
Biophysical Journal Volume 101 October 2011 1569–1579 1569
Physical Limits on Cooperative Protein-DNA Binding and the Kinetics
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ABSTRACT Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. Although
studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quan-
titative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-
binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and
binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search
pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad
range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the function-
ally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with
different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response
is prohibitively slow.
INTRODUCTION
Cells respond to many biochemical signals by adjusting
their gene expression levels, often in a combinatorial way
where the transcription rate of a given gene is a nonlinear
function of several inputs. The entire signal transduction
cascade, beginning with the detection of the biochemical
signals and culminating in a changed intracellular protein
concentration, is generally believed to be under strong selec-
tive pressure for rapid and well-adjusted responses in
competitive environments. An important step in this cascade
involves proteins belonging to the large class of transcrip-
tion factors (TFs) that convey the external signal and trigger
the appropriate genetic response by binding to specific
binding sites on the genomic DNA. The search process of
individual TFs for their functional target sites hidden within
millions of nonfunctional sites on the DNA is well charac-
terized (see, e.g., (1–7)). This has led to an understanding
of the tradeoffs inherent in the choice of TF-DNA interac-
tion parameters, when both a rapid search as well as suffi-
cient equilibrium discrimination for the functional sites is
required (8–10).

However, the experimental timescale for the search
process, as inferred, e.g., from single-molecule measure-
ments in vivo (11), is surprisingly short compared to the
timescale for significant change in gene expression levels:
Whereas a TF target site is occupied within a minute even
at low TF concentrations, the concentration of the protein
expressed from the target gene typically changes signifi-
cantly only over a timescale of several minutes, due to the
slow kinetics of protein synthesis and degradation. Hence,
the search time is only a fraction of the total response
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time, and it is unclear whether fine-tuning of TF-DNA inter-
action parameters is needed for kinetic reasons. On the other
hand, even in bacteria many genes are coregulated by
a combination of different TFs (12–20), whereas the search
process studied so far is that of a single TF species, i.e.,
multiple TF molecules of the same type. A salient question
is whether the timescale of transcription control increases
with the complexity of the implemented regulatory function.

To explore this question, we consider a simple theoretical
model for the kinetics of combinatorial transcription regula-
tion. We focus on the example of an AND-like cis-regula-
tory function implemented by two TFs, referred to as A
and B, which bind cooperatively to two adjacent target sites
to activate a gene. This scenario is exemplified by themelAB
promoter of Escherichia coli, where CRP and MelR bind
cooperatively to activate transcription (19). Our model is
sufficiently generic that it can be applied to a variety of
cooperative protein-DNA binding situations. However, the
example of the AND-gate is particularly well suited to illus-
trate the basic effects and functional tradeoffs that become
apparent when the interaction parameters are varied.
Compared to the well-studied case of a single TF-species,
the apparent new aspect here is the mutual interaction
between the TFs (compare to Fig. 1), that is quantified by
the dimensionless cooperativity u ¼ e�Eint=kBT.
This quantity is only a measure of the interaction strength

between TFs, with Eint the effective free energy of the inter-
action and kBT the energy scale of thermal fluctuations.
It is not related to the Hill coefficient, which depends on
the number of components involved in a cooperative
complex. The strengths of direct protein-protein interactions
vary over a broad range with dissociation constants between
the femto- and the centimolar regime (21). Biochemically
feasible u-values can therefore span many orders of
doi: 10.1016/j.bpj.2011.08.041
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FIGURE 1 Three schematic examples for cooperative protein-DNA

binding in gene regulation. In panel A, RNAp is recruited by an activating

TF, whereby the signal conveyed by the TF is transferred to the transcrip-

tion level. In panel B, an activator is assisted by a helper protein which

does not contact RNAp itself. In panel C, two different TFs bind coopera-

tively and contact RNAp. These and other motifs are used by cells to imple-

ment regulatory functions (30,41), although the actual arrangement of TF

binding sites in bacterial genomes is often more complicated, involving

a larger number of sites (42).

