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ABSTRACT Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties
such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited
by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses
some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations.
A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application
of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image
changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use
these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the
diffusion coefficient of capping proteins in the lamellipodium.We found values ~0.5mm2/s, suggesting capping protein association
with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-
actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network.
4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked
single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected
with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between un-
docking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.
INTRODUCTION
Advances in microscopic imaging continues to create unique
demands for particle tracking in biological systems (1–4).
Examples of tasks that involve tracking of bright spots
includevirus trafficking in live cells (5),motion of transmem-
brane proteins on the cell membrane (6), cell microrheology
(3,4), dynamics and fusion of secretory and synaptic vesicles
(7–10), and tracking of cytoskeletal proteins (11–14).

The field of algorithm development for particle tracking
has a rich history. There are three approaches to apply
these algorithms to biological systems. First, close collab-
oration among biologists, computer scientists, and physi-
cal scientists to develop specialized software (2). Second,
many labs resort to commercial software. The latter,
however, have the disadvantage that they are expensive,
often require additional modules, and need to be modified
by the vendor. Finally, a third possibility is to use open-
source software tools that may be directly applied, or de-
pending on the flexibility of the program, modified for a
specific system.

One of the first freely available particle tracking tools was
developed in IDL (15,16) to track the positions of colloidal
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particles. This algorithm involved image restoration fol-
lowed by detection of particle positions and linking of posi-
tions into trajectories. This code has been converted to the
MATLAB (The MathWorks, Natick, MA) and Cþþ
languages and extended in three dimensions (17,18). It has
also been adapted in the MATLAB program PolyParticle-
Tracker (19). GMimPro is a detection and tracking software
available as a compiled Windows program (20,21). Freely
available MATLAB code for particle tracking further
includes u-track (22), MTT (23), and plusTipTracker (24)
(optimized for tracking microtubule plus-ends). The pro-
grams ‘‘u-track’’ and ‘‘MTT’’, developed for tracking dense
particle systems, use various criteria for deciding the likeli-
hood of particle merging, starting, stopping, and gaps in
detection failure.

Because the MATLAB platform is not always available,
many researchers have contributed tracking algorithms as
plug-ins for the open-source image analysis program Im-
ageJ (National Institutes of Health, Bethesda, MD). Some
open-source plug-ins are MTrack2, Manual Tracking, and
Particle Tracker (25). The latter is based on the MATLAB
code and methods developed in Sbalzarini and Koumoutsa-
kos (26). Free ImageJ plug-ins, available as .jar files
(compiled code), include MTrackJ (27) and SpotTracker
(28).
doi: 10.1016/j.bpj.2011.09.007
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All tracking algorithms start failing at low signal/noise
ratio (S/N) and at high particle mobility during camera ex-
posure. These challenging situations are common in single
molecule studies in live cells (11,29). Another challenge
occurs when one is interested in a small subset of particles
within a heterogeneous population, such as single vesicles
that fuse with the plasma membrane or with supported bila-
yers (7–10,30). The challenge is to track only that subset. In
all those cases, the primary question is whether valid single
particle tracks can be obtained at all.

To address the above challenges we developed an open-
source particle-tracking tool, Speckle TrackerJ, as an
ImageJ plug-in (31), with the following two-tier strategy:

1. Tracks are obtained with rough positioning accuracy,
using user assistance and supervision when needed.

2. The positioning accuracy and precision of the existing
tracks are improved.

This iterative approach is much more efficient than trying
to achieve the best tracking performance in a single step in
the challenging cases described above. The user can control
which of the candidate particles to track over time with the
aid of tracking models. We designed models that use the ex-
pected behavior of particles to improve detection and
tracking. A modular construction allows modification and
design of new tracking models. Our method is particularly
useful when measuring particle lifetimes—i.e., trajectory
length—in the presence of noise and blinking where user
input is required to distinguish broken trajectories from
real appearance and disappearance events.

We demonstrate that Speckle TrackerJ compares well
with related software in control synthetic image sequences
that cover a range of noise levels and particle mobilities.
We then proceed to demonstrate the successful application
of our method to four different challenging experimental
situations: 1), dynamics of single capping proteins at the
leading edge of motile cells; 2), single-molecule actin
speckle lifetimes in lamellipodia; 3), release and diffusion
of single fluorescent lipids from vesicles upon fusion with
supported, planar bilayers; and 4), docking-to-fusion life-
times of vesicles fusing with planar-supported bilayers
mediated by soluble n-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) proteins. In none
of these situations could other existing software be used
satisfactorily.
MATERIALS AND METHODS

Particle representation

Trajectories of particles through time are recorded as speckle tracks. Each

point of a track is represented by a speckle mark. Tracks can be created and

modified by a user or through computer-assisted techniques. Computer-as-

sisted tracking is divided into three steps: Step 1), detection of speckle mark

candidates; Step 2), tracking through time to create a speckle track using

a model; and Step 3), refinement of speckle mark positions. These steps
can be repeated manually or using batch tracking. At any point during

this process, the speckle tracks can be modified (see User Interface section

in the Supporting Material).
Detecting particles

We implemented two detection methods:

1. Locate-Speckles. Uses a threshold value to create a binary image. A two-

pass connected components algorithm is then applied to find speckle

mark candidates.

