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Abstract
Objective—Given the increasing concerns about the levels of obesity being reached throughout
the world, this paper analyses the relationship between the most common index of obesity, the
BMI, and levels of body fat.

Research methods and procedures—The statistical relationship, in terms of functional
form, between body fat and BMI is analysed using a large data set which can be categorized by
race, sex and age.

Results—Irrespective of race, body fat and BMI are linearly related for males, with age entering
logarithmically and with a positive effect on body fat. Caucasian males have higher body fat
irrespective of age, but African American males’ body fat increases with age faster than that of
Asians and Hispanics. Age is not a significant predictor of body fat for females, where the
relationship between body fat and BMI is nonlinear except for Asians. Caucasian females have
higher predicted body fat than other races, except at low BMIs, where Asian females are predicted
to have the highest body fat.

Discussion—Using BMIs to make predictions about body fat should be done with caution, as
such predictions will depend upon race, sex and age and can be relatively imprecise. The results
are of practical importance for informing the current debate on whether standard BMI cut-off
values for overweight and obesity should apply to all sex and racial groups given that these BMI
values are shown to correspond to different levels of adiposity in different groups.
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Introduction
In recent years both the medical profession and the media have become increasingly
concerned about the levels of obesity being reached throughout the world. While body fat is
arguably a direct measure of adiposity, its accurate measurement has traditionally required
special equipment that has been costly to purchase and operate. Although direct
measurement of body composition is becoming increasingly viable, attention has often been
focused on the easier-to-measure body mass index (BMI), defined as the ratio of weight (in
kilograms) to the square of height (in metres): see for example[1] for a survey of the
historical development of the BMI. There are several assumptions inherent in the BMI-
adiposity relationship. One such assumption is that BMI represents adiposity, independent of
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age, sex, and ethnicity/race: ie, the use of BMI assumes that, after adjusting a subject’s body
weight for stature, all subjects have the same relative fatness regardless of their age, sex, or
ethnicity. There have been several publications that have attempted to address these issues in
children [2, 3] and adults [4, 5]. An overall conclusion is that there are many factors that
influence the BMI-adiposity relationship and, where possible, a more direct assessment of
fatness is recommended.

An interesting and related statistical problem is to assess the relationship between body fat
and the BMI, which can include gauging the strength of the relationship, testing hypotheses
concerning, for example, the functional form of the relationship, and using the fitted model
for prediction. It is this aspect of the body fat-BMI relationship that we concentrate on in
this paper.

Subjects and methods
This paper utilizes a relatively large data set containing body fat and BMI measurements to
illustrate these facets of the analysis. The data set consists of body fat, height and weight of
1446 individuals, categorized by race and sex as in Table 1. The height and weight of the ith
individual was combined as . Results for the ‘Other’ category are not
reported as the small number of observations either precluded estimation or led to very
imprecise parameter estimates. These individuals had participated in body composition
investigations [4, 6, 7] in the Body Composition Unit, St. Luke’s-Roosevelt Hospital and
had body composition measured on a single dual-energy x-ray absorptiometry (DXA)
scanner. The subjects were recruited from 1993 to 2001 through advertisements in local
newspapers, on radio stations, and flyers posted in the local community.

Inclusion in the study required that subjects be ambulatory with no orthopaedic problems or
medical conditions known to affect body composition. Race was determined by self-report.
All studies were approved by the Institutional Review Board of St. Luke’s-Roosevelt
Hospital and all subjects gave written consent to participate. Body weight was measured to
the nearest 0.2 kg and height to the nearest 0.5 cm using a stadiometer. Total body fat was
measured in all subjects with a whole-body DXA scanner [8].