FIGURE 2 Illustration of the energy levels and the kinetic model for the

two TF species system with a nonspecific genomic background. (A)

Binding of TFs to the DNA reduces the energy by Ens < 0 compared to

the unbound reference state with energy Efree ¼ 0. Additional energy can

be gained through sequence-specific contacts (not shown). Upon dimeriza-

tion of TFs in solution or on the DNA, the energy is further reduced by the

interaction energy Eint % 0. The TFs bind to their target site with a specific

binding energy ET. At small dimerization energies Eint, full promoter acti-

vation will be reached via the monomer pathway, where TFs arrive at their

target independently and consecutively. At large Eint, on the other hand, TFs

will predimerize in the DNA-background or in solution and arrive to the

targets simultaneously through the dimer pathway. (B) Transcription factors

dimerize in solution and bind to the DNA in diffusion-limited binding reac-

tions with a rate constant ka. The dissociation rate of a free dimer kd and the

dissociation rate koff of a TF from a DNA site depend on the corresponding

energies and follow from detailed balance as explained in the main text.

Dimers and monomers can randomly diffuse along the DNA with a rate

ksl, which becomes site-dependent when the binding energy is sequence-

specific. When the dissociation of a monomer requires the simultaneous

dissociation from a cooperatively bound partner, its off-rate koff decreases

by a factor 1/u.
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magnitude, from weak transient interaction with 1 < u <
1000 to strong dimerization with u ~ 107 or larger. Depend-
ing on this value, the kinetics of cooperative protein-DNA
binding will either be dominated by a monomer pathway
or a dimer pathway (22,23).

How do the response time and the steady-state levels of
a regulatory module depend on the cooperativity? And
which regime of u-values could be favorable in which func-
tional context?

Our model, illustrated in Fig. 2, generalizes the classic
facilitated diffusion model (1) to two interacting protein
species. It incorporates the basic kinetic moves, i.e., binding
to a DNA site, sliding along the DNA, and unbinding
from the DNA, for monomers as well as for dimers. In addi-
tion, dimers can form or break up either in solution or
while bound to the DNA. We characterize the behavior of
our model using a variety of analytical and numerical
approaches to calculate equilibrium and kinetic observables
over a parameter range chosen to permit the exploration of
functional tradeoffs in a bacterial system such as E. coli.
For instance, in bacterial transcription regulation, a faster
response is generally expected to be advantageous, whereas
the steady-state transcription levels of a cis-regulatory
function must be adjusted to yield the optimal protein
concentrations for the biological conditions represented by
the input signals (24–26). Therefore, when considering
different choices of u, we compare regulatory systems
Biophysical Journal 101(7) 1569–1579
that lead to the same steady-state levels. The exploration
of our model leads us to two favorable regimes of u, corre-
sponding to weak (and often promiscuous) interactions and
very strong heterodimerization, respectively. On the other
hand, our model predicts that the search kinetics will be
prohibitively slow at intermediate u-values, at least when
the protein copy number is small as is usually the case for
bacterial transcription factors. In the Discussion, we
consider biological implications of these theoretical findings
and discuss possible experiments to characterize the cooper-
ative search problem and the kinetics of combinatorial tran-
scription regulation.
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RESULTS

Cooperativity and regulatory function

Cooperative protein-DNA binding is employed in diverse
functional contexts. For some functions, many molecules
of the same protein polymerize along DNA, e.g., RecA for
homologous recombination (27) or single-strand-binding-
protein during DNA replication (28). In these cases, the
role of the protein-protein interaction is to enhance the prob-
ability of obtaining continuous DNA coverage rather than
a patchwork of randomly positioned molecules. Here we
focus on the functional context of transcription regulation
where cooperative protein-DNA binding is involved in the
processing of input signals. These signals are integrated
and transformed into a single output, the transcription rate
of a gene (29).

The cooperative binding of a transcription factor (TF)
with RNA polymerase (RNAp) transfers a signal, by regu-
lating the effective binding threshold for RNAp via the
concentration of active TF (regulated recruitment (29), see
Fig. 1 A). When two different TFs bind cooperatively and
each makes contact with RNAp to activate transcription,
see Fig. 1 C, two signals are effectively integrated into
a single output. A similar case is depicted in Fig. 1 B, where
TF binding is assisted by a helper protein that does not make
contact with RNAp itself. This motif resembles, for
instance, the regulation of the melAB promoter, which is
codependent on the transcription factors CRP and MelR
(19). The helper can also be another molecule of the same
TF, making the response to its signal more switchlike
(increased effective Hill coefficient).

