1997).
Furthermore, there is no correlation of the size of the EVA with hearing loss (Griffith et al.,
1996; King et al., 2010). A second theory proposed that hearing loss results from leakage of
perilymph from an abnormal fistulous round window (Belenky et al., 1993), but this
observation has not been reported by other authors. There are phenotypic similarities
between EVA and the fluctuating hearing loss thought to be associated with endolymphatic
hydrops, in which endolymph-containing spaces are dilated. Endolymphatic hydrops has
been proposed to cause hearing loss via increased endolymph osmotic pressure, rupture of
intracochlear membranes, alterations of endolymph composition due to mixing with
perilymph, and damage to hair cells and hearing. However, recent analyses cast doubt on
this mechanism of hearing loss and suggest that endolymphatic hydrops is a nonspecific
marker for an underlying cellular or molecular lesion that is the direct cause of hearing loss
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(Merchant et al., 2005). Similarly, EVA is not thought to be a direct cause of hearing loss,
but a radiologic marker for an underlying molecular or cellular defect (Griffith et al., 1996).

2. Genetics of EVA
EVA with hearing loss typically presents as a sole clinical abnormality, in which case it is
termed nonsyndromic. EVA has been reported in association with congenital
cytomegalovirus (CMV) infection (Bauman et al., 1994), which can cause a similar hearing
loss phenotype (Dahle et al., 2000). However, congenital CMV infection is not a significant
or common cause of EVA (Pryor et al., 2005a). EVA may also be associated with
abnormalities of other organ systems as part of a genetic syndrome. Examples of syndromes
that can include EVA are distal renal tubular acidosis with deafness, CHARGE syndrome,
Waardenburg syndrome, and branchio-oto-renal syndrome. However, the most common
syndrome associated with EVA is Pendred syndrome. Pendred syndrome has been
phenotypically estimated to account for up to 10% of cases of hereditary hearing loss
(Fraser, 1965).

Pendred syndrome is an autosomal recessive disorder that was originally described in 1896
as a combination of goiter (thyroid gland enlargement) and severe congenital deafness
(Pendred, 1896). We now realize the phenotypic spectrum of Pendred syndrome is much
broader. Although goiter is incompletely penetrant, there is an underlying, more penetrant,
defect in the ability of the thyroid gland to organify iodine (i.e. incorporate inorganic iodine
in thyroid hormone biosynthesis) (Morgans et al., 1958; Pryor et al., 2005b). The hearing
loss is often milder and more delayed in onset than originally described and, in some cases,
may even be unilateral. An important advance was recognition that EVA is a highly
penetrant feature of Pendred syndrome (Phelps et al., 1998). Due to routine hearing
screening and radiologic imaging of the temporal bones, Pendred syndrome now commonly
presents as nonsyndromic EVA in children (Reardon et al., 2000). Vestibular dysfunction is
incompletely penetrant and varies in severity from subclinical caloric hyporeflexia to severe
vertiginous episodes (Bergstrom, 1980; Das, 1987).

Mutations in the SLC26A4 gene (formerly known as PDS) cause Pendred syndrome (Everett
et al., 1997). Mutations in SLC26A4 can also be detected in some patients with
nonsyndromic EVA (Usami et al., 1999). This genotypic and phenotypic overlap has caused
confusion about the nosologic relationship of these disorders. Some authors consider
Pendred syndrome and nonsyndromic EVA to be variants of the same disorder (Campbell et
al., 2001) while others regard them as distinct entities based upon SLC26A4 genotypic and
phenotypic correlations (Pryor et al., 2005b).

Only one fourth of North American Caucasian EVA patients have two detectable mutant
alleles of SLC26A4, one fourth have one detectable mutant allele, and one half of patients
have no mutations (Campbell et al., 2001; Choi et al., 2009c). The causes of EVA in patients
with only one or zero mutations of SLC26A4 are unknown. Undetected large genomic
deletions or cryptic mutations in noncoding regions do not appear to account for this
observation (Choi et al., 2009b). Digenic inheritance with mutations in the FOXI1 or
KCNJ10 genes has been proposed for patients with one SLC26A4 mutation (Pryor et al.,
2005b; Yang et al., 2007; Yang et al., 2009), but these findings have not been replicated in
other studies (Jonard et al., 2010; Pera et al., 2008; Wu et al., 2010) and alternative
hypotheses have not been excluded (Choi et al., 2009a). Mendelian genetic factors are
unlikely in most EVA patients with no mutations since the proportion of siblings with EVA
is much less than predicted for an autosomal recessive trait (Campbell et al., 2001; Choi et
al., 2009c). In other populations such as Koreans, two mutant alleles can be found in 81% of
EVA patients (Park et al., 2005).
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In some of the reported genotypic surveys of childhood deafness among different
populations, SLC26A4 mutations are the most common known genetic cause of childhood
deafness (Anwar et al., 2009; Park et al., 2003). Genotypic surveys of large study
populations have indicated that SLC26A4 mutations account for up to or more than 10%
childhood deafness (Anwar et al., 2009; Park et al., 2003; Yuan et al., 2009). This
comparatively high prevalence provides another impetus to develop new therapeutic or
preventive strategies for EVA.