The statistical model
There are a variety of approaches to modelling the links between body fat and the BMI: for
example, the individual impact on body fat of height and weight changes may be
investigated or the physical restrictions on the range of body fat values may be imposed in
some other way. The approach followed here emphasizes the idea that the choice of
functional form for the relationship between body fat (y) and the BMI reflects the desire to
model, as appropriately as possible, the conditional mean function E(y|BMI). The popularly
employed inverse, semi-logarithmic and double logarithmic functional forms are all nested
within the specification

(1)

where i denotes the ith individual from a sample of size n and, for yi >0 and BMIi >0
(restrictions which are, of course, always satisfied),
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are Box and Cox transformations of the variables [9]. The stochastic nature of the
relationship between y and BMI is made explicit by the inclusion of the error ui, which is
assumed to have zero mean and constant variance σ2. The transformation parameters λ and
ø, the regression parameters, β0 and β1, and the error variance σ2 can be estimated by
maximum likelihood using a nonlinear optimizing algorithm (see [9–11]: the Marquardt
routine within the maximum likelihood procedure in Econometric Views 5 was used here).
Assuming asymptotic normality of ui, 70% and 95% confidence ellipsoids were constructed
for the transformation parameters to aid interpretation, noting that setting λ = ø = 1 produces
the linear model, λ = −ø = 1 produces the ‘inverse’ model, λ = ø = 0 produces the double
logarithmic model and λ = 1, ø = 0 yields the semi-logarithmic model.

From (1), the conditional mean of y is given by

(2)

Except for the linear model λ = ø = 1, the error u does not drop out of the expectation and
must therefore be accounted for in making conditional predictions. The conditional mean
was thus estimated using a ‘smearing’ technique, which uses estimated residuals to
approximate the distribution of u required for the calculation of (2) [12, 13].

It is well known that the estimates of λ and ø can be badly affected by outliers and, as shown
in Table 1, there are a small number of outlying observations in our data set. Eleven outliers
are identified, all with unusually low body fat relative to BMI, and we concentrate on the
models fitted to the data with these omitted (both visual and more formal identification
schemes produced the same set of outliers). Including outliers tended to induce a greater
degree of nonlinearity in the relationship than was found in the outlier-adjusted data. Even
with such outliers omitted, the presence of a non-constant error variance may bias the
estimates of the transformation parameters, so that we also investigated the use of a
corrected likelihood function under the assumption that the error standard deviation is
proportional to BMI, but this was found not to have any impact on the estimates [14].
Correlation between parameter estimates and the influence of data variability has been
shown to have only marginal effects on model estimation [15].

Modelling the body fat – BMI relationship
Earlier research has shown that there are marked differences in the body fat-BMI
relationship across sex and race [4, 5, 7]. We thus begin by reporting in some detail the
fitting of model (1) to the data categorized by sex. For males, the ML estimates are (with
standard errors shown in parentheses) λ̂ = 0.81(0.09) and ø̂ = 0.69 (0.34), leading to the
regression model

95% and 70% confidence ellipses for J = (λ,ø) are shown in Figure 1 and indicate that, of
the conventional functional forms, only the linear (λ = ø = 1) is consistent with the data, with
the functional forms conventionally used to model the body fat-BMI relationship all being
rejected. There is thus little evidence of any nonlinearity in the body fat-BMI relationship
for the outlier adjusted male data set and the relationship is therefore found to be linear, the
estimated equation being
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Figure 2 shows the scatter plot of body fat (y) against BMI with the linear fit superimposed.
The conditional mean of y is thus linear, being E(y|BMI) = −34.08 + 1.98BMI, with the
coefficient of 1.98 providing the marginal effect on y of a change in BMI, ie an increase in
BMI of one unit is predicted to increase body fat by approximately 2 (±0.05) kg. Current US
dietary guidelines define the range 18.5 < BMI < 25 to be ‘healthy’, 25 ≤ BMI < 30 to be
‘overweight’, and higher values of BMI to be ‘obese’ (see [1, table 2]). In the male sample
here, 41.7% are healthy, 40.4% are overweight and 17.9% are obese (and 0.7% have BMIs
below 18.5). Using standard results for the linear model, these cut-offs predict body fat
weights of 2.6, 15.5 and 25.3 kg, respectively, with a standard error that is approximately
4.6 in each case. The fit also suggests the ‘rule of thumb’ that any value of BMI predicts a
body fat of 2BMI – 34, although the width of the prediction intervals argues for regarding a
particular BMI measure as providing only a rough indication of underlying body fat,
particularly for low levels of BMI and body fat, for which the very few observations are only
able to provide imprecise predictions.