2. Template-Locate. Performs the same operation as the Locate-Speckles

method except that it uses existing speckle marks to create a normalized

cross-correlation (NCC) filtered copy of the image. The NCC template

is created by averaging a square region of adjustable size centered at

existing speckle marks.
Tracking

Tracking has been separated into two components: the tracker algorithm

(see Fig. S2 in the Supporting Material) and the tracker models. The tracker

algorithm applies the selected model successively from frame to frame and

records which speckle tracks are being modified; models modify speckle

tracks by adding new marks (some only refine their position).

Tracker algorithm

Before the tracker starts, it initializes the selected model with existing

speckle tracks (which tracks are used depends on the model). After initial-

ization, the tracker creates a tracking list, a list of speckle tracks to be up-

dated. The tracking loop begins by passing a speckle track and the current

timeframe to the model, which then determines how to continue to the

track. If the model determines that a track ends, the track is removed

from the list. After the model finishes, the tracker checks the tracking list

for speckle tracks that overlap. Overlap occurs if two tracks have a speckle

mark on the same frame and the distance between those marks is less than

a user-adjustable minimum distance parameter. If the tracking list is not

empty, the tracker will move to the next frame and start the tracking loop

again.

Tracker models

We implemented tracking models that use fixed and adaptable parameters

(see Supporting Material and (31)). Adaptable-parameter models ‘‘learn’’

as tracking proceeds.

Diffusing-Spots is an adaptable-parameter model that adds a new mark to

the speckle track in the frame immediately after the last frame that has

already been marked. It searches for a new mark within a square region

centered at the previous mark. The model is initialized by calculating the

average intensity, hIi, the variance in intensity, sdI
2, and the variance in

frame to frame displacement, sd
2, calculated using all speckle marks

from either the selected speckle track, if Auto-Track was used to start the

tracker, or all existing tracks, if Auto-Track All was used. The intensity

measurements are made by integrating the pixel intensity over a circle

centered at the position of each speckle mark. The radius is a user-adjust-

able parameter. To predict the position of the next speckle mark, the model

finds all pixels that are local maxima within the square search region. For

each candidate location, the intensity, I, change in intensity from the

previous frame, dI, and the displacement from the previous frame, d, is

measured and used to generate weights,

wi ¼ eðI�hIiÞ=ðhIi�ImÞ;
wdI ¼ e�dI2=ð2s2dIÞ;
wd ¼ e�d2=ð2s2dÞ;

(1)
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where Im is the mean value of the intensity in all frames of the movie being

analyzed. If I is >hIi, wi is set to 1. The weights are summed with user-

adjustable factors, fi, fdI, and fd, to get a combined weight:

w ¼ wifi þ wdI fdI þ wdfd; fi þ fdI þ fd ¼ 1: (2)

The best candidate is accepted if w > wmin. If no candidate satisfies this

condition, the track stops.

Diffusing-NCC is similar to Diffusing-Spots but it takes into account

NCC values. Initialization consists of measuring the average intensity I

over a circle and NCC value at every speckle mark position using a square

template made from all speckle marks. To find a new candidate location, the

model checks the square search region for the location with the maximum

NCC value. Then the intensity and NCC value are measured at that location

and used in a weighting function

w ¼ e�½ðI�hIiÞ2=ð2s2I Þ�e�a½ðNCC�hNCCiÞ2=ð2s2NCCÞ�; (3)

where averages and standard deviations are over all existing speckle marks

and a is an adjustable parameter. If w is smaller than a threshold wmin, the

track ends.

The Constant-Velocity-NCC model is the same as Diffusing NCC but the

search for the best candidate occurs over a square whose center is displaced

from the position of the previous speckle mark. This method is useful in

cases where particles move with constant velocity.
Refine position

Speckle tracks can be refined to improve the position of existing speckle

marks (see Supporting Material). The Adjustment model modifies existing

speckle tracks by moving them to the center of intensity. The Gaussian-Fit

model refines the position of speckles with subpixel accuracy by fitting a

two-dimensional Gaussian to the intensity near a speckle mark.
Experiments

Details of experimental protocols can be found in Supporting Material. In

summary, live cell imaging of XTC cells was carried out as described in

Miyoshi et al. (29). Fluorescent speckle microscopy was carried out by

observing cells expressing a low amount of EGFP-tagged proteins. Imaging

acquisition was carried out at 21–23�C using PlanApo 100� (NA 1.40) or

150� (NA 1.45) oil objectives (Olympus, Melville, NY).

Single-vesicle docking and fusion experiments were performed as

described in detail in Karatekin et al. (32). Synaptic/exocytic vesicle-asso-

ciated v-SNARE proteins VAMP2/synaptobrevin and the target membrane

associated t-SNAREs syntaxin and SNAP25 were reconstituted into small

unilamellar vesicles (SUVs) and planar, supported bilayers (SBLs), respec-

tively. The SUVs carry a small fraction of fluorescently labeled lipids.

We used total internal reflection fluorescence microscopy (TIRFM) at

31 frames/s full-frame (512 � 512 pixels) or at 57 frames/s from

a 400 � 256 pixel region of interest using a back-thinned electron-multi-

plying charge-coupled device camera (iXon DU897E; Andor Technology,

Belfast, Northern Ireland).
FIGURE 1 Standard deviation, ε, of the difference between particle posi-

tion and speckle mark after refining with Gaussian-Fit, versus 1/S/N and

ratio of point-spread function width to pixel size, s/l. Simulated particles

were tracked as described in section S5 of the Supporting Material. The

graphs shows data from Fig. 4 of Sbalzarini and Koumoutsakos (26)

(s/l ¼ 1) and Fig. 6 of Cheezum et al. (33) (s/l z 1), who compared

Gaussian-Fit and centroid algorithms. We did not include the lowest S/N

data in Cheezum et al. (33) because some of these data points fall outside

of the graph.
RESULTS

Speckle TrackerJ was designed with the ability to correctly
follow multiple moving particles over their lifetimes in the
presence of inhomogeneous backgrounds, noise, particle
crossings, and multiple sources of intensity fluctuations.
We have, however, implemented standard methods for
subpixel particle localization, such as two-dimensional
Biophysical Journal 101(7) 1794–1804
Gaussian fitting. In Fig. 1 we demonstrate how the localiza-
tion accuracy ε of our program depends on S/N and pixel
size (26,33) (see the Supporting Material). We find ε scales
approximately linearly with s/l and inverse of S/N, as in
other algorithms (15,34).