SLC26A4 encodes a multi-pass transmembrane protein called pendrin (Everett et al., 1997).
Pendrin is expressed in a limited tissue distribution that includes the inner ear, thyroid, and
kidney (Everett et al., 1997). Pendrin has been shown to exchange a variety of anions (Cl−
and I−) and bases (e.g., OH− and HCO3

−) across apical plasma membranes of epithelial
cells (Royaux et al., 2001; Scott et al., 1999; Soleimani et al., 2001). In the thyroid follicle,
pendrin is thought to mediate the transport of inorganic iodine across the apical membranes
of follicular cells into the follicular lumen for biosynthesis of thyroid hormone (Royaux et
al., 2000). In situ functional studies of pendrin have largely utilized a targeted deletion allele
(“knockout”) of the mouse Slc26a4 gene (Everett et al., 2001).

3. Pathophysiological mechanisms of hearing loss in EVA
Our most significant mechanistic insights into the pathogenesis of hearing loss associated
with EVA are based upon the Slc26a4 knockout (Slc26a4−/−) mouse that segregates a
targeted deletion of exon 8 of Slc26a4 (Everett et al., 2001). Other mouse models include
the Foxi1 knockout mouse (Hulander et al., 2003) and the loop mouse line segregating a
chemically induced mutation of Slc26a4 (Dror et al., 2010).

The pathogenesis of EVA begins during the embryonic development of the inner ear. The
inner ear develops from an invagination of the ectoderm that separates to form the initial
otocyst. In mice the otocyst forms at embryonic day (E) 9.5 (Mansour et al., 2005). The
otocyst is initially filled with amniotic fluid that has a plasma-like composition (Cheung et
al., 2005). When and how the developing epithelia change the composition of the luminal
fluid is currently unknown. At approximately E10.5, two protrusions begin to extend from
the otocyst; one forms the cochlea and the other forms the endolymphatic sac. While the
protrusions elongate and, in the case of the cochlea, coil, the center of the otocyst
reorganizes into the vestibular labyrinth. The lumen of the cochlear protrusion opens at
E14.5. Lumen formation depends on fluid secretion in the vestibular labyrinth and fluid
absorption in the endolymphatic sac (Kim et al., 2010).

In the mouse inner ear, pendrin functions as a Cl−/HCO3
− exchanger (Wangemann et al.,

2007). Pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic
sac. In the endolymphatic sac, pendrin is expressed in mitochondrial-rich cells that are
interspersed among the principal ribosomal-rich cells (Dou et al., 2004; Royaux et al., 2003;
Wangemann et al., 2004). In the cochlea, pendrin is expressed in a spiraling sheet of outer
sulcus and spindle cells located in the lateral wall. In the vestibular labyrinth, pendrin is
expressed in sheets of transitional cells that surround sensory cell patches (Wangemann et
al., 2004). The earliest expression of pendrin occurs in the endolymphatic sac at E11.5 (Kim
et al., 2011). Expression in the endolymphatic sac increases rapidly at E14.5. The onset of
expression in the cochlea, utricle and saccule occurs at E13.5 to E16.5 (Kim et al., 2011).

The initial pathologic alteration in Slc26a4−/− mice includes an enlargement of the
endolymphatic sac and cochlea that develops at E14.5, which is three days after the failed
onset of expression in the endolymphatic sac (Kim et al., 2011). The enlargement leads to an
approximately 10-fold increase in the cross-sectional area of the cochlear lumen that
parallels normal cochlear growth (Fig. 2). The second pathologic alteration is an
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acidification of cochlear endolymph that develops at E15.5, which is one to two days after
the failed onset of pendrin expression in the cochlea (Kim et al., 2011). Lack of pendrin
expression also causes an acidification of the endolymphatic sac. However, this acidification
develops later, at E17.5, which may reflect the stronger buffering power of the luminal fluid
in the endolymphatic sac.