For females the ML estimates are λ̂= 0.76, ø̂ = 0.22. Here the linear model (λ = 1, ø = 1) is
not contained within the 95% ellipse (see Figure 3) and neither are any other ‘simple’
functional forms. The ML model estimates are

There is thus evidence of nonlinearity in the body fat – BMI relationship for the outlier
adjusted female data set. Figure 4 shows the scatter plot of female body fat (y) against BMI

with the nonlinear, , and linear, y = −26.73 + 1.94BMI, fits
superimposed. Although the statistical fit of the linear model is significantly inferior to that
of the nonlinear models (the log-likelihoods of the two models are −1394.73 and −1378.84
respectively), the nonlinearity inherent in the relationship is rather modest, revealing itself
primarily at the extremes of the sample, where the linear model over-predicts body fat.

The conditional predictions of body fat at the cutoffs, using equation (2), are 8.6, 21.9 and
31.8 kg, with one standard error prediction intervals of (5.7,11.9), (18.1,26.0) and
(27.6,36.2). The central predictions are just over 6 kg higher than for males and confirm
previous findings that females have higher levels of body fat associated with a given BMI
value [4].

The same procedure fitted to the complete data set produces ML estimates λ̂= 0.91(0.05) and
ø̂ = 0.91 (0.13) and selects the linear model

This is found to over-predict male body fat by 4 kg and under-predict female body fat by 2
kg, as well as implicitly assuming a linear model for the female relationship. Categorizing
by sex is thus seen to be essential for uncovering the appropriate body fat-BMI relationship.
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Do these disparate findings for males and females carry over when the data set is
categorized by race as well as sex? Table 2 schematically presents the results for this
categorization of the data. In several cases the transformation parameters are quite
imprecisely estimated because of the rather small sample sizes in some categories.
Determining the appropriate functional form is therefore somewhat problematic, but linear
functional forms are found to be acceptable for all male categories, although Caucasian
males are just as well fitted by a semi-logarithmic function (λ = 1, ø = 0). Except for Asians,
females continue to exhibit a non-linear relationship between body fat and BMI. When
analysing the Asian data, for which the number of observations is relatively small anyway,
further outliers became apparent. The results presented in Table 2 are with four outliers
excluded for Asian females, all of which have unusually large values of both body fat and
BMI, and whose inclusion induced a nonlinear fit having a perverse shape in which the
second derivative of the function was positive. Excluding these outliers, while producing a
linear fit, truncates an already small sample to one containing no individuals with BMIs in
excess of 26.5. On the other hand, including the four outliers in the linear fit produces
estimates that are almost identical to those reported in Table 2.

Figure 5 shows the estimated conditional mean functions for females categorized by race,
and thus brings into focus the form and strength of the nonlinearity present in the body fat-
BMI relationship. Although the functional forms are much closer to linearity than the forms
generally assumed for the body fat-BMI relationship, modest nonlinearity still prevails.
Apart from Asian females, for which the slope is constant at 1.77, the other three races all
show a similar pattern of a brief steepening in slope up to a BMI of around 20, followed by a
declining slope, which is more pronounced for Hispanics than for African Americans and
Caucasians, whose body fat responses to changing BMI are very similar. The nonlinearity is
thus found to be stronger at lower levels of the BMI, and for Hispanics in general.

The body fat predictions at the standard BMI cutoffs, with approximate one standard error
bounds, are reported for both males and females in Table 3. The steeper and flatter slopes,
respectively, of the relationship for Caucasian and Asian males are readily apparent in the
predictions, so that the Caucasian male predicted body fat response to an increase in BMI is
much more pronounced than that for the Asian male, with African Americans and Hispanics
having similar responses. This is also seen in females, with Caucasians having higher
predicted body fat, except at low BMIs, where Asian females are predicted to have the
highest body fat.