Below, we describe tests of our program, starting from
simulated images of diffusing particles. We compare to
other tracking tools in images of increasing complexity
such as very high dynamic error and low S/N. We proceed
to demonstrate the application of our method to experi-
mental systems in which other free tools were unable to
provide us with results due to additional complexities.
Single molecule diffusion simulations

A common task in particle tracking is measuring the
diffusion coefficient, D. To validate and test the software,
we generated simulated images of diffusing particles with
different background noise levels (Fig. 2 A). We simulated
point particles that perform random walks, contributing
to the intensity of the image as they move during the expo-
sure time, texp. The simulated camera exposure time was
50 ms and a pixel (px) represented 100 nm, similar to the
experiments below. The time step dt ¼ 0.0001 px2/(4 D)
was adjusted such that the diffusion distance per dt is
much less than a pixel. At each time step, particles were dis-
placed by a distance selected from the two-dimensional
diffusion propagator probability distribution. The intensity
of each particle was convolved with a Gaussian kernel
of standard deviation 2 px, representing the point-spread
function.



FIGURE 2 Tracking simulated diffusing parti-

cles. (A) Simulated images with increasing diffu-

sion coefficients (left to right). (Bottom row)

Same images with increased noise. (B) Marked

trajectories. (C) MSD for individual tracks for

D ¼ 1 mm2/s (low noise). (D) Averaged MSD plots

for different diffusion coefficients in Table 1. Error

bars are mean 5 1 SD. (Inset) Enlarged version.
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Further, we simulated the effects of camera noise, by
adding normally distributed noise. We define the S/N ratio,
S/N ¼ I/snoise, where I is the average intensity (above the
background) at the position of the speckle mark and snoise
is the standard deviation of the intensity at the same position
(26,33). These simulations did not include other sources of
error such as fixed pattern noise, vibrations, drift, or fluctu-
ations in the intensity of the fluorescent marker being
tracked (3) (see Discussion).

In Fig. 2 A, slowly diffusing particles appear as small
bright spots. With increasing D, diffusing particles appear
as dimmer and more spread-out clouds due to diffusion
during the exposure. This contributes to dynamic error
(34,35). In addition, fast-moving particles move farther, so
there are more crossed paths, which greatly hinders auto-
tracking. The presence of noise especially limits the ability
to detect clouds of fast-moving particles.
TABLE 1 Results of tracking particles in simulated images using t

u-track

D (mm2/s) S/N 4/3 D texpþ2ε2 (px2) s2 (px2) D (mm2/

0.01 22.6 0.071 0.071 5 0.0012 0.011

0.01 4.4 0.17 0.186 5 0.003 0.011

0.1 20.4 0.67 0.68 5 0.012 0.10

0.1 3.7 0.82 0.79 5 0.013 0.11

1 6.3 6.8 6.9 5 0.12 0.99

1 2.9 6.8 7.1 5 0.13 1.01

4 3.4 27 33.8 5 0.9 3.4

4 2.1 27 28 5 1.1 3.5

Columns 1 and 2 show simulated diffusion coefficient and S/N value. Column 3

Static error was calculated using the value of S/N and Fig. 1. The remaining co

*Unable to find good tracking parameters.
We tracked the particles in these images with our soft-
ware and with two other software suites that have well-
developed interfaces to handle complex tracking problems:
Particle Tracker (26), which is based on the method devel-
oped by Crocker and Grier (15) and u-track (22). We tracked
particles with our program using the Diffusing-Spots model
and refined their positions using the Adjustment model fol-
lowed by Gaussian-Fit (Fig. 2 B). To evaluate the accuracy,
we measured the variance, s2, of the distance between the
speckle mark and the position of the simulated particle at
the end of each exposure.

For low-diffusion coefficients, 0.01–0.1 mm2/s, all three
particle trackers performed well, even at S/N below 4 (see
Table 1). We were able to track the majority of the particles
in the images through the end of the simulation (301 frames),
with little need to fine-tune the program parameters (see
Table S1 in Supporting Material). The calculated value of
hree different software tools

Particle Tracker Speckle TrackerJ

s) s2 (px2) D (mm2/s) s2 (px2) D (mm2/s)

0.082 5 0.0014 0.011 0.071 5 0.0012 0.011

0.266 5 0.006 0.010 0.236 5 0.004 0.011

0.68 5 0.011 0.11 0.68 5 0.012 0.11

0.85 5 0.07 0.068 0.8 5 0.013 0.10

6.8 5 0.12 1.0 6.9 5 0.12 0.98

7.5 5 0.4 0.91 7.7 5 0.13 1.0

35.7 5 2.0 4.3 36 5 1.0 3.7

* * 47 5 2.1 3.6

shows the theoretical value for s2, a sum of dynamic error and static error.

lumns show calculated s2 and D.