The molecular function in the signal transfer scenario of
Fig. 1 B is quantitatively described by the probability pb to
find a protein B bound as a function of the concentration of
a protein A that binds adjacently. In contrast, for the signal
integration scenario, the functional activity is captured by
the probability pab that two DNA sites a and b are both occu-
pied by the matching TF proteins. In the following, we will
refer to both quantities, pb and pab, simply as the average
activity for the respective scenario.We envisage that selection
acts on these average activities as well as on a characteristic
timescale, the response time t, associated with the kinetics
of each mechanism. Here, t corresponds to the typical delay
for adjusting the activity to a new average level after a
change in the input signal. In a steady state, t is also a charac-
teristic timescale of spontaneous fluctuations in the activity
(noise). Importantly, both the average activity as well as the
response time depend on the binding cooperativity u.
Average activity

Before we introduce our full model, it is instructive to
consider the average activity within the simple approxima-
tion where we focus only on two binding sites a and b and
ignore binding of the TFs to the rest of the DNA. This
consideration will be useful in particular as a guide for
our detailed study of possible tradeoffs in the choice of u
within the full model.

We first consider the signal transfer scenario as shown in
Fig. 1 B. In equilibrium, the probability pb that site b is
occupied by one of NB available molecules of type B is
the normalized sum of the statistical weights for all states
where b is occupied (30). In the absence of A, i.e., for
NA ¼ 0, this is just pb ¼ qb/(1 þ qb), with the statistical
weight for an unoccupied site set to 1 and qb ¼ NB/nb denot-
ing the relative weight for b to be occupied. Here, the
binding threshold nb, which corresponds to the number of
B molecules needed to obtain a 50% average occupancy
of b in the absence of A, is directly connected to the effec-
tive equilibrium binding constant of B to b and the cell
volume via nb¼ KdVcell. In the presence of A, the occupancy
of b increases to

p0b ¼ q0b
1þ q0b

with

q0b ¼ qb , ½1þ ðu� 1Þpa�;
(1)

where pa ¼ qa/(1 þ qa) is the average occupancy of a in the
absence of B. Thus, the presence of A boosts the statistical
weight for B binding by the regulation factor (30), i.e., the
factor in square brackets in Eq. 1. Intuitively, this factor
may be thought of either as a boost in the local effective
concentration of B (29), or as a decrease in the effective
binding threshold nb (the latter interpretation is closer to
the underlying physics).

Importantly, the regulation factor cannot exceed the coop-
erativity value u, and it reaches u only if pa takes on its
maximal value of 1. As a consequence, the cooperativity
u is also an upper bound on the fold-change f in b-occu-
pancy induced by a change in A concentration, because
p0b/pb % q0b/qb. This constitutes a physical constraint on u

that arises from the equilibrium statistics of cooperative
protein-DNA binding,

u>f ½equilibrium constraint�; (2)

i.e., the cooperativity must be larger than the required fold-
change f in the output signal (f¼ p0b/pb for the signal trans-
fer scenario). On the molecular level, this constraint can be
implemented by a sufficiently strong direct protein-protein
interaction or by indirect mechanisms of cooperativity,
e.g., via collaborative competition (31) or DNA bending
(32).

For the signal integration scenario in Fig. 1 C, the defini-
tion of the fold-change f is different, but the constraint in
Eq. 2 holds as well. Here, the relevant fold-change is the
average activity in the presence of both inputs relative to
the average activity with only a single input, f ¼ pab/pa
or f ¼ pab/pb, where
Biophysical Journal 101(7) 1569–1579
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pab ¼ uqaqb=ð1þ qa þ qb þ uqaqbÞ: (3)

This fold-change is then transferred to the promoter activity
in the example considered in Fig. 1 C. Taken together, when
considering steady-state activities, both the signal transfer
and the signal integration function benefit from larger coop-
erativities, because large u-values allow for tight regulation.
However, because large binding energies often lead to slow
kinetics, we will explore whether a tradeoff exists between
the fold-change in average activity and the response time.
Full model