Including age as an additional regressor
The model (1) can be extended to include age as an additional Box-Cox transformed
regressor:

that can be estimated in a similar fashion to the bivariate model. Because the bivariate
models have revealed marked sex-specific relationships, we present first the models fitted to
the male and female data respectively. For males, the model is

Mills et al. Page 5

Int J Body Compos Res. Author manuscript; available in PMC 2011 October 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Including AGE has no impact on the estimates of λ and ø nor on the marginal effect of BMI
(the correlation between AGE and BMI is only 0.05, so that these variables are almost
orthogonal). The model (λ = 1, ø = 1, θ = 0) provides the best ‘simple’ functional form fit.
Compared to the bivariate model y = −34.1 + 1.98BMI, this model allows predicted body
fat, conditional on a BMI value, to alter with (the log of) AGE. For example, at AGE = 20,
predicted body fat is −35.95 + 1.95BMI, while at AGE = 60, the prediction is given by
−32.34 + 1.95BMI, some 3.5 kg higher. At the obesity cut-off of BMI = 30, these functions
therefore predict body fat to be 22.6 kg and 26.2 kg, compared to the prediction of 25.3 kg
which ignores the age effect.

For females, the model is

Here the inclusion of AGE produces an extremely imprecise estimate of θ and, indeed,
AGE(θ ̂) is found to be insignificant anyway, implying that AGE has no influence on the y –
BMI relationship for females.

These findings also characterize the racial categorizations as well. For no female/race
category is the influence of AGE significant, while for every male/race category, logAGE is
found to be significant when added to the linear y – BMI model obtained initially. Table 4
reports these models along with the predicted body fat for each race conditional on AGE.
Thus, a 30-year-old African-American male with BMI = 30 would be predicted to have body
fat of 22.4±3.6 kg, while similar Asian, Caucasian and Hispanic males are predicted to have
body fats of 22.5±2.9, 24.9±4.8 and 23.3±4.2 kg, respectively. At age 60, these predictions
would be 25.4±3.5, 24.3±3.6, 28.2±4.8 and 24.8±4.2 kg. Thus Caucasian males have higher
body fat irrespective of age, but African American males’ body fat increases with age faster
than Asians and Hispanics.

Conclusions
In this paper we have explored a large data set containing observations on body fat, BMI and
age categorized by race and sex. Using sophisticated statistical methods, no evidence has
been found to support the functional forms that have traditionally been proposed for
modelling this relationship, for it appears that, irrespective of race, body fat and BMI are
linearly related for males, with age entering logarithmically and with a positive effect on
body fat. Where race makes an impact is in terms of the differential response of body fat to
increases in BMI, with predicted body fat increasing more rapidly with higher BMI for
Caucasian males and less rapidly for Asian males.

In contrast, age is not a significant predictor of body fat for females, but the relationship
between body fat and BMI is nonlinear except for Asians, for which the sample is relatively
small and contains very few individuals with large BMIs. This finding of nonlinearity is
interesting in itself, as it may be of importance when studying and understanding the biology
of energy stores. At the very least, it challenges researchers to explain the physiological
processes that underlie the nonlinearity, which can amount to differences in up to 3 kg in
predicted body fat compared to linear fits at the upper extremes of our data values and which
is bordering on practical significance. Overall, Caucasian females have higher predicted
body fat than other races, except at low BMIs, where Asian females are predicted to have
the highest body fat.
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In all categories, prediction standard errors are in the range of 3 to 5 kg, depending on sex
and race (Asians have prediction standard errors of 2.9 kg, regardless of sex, while
Caucasians have the largest standard errors: 4.8 kg for males and 4.1 kg for females). Thus
using BMIs to make predictions about body fat should be done with caution, as they will
depend upon race, sex and age and can have wide prediction intervals. Nevertheless, the
findings reported here are of practical importance for informing the current debate on
whether the standard BMI cut-off values for overweight and obesity (25 and 30 respectively)
should apply to all sex and racial groups given that these BMI values are shown to
correspond to different levels of adiposity in different groups.
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Figure 1.
Male data (n = 448). Confidence ellipses for (λ, ø): outer ellipse, 95%; inner ellipse 70%.
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Figure 2.
Males (n = 448). Scatter plot of body fat versus BMI with linear fit superimposed.
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Figure 3.
Female data (n = 1435). Confidence ellipses for (λ, ø): outer ellipse, 95%; inner ellipse 70%.
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Figure 4.
Females (n = 987). Scatter plot of body fat versus BMI with linear and nonlinear fits
superimposed.
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Figure 5.
Estimated conditional mean functions for females categorized by race.
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Table 1

Race and sex categorization of data. Numbers in parentheses denote outliers (see text).