Biophysical Journal 101(7) 1794–1804
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s2 was consistent with the theoretical limit s2 > 4/3 Dtexp þ
2ε2, where ε is the static error in the absence of motion and
4/3 Dtexp represents dynamic error (34). The calculated
diffusion coefficients from plots of mean-square displace-
ment (MSD) versus lag time achieved an accuracy >10%
in most cases. These results suggest that our software is
comparable to the existing tools under conditions that
demand subpixel accuracy,where particlesmove on the order
of %1 pixels per frame.

At the larger diffusion coefficients, 1 and 4 mm2/s, high
dynamic error and low S/N makes tracking particles more
challenging. Due to motion during exposure, the intensity
of a particle can be so low that it is not discernable from
the background.

For the high D cases, tuning the parameters in u-track and
Particle Tracker leads to a tradeoff between broken tracks,
due to missed particles, and many short-lived false positives
(see Table 1 and Table S1). Although the performance can
be optimized through tracking and linking parameters,manu-
ally pruning and merging tracks is not provided by the soft-
ware. To address this issue, we limited our analysis to
tracks that are longer than 20 frames. By doing this, we found
the calculated diffusion coefficients were within 15% of the
actual values. At high diffusion coefficients particles cross
frequently, and during fully automated detection we could
not exclude regions with clusters of particles. Some longer
tracks were generated by switching from particle to particle.

An advantage of Speckle TrackerJ is the ability to track
particles selectively. We were able to achieve the same accu-
racy in measuring high D values by seeding candidate
speckle marks in regions with isolated particles and then
Auto-Tracking. Even when Auto-Track failed after 10
frames, multiple tools allowed us to quickly find and manu-
ally join broken tracks and thus continue the track. For the
highest noise and diffusion, both Speckle TrackerJ and
u-track produced a similar number of total marks and a
similar diffusion coefficient but the resulting tracks are quite
different. Speckle TrackerJ yielded a few long tracks (see
Table S1), which is an important aspect of particle tracking.

Each tracker required a similar amount of time to track
particles. For problems that were tractable, the automated
solutions for all three programs offered an advantage. For
the more complicated scenarios, where it was impossible
to automatically track all of the particles, Speckle TrackerJ
quickly produced representative tracks. Selecting valid
tracks is the main rate-limiting step in the analysis of the
following experiments where a significant number of bright
features such as clumps of immobile fluorophores need to be
excluded from analysis.
Capping proteins at the leading edge of motile
cells

Capping protein (CP) plays a critical role in regulation of
actin-based structures, such as lamellipodial protrusions
Biophysical Journal 101(7) 1794–1804
and actin patches in yeast (36,37). The a- and b-CP subunits
bind to free barbed ends of actin filaments, blocking access to
the barbed end. CP also interacts with phosphatidylinositol
4,5-bisphosphate (38). CP binding to membranes near the
leading edge of motile cells may play a role in recruitment
of CP protein to the leading edge (39,40). CP bound to the
actinmeshwork in lamellipodia dissociates from the network
~25-fold faster than actin subunits (29). These findings sug-
gested that cofilin-mediated actin filament severing triggers
CP dissociation from the actin network by frequent severing.
Fast severing and annealing reactions may contribute to
structural reorganization of the actin network from the highly
branched brushwork at the leading edge to the less branched
network along the direction of retrograde flow (37).

To better understand why CP dissociates so fast in lamel-
lipodia, we inspected diffuse CP, which would be separate
from the actin network. We expect the diffusion coefficient
of CP to represent the size of the protein, or protein complex
to which they are attached. We performed experiments on
XTC cells expressing EGFP-CPb1 at low amounts and
acquired images of the cell edge showing single CPs
(Fig. 3, A and B). CP associated with the actin meshwork
has a diffraction-limited spot appearance, whereas the faster
diffusing species are more spread-out clouds (Fig. 3, A and
B) similar to simulated images (Fig. 2 A).

Tracking clouds of diffusing CP in Fig. 3 is challenging
because of low S/N, high dynamic error, the presence of
many static speckles and, occasionally, organelles that
happen to contain fluorophores. The flexibility of our soft-
ware allowed us to successfully track several of those
diffusing molecules for 8–30 frames and calculate their indi-
vidual MSD versus lag-time curves (Fig. 3 C). Fitting each
MSD plot to a line, we calculated a distribution of diffusion
coefficients, D (Fig. 3 D). The measured D values are in the
range 0.2–2 mm2/s. Because we only tracked the CP
speckles for as few as 10 frames, this range may represent
measurement error: the accuracy in the measurement of D
is lower when using shorter tracks. To evaluate this effect,
we tracked particles in simulated images for 10 frames,
with same exposure time and pixel size as in the experiment
(41). Each particle had D ¼ 0.6 mm2/s, and low noise was
added to the image, same as in Fig. 2 A. We found a spread
of D values similar to the spread of values in experiments
(Fig. 3 D). We also note that the experimental images may
include a population (we estimated %50%) of CP with
D > 1 mm2/s that could not be tracked.
TheD values in Fig. 3D are much lower than those of pro-

teins of similar molecular weight, e.g., actin monomers that
are near 5 mm2/s (42). An intriguing hypothesis is that these
slowly diffusing CPs are short severed actin filament oligo-
mers. This would be consistent with the suggestion of
Miyoshi et al. (29) that shortCP lifetimes represent rapid actin
filament severing near the barbed end. Future work is re-
quired, however, to test alternative mechanisms such as slow
diffusion due to association of CP with the cell membrane.