The enlargement and luminal acidification of the scala media spread the effect of pendrin
deficiency from pendrin-expressing cells to a multitude of other cells. The enlargement may
impair intercellular communication, possibly due to epithelial cell stretching and
lengthening of diffusional distances between epithelial cells and between epithelial cells and
mesenchymal cells such as fibrocytes. Intercellular communication plays a major role in
cochlear development since impaired intercellular communication underlies the retarded
development of the organ of Corti and may also contribute to the retarded development of
stria vascularis (Kim et al., 2011; Wangemann et al., 2009). Thyroid hormone is a major
factor in the retardation of the development of the organ of Corti. Fibrocytes located in the
modiolus and in the lateral wall of the cochlea express, between P6 and P8, high levels of
type 2 deiodinase (Dio2) to generate the biologically active hormone tri-iodothyronine from
the prohormone thyroxine (Campos-Barros et al., 2000). Receptors for tri-iodothyronine are
located in the organ of Corti and in other epithelial cells lining the cochlear duct (Bradley et
al., 1994; Ng et al., 2009). The route taken by thyroid hormone between the hormone-
generating cells and the receptor-bearing cells has not yet been delineated, although
intercellular diffusion via gap junctions may be involved. Gap junctions may not only be the
conduit for thyroid hormone but also for other growth and development-controlling factors
as well as for nutritional substrates (Chang et al., 2008; Wang et al., 2009; Zhang et al.,
2005). Lengthening of diffusion distances between fibrocytes and receptor-bearing epithelial
cells may be responsible for the observed local hypothyroidism in Slc26a4−/− mice that
leads to the observed retarded development of the organ of Corti (Wangemann et al., 2009).

The development of the stria vascularis in Slc26a4−/− cochleae is also retarded: the normal
multilayered and highly vascularized anatomy is acquired with a delay (Kim et al., 2011). It
is still unclear whether the retarded development of the stria vascularis in Slc26a4−/− mice is
mainly a function of the approximately four-fold elevated H+ concentration in endolymph
(Wangemann et al., 2007) or a function of the enlargement that is associated with an
approximately 2.5-fold stretching of epithelial cells, including strial marginal cells, and with
a displacement of neighboring fibrocytes. The premature onset of connexin 26 expression in
basal cells of the stria vascularis is consistent with an impaired coordination of strial
development (Kim et al., 2011). At P10, the stria vascularis is affected by oxidative stress
(Singh et al., 2008) and fails to establish a normal endocochlear potential (Wangemann et
al., 2007). Oxidative stress leads to the loss of expression of the K+ channel KCNJ10
protein, which is essential for the generation of the endocochlear potential (Singh et al.,
2008; Wangemann et al., 2004). The endocochlear potential is essentially a K+ equilibrium
potential that is generated by KCNJ10 in the intermediate cells of the stria vascularis, in
conjunction with the very low K+ concentration of intrastrial fluid and a normally high K+

concentration in the cytosol of intermediate cells (Marcus et al., 2002; Wangemann, 2006).
It is unclear whether this oxidative stress is a function of insufficient expression of defense
mechanisms or whether oxidative stress is due to higher rates of metabolism necessary to
support higher rates of K+ secretion to maintain a normal endolymphatic K+ concentration in
an approximately 10-fold larger volume of scala media (Royaux et al., 2003). In addition,
the acidification of cochlear endolymph may contribute to the loss of the endocochlear
potential by enhancing oxidative stress through acid-activation of the K+ channel KCNQ1
(Unsold et al., 2000) and an increase in the rate of transepithelial K+ secretion across stria
marginal cells, which would be associated with an increase in metabolism (Singh et al.,
2008). Indeed, the endocochlear potential is reduced by experimental maneuvers that lead to
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an acute acidification of cochlear fluids (Ikeda et al., 1987a; Sterkers et al., 1984) and
acidification of cochlear fluids has been shown to increase free radical stress, whereas
alkalinization has a protective effect on hearing (Tanaka et al., 2004).

The luminal acidification and the loss of the endocochlear potential may jointly contribute to
the approximately 100-fold elevation in the endolymphatic Ca2+ concentration (Ikeda et al.,
1987b; Wangemann et al., 2007). Loss of the endocochlear potential may reduce the driving
force for Ca2+ transport via cellular or paracellular pathways. Further, acidification inhibits
transcellular Ca2+ absorption pathways that may include uptake of Ca2+ from endolymph via
Ca2+-permeable TRPV4 and TRPV5 channels and export into perilymph via Ca2+-ATPases
and Na+/Ca2+ exchangers. TRPV4 and TRPV5 channels are expressed in multiple epithelial
cells of the cochlea and are inhibited by a luminal acidification (Vennekens et al., 2001;
Wangemann et al., 2007). The resulting inhibition of Ca2+ absorption may lead to a failure
to establish the normal endolymphatic Ca2+ concentration of 22 μM (Bosher et al., 1978;
Wangemann et al., 2007). This low endolymphatic Ca2+ concentration is critical for normal
auditory function. Elevated Ca2+ concentrations reduce microphonic potentials generated by
the sensory cells (Tanaka et al., 1980) and excessive Ca2+ concentrations may damage hair
cells through Ca2+ overload. Sensory hair cells in Slc26a4−/− mice degenerate between P15
and P30 after a history of thyroid hormone deprivation and under the burden of an elevated
luminal Ca2+ concentration, luminal acidification and a deficient endocochlear potential
(Everett et al., 2001).