Race Male Female Total

African American 86 (3) 266 (0) 352 (0)

Asian 41 (0) 64 (0) 105 (0)

Caucasian 166 (3) 455 (0) 621 (3)

Hispanic 140 (2) 189 (3) 329 (5)

Other 23 (0) 16 (0) 39 (0)

All 456 (8) 990 (3) 1446 (11)
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Table 2

Functional forms for data categorised by sex and race.

Race Male Female

African American λ̂= 0.72 (0.22), ø̂ = 0.44 (1.08)
y = −34.5 + 1.96BMI

λ̂= 0.80 (0.10), ø̂ = 0.14 (0.22)

Asian λ̂= 0.89 (0.71), ø̂ = 0.71 (2.08)
y= −20.3 + 1.45BMI

λ̂= 0.18 (0.28), ø̂ = −0.17 (0.92)
y= −22.6 + 1.77BMI

Caucasian λ̂= 0.73 (0.15), ø̂ = −0.14 (0.75)
y = −42.4 + 2.31BMI

λ̂= 0.85 (0.06), ø̂ = 0.29 (0.16)

Hispanic λ̂= 1.06 (0.16), ø̂ = 1.31 (0.53)
y = −30.7 + 1.83BMI

λ̂= 0.56 (0.12), ø̂ = −0.75 (0.39)
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Table 3

Predicted body fat (kg) from selected models.

Males

BMI African American Asian

18.5 y = 1.8 ± 3.6 y = 6.5 ± 2.9

25 y = 14.5 ± 3.6 y = 15.9 ± 2.9

30 y=24.3 ± 3.6 y =23.2 ± 2.9

BMI Caucasian Hispanic

18.5 y = 0.3 ± 4.8 y = 3.2 ± 4.2

25 y= 15.3 ± 4.8 y= 15.0 ± 4.2

30 y=26.9 ± 4.8 y =24.2 ± 4.2

Females

BMI African American Asian

18.5 y = 7.5 ± 4.1 y = 10.1 ± 2.9

25 y =21.8 ± 4.1 y =21.6 ± 2.9

30 y = 31.9 ± 4.1 y =30.5 ± 2.9

BMI Caucasian Hispanic

18.5 y = 8.0 ± 4.1 y = 7.4 ± 3.7

25 y =22.3 ± 4.1 y =21.5 ± 3.7

30 y =32.6 ± 4.1 y =30.9 ± 3.7
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Table 4

Predicted male body fat (kg) conditional on AGE.

AGE African American
y = −52.2 + 2BMI + 4.3 log AGE

Asian
y = −29.2 + 1.44BMI+ 2.5log AGE

20 y = −52.2 + 2BMI ± 3.7 y = −21.7 + 1.44BMI ± 2.9

30 y= −37.6 + 2BMI ± 3.6 y = −20.7 + 1.44BMI ± 2.9

40 y = −36.3 + 2BMI ± 3.6 y = −20.0 + 1.44BMI ± 2.9

50 y= −35.4 + 2BMI ± 3.5 y = −19.4 + 1.44BMI ± 2.9

60 y= −34.6 + 2BMI ± 3.5 y = −18.9 + 1.44BMI ± 2.9

70 y = −33.9 + 2BMI ± 3.5 y = −18.6 + 1.44BMI ± 2.9

AGE Caucasian
y = −57.4 + 2.2SM + 4.8log AGE

Hispanic
y = −39.0 ± 1.83BM + 2.2log AGE

20 y = −43.0 + 2.2BMI ± 4.8 y = −32.5 + 1.83BMI ± 4.2

30 y = −41.1 + 2.2BMI ± 4.8 y = −31.6 + 1.83BMI ± 4.2

40 y = −39.7 + 2.2BMI ± 4.8 y = −31.0 + 1.83BMI ± 4.2

50 y = −38.6 + 2.2BMI ± 4.8 y = −30.5 + 1.83BMI ± 4.2

60 y = −37.8 + 2.2BMI ± 4.8 y = −30.1 + 1.83BMI ± 4.2

70 y = −37.0 + 2.2BMI ± 4.8 y = −29.8 + 1.83BMI ± 4.2
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