FIGURE 3 Tracking diffusing CPs at the leading

edge of XTC cells. (A) Maximum intensity projec-

tion from a time-lapse recording of GFP-labeled

CP at the leading edge. (Dashed line) Outline of

leading edge. Exposure time was 66 ms and 1

pixel ¼ 80 nm. Diffuse structures are diffusing

molecules. (Bright speckles) CP proteins bound

to the actin meshwork. (B) Enlarged section of

box of panel A, single frame. (Line) Trace of a

speckle track. (Middle arrow) Start of track. (Top

arrow) Another diffusing speckle. (Bottom arrow)

Cloud too mobile to track for enough frames. (C)

MSD plots for individual speckle tracks from the

time-lapse recording. (D) Distribution of diffusion

coefficients found by fitting individual MSD curves

with straight lines. Experimental: 22 tracked CPs.

Simulated: results of tracking simulated particles

for 10 frames with comparable conditions to the

experiment: D ¼ 0.6 mm2/s, 66 ms exposure,

1 px ¼ 80 nm. Bin sizes are 0.14 mm2/s. Scale

bars, 2 mm.
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Actin speckle lifetimes in lamellipodia

An important application of particle tracking involves mea-
surements of lifetimes of actin monomers and tubulin
dimers incorporated into filaments (11,13,29,43). When
labeled actin or tubulin are in sufficiently low abundance
compared to the unlabeled pool, polymerized labeled sub-
units appear as discrete speckles (Fig. 4 B) (11). Signals
from diffusing subunits are much weaker because their
intensity is distributed over several pixels (Fig. 2 A). De-
pending on the marker concentration, the speckles may
represent single molecules (11,13,29,43) or groups of few
labeled molecules (12,44). Single molecule speckle micros-
copy has shown that the dynamics of the cytoskeleton are
characterized by continuous remodeling, involving constant
assembly and disassembly that corresponds to speckle ap-
pearance and disappearance events in the images. Measure-
ments of speckle lifetimes (time interval between speckle
appearance and disappearance) have shown a broad distri-
bution of lifetimes of actin in lamellipodia and tubulin in
spindles (11,13,29). Tracking of speckle motions also pro-
vides information on filament transport (11–13,29,44).

We expressed EGFP-actin in XTC cells (11,29); see
Fig. 4 A. We used cells with low EGFP-actin concentration
(Fig. 4 B). In this panel, each speckle is a single actin mono-
mer bound to the actin meshwork of the lamellipodium.
During the course of the video (4 s intervals at 2 s expo-
sure/frame), the actin speckles move away from the leading
edge due to retrograde flow, as shown by the tracks in Fig. 4B.
Using the Constant-Velocity-NCC model, we tracked 900
actin speckles within 5 mm of the leading edge in 3–6 h,
much faster compared to >12 h with the previous method
(11). Each track was carefully checked: the automatic
tracking still needed to be monitored to make sure of false-
positives and speckle tracks that end prematurely due to gross
changes in the background or blinking.

Fig. 4 C shows a typical graph of the intensity of a speckle
through its lifetime. Measurements of speckle lifetimes
demonstrate the rapid turnover of actin in the lamellipodium
(Fig. 4 D). To calculate the half-life of actin monomers we
adjusted the lifetimes to account for photobleaching and fit
the cumulative number of speckles with an exponential (11).
The measured half-life of 24 s is close to the previously
measured value of 30 s (11).
SNARE-mediated fusion of single liposomes
with supported bilayers, with single-molecule
sensitivity

With few exceptions, intracellular fusion reactions are medi-
ated by SNARE proteins; fusion is driven by pairing of
vesicle-associated v-SNAREs with cognate t-SNAREs on
the target membrane, resulting in a four-helix bundle
(SNAREpin) that brings bilayers into close proximity
(45,46). Much of our mechanistic understanding of
Biophysical Journal 101(7) 1794–1804



FIGURE 4 Speckle lifetime measurements. (A)

XTC cell expressing EGFP-actin at high concen-

trations in which actin filaments in the lamellipodia

appear as a continuous field. Scale: 8 mm. (B)

Leading edge of lamellipodium with very dilute

concentration of EGFP-actin. Single EGFP-actin

monomers appear as speckles. (Bottom) Tracked

speckles. Scale: 2.65 mm. (C) Intensity profile of

speckle marked (arrow) in panel B. (D) Histogram

of speckle lifetimes (n¼ 709). (Squares) Raw data.

(Columns) Data normalized for photobleaching.

Normalization and half-life estimation as in Wata-

nabe and Mitchison (11).

1800 Smith et al.
SNARE-mediated fusion, as of this writing, has come from
a bulk fluorescence dequenching assay in which small uni-
lamellar vesicles containing v-SNAREs (v-SUVs) are
mixed with SUVs containing t-SNAREs (t-SUVs) (45).