How might these observations in Slc26a4−/− mice explain the etiology of fluctuating hearing
loss in EVA patients? It is conceivable that fluctuation is due to the sensitivity of the
endocochlear potential to oxidative stress. The endocochlear potential and oxidative stress
may comprise a negative feedback system that oscillates and generates fluctuations in the
endocochlear potential, which is required for hearing (Fig. 4). The hypothesized feedback
loop is comprised of three elements. First, reactive oxygen species (ROS) are generated by
marginal cells of stria vascularis as a byproduct of metabolism, which is necessary to
support K+ secretion (Wangemann et al., 1995). Second, the ROS-sensitive K+ channel
KCNJ10 that generates the endocochlear potential and supplies K+ to the marginal cells
(Singh et al., 2008), and third, K+ induced stimulation of K+ secretion (Wangemann et al.,
1995; Wangemann et al., 1996). ROS-induced loss of KCNJ10 would abolish the
endocochlear potential and hearing and the associated reduction in K+ flux toward marginal
cells would limit the rate of K+ secretion, metabolism and ROS production. The reduced
ROS production would then permit restoration of KCNJ10 expression, KCNJ10 channel
function would restore the endocochlear potential and restore hearing but also supply
increased amounts of K+ to marginal cells, which again would stimulate K+ secretion,
metabolism and ROS production. Irreversible hearing loss would result when endolymphatic
Ca2+ concentrations rise and hair cells succumb to Ca2+ overload (Everett et al., 2001;
Wangemann et al., 2007).

4. Conclusions
Enlargement of the vestibular aqueduct (EVA) is a comparatively common but enigmatic
sensorineural hearing loss disorder in children. Studies in mouse models demonstrate that
enlargement and acidification of the scala media are early events in the pathogenesis of
hearing loss. Future work to elucidate the mechanism of hearing loss should focus on fluid
transport in cochlear development and alterations of cellular and molecular function and
signaling in the lateral wall of the cochlea. The results of these studies may lead to treatment
strategies to preserve hearing in humans with mutations of SLC26A4.
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Fig 1.
Radiologic imaging of an enlarged vestibular aqueduct. A) Axial computed tomography
(CT) scan of an enlarged vestibular aqueduct (arrow). B) Axial MR (magnetic resonance)
image of the soft tissue correlate of an enlarged vestibular aqueduct: an enlarged
endolymphatic duct and sac (arrow). Reproduced from
http://www.nidcd.nih.gov/health/hearing/eva-intro.htm.
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Fig 2.
Schematic illustration of an enlarged vestibular aqueduct and endolymphatic sac and duct.
Reproduced from http://www.nidcd.nih.gov/health/hearing/vestAque.htm.
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Fig 3.
Cochlear enlargement. Reproduced from Kim et al. (Kim et al., 2010). A) Diagram based on
a cochlea obtained from an E18.5 Slc26a4+/− mouse. B) Diagram based on the enlarged
cochlea obtained from an E18.5 Slc26a4−/− mouse. C) Measurements of cross-sectional
areas of scala media from the basal turn of the cochlea in Slc26a4+/− and Slc26a4−/− mice.
Note that the growth of the lumen is parallel between Slc26a4+/− and Slc26a4−/− mice and
that a ∼10-fold enlargement is maintained throughout development. Abbreviations: C, otic
capsule; S, stria vascularis; H, sensory hair cells; M, modiolus; N, cochlear nerve. Spaces
occupied by mesenchymal cell (green) are compressed in Slc26a4−/− mice, and fibrocytes in
the modiolus (M) and between the otic capsule (C) and stria vascularis (S) are displaced.

Griffith and Wangemann Page 14

Hear Res. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 4.
Hypothetical mechanism for fluctuating hearing loss. A) Diagram based on a cochlea
obtained from a P7 Slc26a4+/− mouse. B) Diagram of the stria vascularis illustrating a
negative feedback mechanism that leads to fluctuating loss of KCNJ10, the K+ channel that
generates the endocochlear potential. Fluctuating loss of the endocochlear potential can be
expected to the lead to fluctuating loss of hearing.
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