Recently, several researchers (47–50), including some of
our group (32), have developed assays in which docking and
fusion of single-vesicles with planar, supported bilayers
(SBLs) can be detected. Unlike other single-vesicle ap-
proaches (47–50), this assay recapitulates the requirement
for SNAP25, one of the essential t-SNARE components
in vivo, without need for an artificial peptide (49). Using
this assay, it was demonstrated previously that SUVs recon-
stituted with the synaptic/exocytic v-SNAREs VAMP/syn-
aptobrevin fused rapidly with planar SBLs containing the
synaptic/exocytic t-SNAREs syntaxin 1-SNAP25, with
single fusion events occurring ~130 ms after docking, and
requiring 5–10 SNARE complexes per fusion event (32).
Vesicles are continuously flown over the SBL. They dock
at a constant rate and a small subset of docked vesicles
fuse with the underlying SBL after a certain delay.
Diffusion of single fluorescent lipids from fused
vesicles in supported bilayers

We used TIRFM to visualize for the first time, to our knowl-
edge, the release and diffusion of single fluorescently
labeled lipid molecules that initially reside in the SUV and
become released into the SBL upon fusion of the two
membranes. Because the SUV size is small (~50 nm in
diameter (32)), SUVs labeled with the fluorescent lipid
Biophysical Journal 101(7) 1794–1804
LR-PE appear as diffraction-limited bright spots. After
fusion, the LR-PE molecules diffuse away from the fusion
site and become discernible as single speckles that can be
tracked with ~17ms time resolution (Fig. 5, A and B).
Greater than 90% of the spots bleach in a single step,
strongly suggesting they correspond to single-fluorophores.

The challenge for tracking here is that the background at
any time is filled with docked and unfused vesicles with a
very broad range of intensities (due to different vesicle sizes
and bleaching times), as well as with single molecules that
have survived from other fusions. After visually identifying
and seeding single molecules released from single fusion
events, we tracked 33 single LR-PEs diffusing in the SBL
that lasted >30 frames and calculated their MSD versus
lag time (Fig. 5 C). The averaged MSD (Fig. 5 D) increases
linearly with time, indicating a Brownian process. This
suggests that the lipids that anchor the polymer cushion
between the glass support and the SBL or membrane defects
are dilute enough that they do not perturb LR-PE diffusion
(51). We find D ¼ 1.6 mm2/s, in close agreement with the
diffusivity estimated previously from the increasing spread
of the overall fluorescence signal as a function of time after
fusion (32).
Analysis of vesicle docking and fusion events

Crucial information, only obtained by single-vesicle dock-
ing and fusion assays, is the lag time for fusion after a vesicle
docks onto the SBL. This time reflects molecular mecha-
nisms required for vesicles to become fusion-ready (e.g.,



FIGURE 5 Single lipid tracking following

vesicle fusion on a supported bilayer. (A) Montage

of TIRFM images. (Top left) Before docking; (top

right) docking; (bottom left) shortly after fusion;

(bottom right) more time after fusion. Released

lipids diffuse on the membrane. Residual lipids

from prior fusion events can be seen in the first

frame. (B) Image of tracked lipids. Images taken

at 67 frames/s. (C) MSD for individual lipid trajec-

tories. (D) Averaged MSD plots and linear fit from

33 lipids tracked for at least 30 frames. Error bars

are 1 SD of the mean. Scale: 2.67 mm (10 pixels).
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by recruitment of proteins via lateral diffusion to the fusion
site (32)) or rearrangements of the lipids/proteins leading to
membrane fusion.

Docking of a vesicle onto the supported bilayer is charac-
terized by the sudden appearance of a vesicle speckle,
because TIRFM selectively visualizes only those vesicles
very close to the surface (Fig. 6). In contrast, fusion events
are characterized by the spread of the fluorescence intensity
(initially concentrated within a SUV that appears as a dif-
fraction-limited spot) within the SBL after merging of the
SUV and SBL membranes.

Measuring docking-to-fusion delays is challenging
because: 1), The small subset of docked vesicles that fuse
need to be identified; 2), broken trajectories and false detec-
tions distort the lifetime of the docked state; 3), docked vesi-
cles have a broad intensity distribution; and 4), the vesicle
disintegrates into numerous small speckles rapidly after
fusion. Several algorithms have been designed for auto-
mated or lightly supervised detection of exocytosis events
in live-cell TIRFM studies (10,52,53). These dedicated
programs work well in specific applications, but are not
completely reliable when conditions (cell type, marker
properties, S/N) are changed. We have tested the program
by Sebastian et al. (53) and a similar one written by one
of us for SUV-SBL fusion, but have found that user input
is required for the most reliable analysis of docking-to-
fusion delays.
Two tools in Speckle TrackerJ assisted in identifying
fusion events:

The first tool is based on tracing the intensities within a
small circle around a vesicle and a ring just outside the
circle. When fusion occurs, the average intensity in the inner
circle initially increases sharply, within one frame: fluoro-
phores come closer to the glass-buffer interface where the
evanescent field intensity is higher, as well as due to polar-
ization and possible dequenching effects (8,47,54). As the
fluorophores leave the inner circle they enter the ring en-
closing it. Thus, as the intensity in the inner circle drops,
the intensity in the annulus increases (Fig. 6 B). This simple
criterion was used in the past for assisting detection of
fusion events (9).

The second tool is based on the projection of a sequence
of images (xyt) onto the y-t plane. A docked vesicle appears
as a bright line in such a projection, with the start of the
line corresponding to the frame in which the vesicle
docked. If the vesicle undocks, the line ends at the frame
when undocking occurred. In contrast, if the vesicle fuses,
then the dispersion of the fluorophores within the SBL
results in a cometlike appearance of the projected profile
(Fig. 6 C).

Fusing vesicles were identified as described above, and
were tracked from the first frame in which they docked until
the frame in which fusion occurred. A sample sequence is
shown in Fig. 6 A. From these trajectories, we calculated
Biophysical Journal 101(7) 1794–1804



FIGURE 6 Detection and analysis of fusion events. (A) Successive frames of image sequence of a vesicle that docked (frame 1246) and fused (frame 1289).

(B) Average intensities within an inner circle of 2.5 px radius centered at the position of the vesicle (top curve) and a surrounding ring 2.5 px wide (bottom

curve). (C) The y-t projection of an image sequence. Docked vesicle appears as a thin band (left arrow). Fusion results in formation of comet-tail appearance

(right arrow). (D) Probability that a vesicle survived without fusion beyond a given delay after docking (178 fusion events from 10 different acquisitions).
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the probability that a v-SUV survived beyond a delay t after
docking (i.e., the survivor function; see Fig. 6 D). The delay
time distribution matches closely the distribution obtained
previously using mainly manual analysis (32).
DISCUSSION

Speckle TrackerJ is most suited to situations where: 1), S/N is
very low and/or particle mobility during camera exposure is
high; 2), particles of interest constitute only a subset of all
particles; 3), particle lifetimes in addition to mobilities are
desired; and 4), particle densities are not too high so that
the user supervision/assistance during tracking is feasible.
The program can achieve subpixel resolution depending
on the background noise and size of the pixel. Interpreting
results that rely on subpixel resolution, however, requires care-
ful consideration of additional issues, such as camera fixed
pattern noise, vibration, shot noise, sample drift, and dynamic
error. We refer the reader to extensive discussions in the liter-
ature on the relative importanceof these factors and for recom-
mendations on how to select experimental conditions for
optimal tracking accuracy (3,4,18,34,35,55–58).

Tracking errors often lead to distorted MSD curves
(3,18,34). The ability to control the quality of the acquired
data in Speckle TrackerJ can help avoid possible artifacts
due to the assumptions of tracking algorithms. Of course
manual editing could also introduce errors: manual filling
of gaps in particle tracks could distort the resulting MSD
curves over the timescales related to the size of these
gaps. Various tools in Speckle TrackerJ allow for easier
testing and control of these issues.

There is a general trend toward fully automated, unsuper-
vised detection, tracking, and analysis of larger and larger
Biophysical Journal 101(7) 1794–1804
sets of data. However, at the forefront of single-molecule
or single-vesicle biological research there are many situa-
tions where the S/N is very low, particle mobility is high
during detection, a small subpopulation needs to be selec-
tively analyzed, and/or both the particles and the background
have broad intensity variations. Careful supervision of all
tracks is required in such challenging situations, especially
if the experimental approaches are new. The development
of Speckle TrackerJ grew out of the need for a flexible
tool combining supervised/assisted tracking with efficient
automated algorithms. When imaging conditions are suffi-
ciently good, Speckle TrackerJ allows unsupervised track-
ing with performance comparable to other, existing tools.
In extremely difficult situations, with light user assistance,
it allows obtaining and supervising tracks where existing
tools fail.
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23. Sergé, A., N. Bertaux, ., D. Marguet. 2008. Dynamic multiple-target
tracing to probe spatiotemporal cartography of cell membranes. Nat.
Methods. 5:687–694.
24. Matov, A., K. Applegate, ., T. Wittmann. 2010. Analysis of microtu-
bule dynamic instability using a plus-end growth marker.Nat. Methods.
7:761–768.

25. http://www.mosaic.ethz.ch/Downloads/ParticleTracker.

26. Sbalzarini, I. F., and P. Koumoutsakos. 2005. Feature point tracking and
trajectory analysis for video imaging in cell biology. J. Struct. Biol.
151:182–195.

27. http://www.imagescience.org/meijering/software/mtrackj/.

28. Sage, D., F. R. Neumann, ., M. Unser. 2005. Automatic tracking of
individual fluorescence particles: application to the study of chromo-
some dynamics. IEEE Trans. Image Process. 14:1372–1383.

29. Miyoshi, T., T. Tsuji,., N. Watanabe. 2006. Actin turnover-dependent
fast dissociation of capping protein in the dendritic nucleation actin
network: evidence of frequent filament severing. J. Cell Biol. 175:
947–955.

30. Huet, S., E. Karatekin, ., J. P. Henry. 2006. Analysis of transient
behavior in complex trajectories: application to secretory vesicle
dynamics. Biophys. J. 91:3542–3559.

31. http://athena.physics.lehigh.edu/speckletrackerj/.

32. Karatekin, E., J. Di Giovanni, ., J. E. Rothman. 2010. A fast, single-
vesicle fusion assay mimics physiological SNARE requirements. Proc.
Natl. Acad. Sci. USA. 107:3517–3521.

33. Cheezum, M. K., W. F. Walker, and W. H. Guilford. 2001. Quantitative
comparison of algorithms for tracking single fluorescent particles.
Biophys. J. 81:2378–2388.

34. Savin, T., and P. S. Doyle. 2005. Static and dynamic errors in particle
tracking microrheology. Biophys. J. 88:623–638.

35. Michalet, X. 2010. Mean square displacement analysis of single-
particle trajectories with localization error: Brownian motion in an
isotropic medium. Phys. Rev. E. 82:041914.

36. Pollard, T. D., and J. A. Cooper. 2009. Actin, a central player in cell
shape and movement. Science. 326:1208–1212.

37. Watanabe, N. 2010. Inside view of cell locomotion through single-
molecule: fast F-/G-actin cycle and G-actin regulation of polymer
restoration. Proc. Jpn. Acad. B Phys. Biol. Sci. 86:62–83.

38. Kim, K., M. E. McCully, ., J. A. Cooper. 2007. Structure/function
analysis of the interaction of phosphatidylinositol 4,5-bisphosphate
with actin-capping protein: implications for how capping protein binds
the actin filament. J. Biol. Chem. 282:5871–5879.

39. Fujiwara, I., K. Remmert, and J. A. Hammer, 3rd. 2010. Direct obser-
vation of the uncapping of capping protein-capped actin filaments by
CARMIL homology domain 3. J. Biol. Chem. 285:2707–2720.

40. Kuhn, J. R., and T. D. Pollard. 2007. Single molecule kinetic analysis of
actin filament capping. Polyphosphoinositides do not dissociate
capping proteins. J. Biol. Chem. 282:28014–28024.

41. Goulian, M., and S. M. Simon. 2000. Tracking single proteins within
cells. Biophys. J. 79:2188–2198.

42. McGrath, J. L., Y. Tardy, ., J. H. Hartwig. 1998. Simultaneous
measurements of actin filament turnover, filament fraction, and mono-
mer diffusion in endothelial cells. Biophys. J. 75:2070–2078.

43. Yang, G., B. R. Houghtaling, ., T. M. Kapoor. 2007. Architectural
dynamics of the meiotic spindle revealed by single-fluorophore
imaging. Nat. Cell Biol. 9:1233–1242.

44. Danuser, G., and C. M. Waterman-Storer. 2006. Quantitative fluores-
cent speckle microscopy of cytoskeleton dynamics. Annu. Rev.
Biophys. Biomol. Struct. 35:361–387.

45. Weber, T., B. V. Zemelman, ., J. E. Rothman. 1998. SNAREpins:
minimal machinery for membrane fusion. Cell. 92:759–772.

46. Hu, C., M. Ahmed,., J. E. Rothman. 2003. Fusion of cells by flipped
SNAREs. Science. 300:1745–1749.

47. Liu, T., W. C. Tucker, ., J. C. Weisshaar. 2005. SNARE-driven,
25-millisecond vesicle fusion in vitro. Biophys. J. 89:2458–2472.

48. Fix, M., T. J. Melia,., S. M. Simon. 2004. Imaging single membrane
fusion events mediated by SNARE proteins. Proc. Natl. Acad. Sci.
USA. 101:7311–7316.
Biophysical Journal 101(7) 1794–1804

http://cshprotocols.cshlp.org/content/2009/12/pdb.top65.abstract
http://cshprotocols.cshlp.org/content/2009/12/pdb.top65.abstract
http://physics.nyu.edu/grierlab/software.html
http://www.physics.emory.edu/~weeks/idl/
http://www.nimr.mrc.ac.uk/gmimpro/
http://www.mosaic.ethz.ch/Downloads/ParticleTracker
http://www.imagescience.org/meijering/software/mtrackj/
http://athena.physics.lehigh.edu/speckletrackerj/


1804 Smith et al.
49. Domanska, M. K., V. Kiessling, ., L. K. Tamm. 2009. Single vesicle
millisecond fusion kinetics reveals number of SNARE complexes
optimal for fast SNARE-mediated membrane fusion. J. Biol. Chem.
284:32158–32166.

50. Bowen, M. E., K. Weninger, ., S. Chu. 2004. Single molecule obser-
vation of liposome-bilayer fusion thermally induced by soluble n-ethyl
maleimide sensitive-factor attachment protein receptors (SNAREs).
Biophys. J. 87:3569–3584.

51. Deverall, M. A., S. Garg, ., C. A. Naumann. 2008. Transbilayer
coupling of obstructed lipid diffusion in polymer-tethered phospholipid
bilayers. Soft Matter. 4:1899–1908.

52. Mele, K., A. Coster, ., P. Valotton. 2009. Automatic identification of
fusion events in TIRF microscopy image sequences. In Computer
Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on Kyoto. 578–584.
Biophysical Journal 101(7) 1794–1804
53. Sebastian, R., M. E. Diaz, ., D. Toomre. 2006. Spatio-temporal anal-
ysis of constitutive exocytosis in epithelial cells. IEEE/ACM Trans.
Comput. Biol. Bioinform. 3:17–32.

54. Axelrod, D., T. P. Burghardt, and N. L. Thompson. 1984. Total internal
reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13:247–268.

55. Thompson, R. E., D. R. Larson, and W. W. Webb. 2002. Precise nano-
meter localization analysis for individual fluorescent probes.
Biophys. J. 82:2775–2783.

56. Wu, P. H., A. Agarwal, ., Y. Tseng. 2010. Analysis of video-based
microscopic particle trajectories using Kalman filtering. Biophys. J. 98:
2822–2830.

57. Wu, P. H., S. H. Arce, ., Y. Tseng. 2009. A novel approach to high
accuracy of video-based microrheology. Biophys. J. 96:5103–5111.

58. Berglund, A. J. 2010. Statistics of camera-based single-particle
tracking. Phys. Rev. E. 82:011917.


	 Interactive, Computer-Assisted Tracking of Speckle Trajectories in Fluorescence Microscopy: Application to Actin Polymeriza ...
	 Introduction
	 Materials and Methods
	 Particle representation
	 Detecting particles
	 Tracking
	 Tracker algorithm
	 Tracker models

	 Refine position
	 Experiments

	 Results
	 Single molecule diffusion simulations
	 Capping proteins at the leading edge of motile cells
	 Actin speckle lifetimes in lamellipodia
	 SNARE-mediated fusion of single liposomes with supported bilayers, with single-molecule sensitivity
	 Diffusion of single fluorescent lipids from fused vesicles in supported bilayers
	 Analysis of vesicle docking and fusion events

	 Discussion
	 Supporting Material
	 References