We now introduce a full kinetic model for the cooperative
target search that is based on the energies of TF binding
states and the transition rates between these states, as illus-
trated in Fig. 2. We consider a single circular genome of
length LG (in units of basepairs) inside a cell of volume Vcell

with a single pair of adjacent target sites for A and B. The
unbound state of free TFs in solution is our reference state,
with its energy set to Efree ¼ 0. If A and B dimerize in solu-
tion, the interaction energy Eint < 0 is gained, while entropy
is lost, because the number of possible states is reduced by
a factor that we write as VTF/Vcell, with a microscopic
volume VTF on the order of the size of a TF. Each TF mole-
cule has LG possible binding sites on the DNA (indexed by
i with 0 % i < LG) with the respective bound-state energies
Ei

A and Ei
B. These bound-state energies are either equal

to Ens < Efree, if the protein-DNA interaction is nonspecific,
or they take on a lower value if the binding sequence
favors specific protein-DNA contacts, Ei

A, Ei
B % Ens. We

denote by L the number of basepairs on the DNA that are
occupied by a bound monomer (occupied DNA is inacces-
sible to other TF molecules), and we posit that A and B
can form a DNA-bound dimer only when B binds directly
upstream of A.

For the kinetic rates, we assume that all binding reactions
are diffusion-limited. For simplicity, we take the same rate
constant ka for the binding of two protein molecules in solu-
tion and for the association of a TF molecule with a specified
DNA site (thus, the total rate of TF binding anywhere on the
DNA is LGka, if no DNA site is occupied already). The
random diffusion of TFs along the DNA contour occurs
with the basal sliding rate ksl. When neighboring sites
have different energies, the sliding rate is the basal rate ksl
from the higher to the lower energy state whereas the reverse
process occurs at the reduced rate ksl exp(�DE/kBT), with
DE > 0 the energy difference, such that detailed balance
is respected (in the following we assume all energies to be
in units of kBT, which amounts to setting kBT¼ 1). The rates
for all other possible reactions are similarly obtained from
detailed balance. For instance, the unbinding rate koff of
a monomer from a nonspecific DNA site is determined by
koff/ka ¼ (Vcell/VTF)e

ð�EfreeþEnsÞ, and the dissociation rate kd
of a free dimer kd/ka ¼ (Vcell/VTF)e

Eint . Note that monomers
Biophysical Journal 101(7) 1569–1579
can also unbind or slide away from a DNA site while simul-
taneously dissociating from a cooperatively bound partner
(thus disrupting the DNA-bound dimer, see Fig. 2 b, top
right). In that case, detailed balance dictates that monomer
sliding and dissociation rates decrease by a factor 1/u due
to the loss of the dimerization energy Eint.

Within the framework of this full model, we calculate the
steady-state activities as described in Section S1 in the Sup-
porting Material (this exact calculation includes the effect of
the genomic background and mutual exclusion of overlap-
ping binding sites, both neglected in the simple discussion
above). We determine average search times numerically,
using kinetic Monte Carlo simulations as described in
Section S2 in the Supporting Material, and we also develop
analytical approximations further below and in Section S3
in the Supporting Material.

We choose the parameters of our full model to roughly
reflect the situation in a bacterium such as E. coli. We
set the genome length to LG ¼ 5 , 106 bp, choose a cell
volume of Vcell ¼ 5 mm3, and consider DNA binding sites
of length L ¼ 15 bp. The sliding rate ksl can be determined
from recent measurements of the one-dimensional diffusion
constant for TF sliding on nonspecific DNA (11,33), which
obtained values close to 0.05 mm2/s, corresponding to
a sliding rate of ~ksl ¼ 105/s. The same experiments also
determined a residence time of 0.3–5 ms for TF molecules
on nonspecific DNA before dissociation. At the given
genome length, this fixes our rate constant ka to be in the
range 0.4–6 , 10�3/s, andwe set ka¼ 10�3/s in the following.

Unless otherwise stated, we will assume, for simplicity,
that the target sites a, b are the only specific binding
sequences in the genome, both with energy ET. We set the
strength of the nonspecific protein-DNA interaction by
requiring that a single TF spends, on average, equal time
unbound in solution as bound somewhere on the DNA.
This parameter choice corresponds to the well-characterized
optimum for the search process of a single TF species
(4,34); see also the discussion of this point further below.
Within our energy model, this corresponds to a nonspecific
binding energy Ens ¼ log(LG , VTF/Vcell) ¼ �5.3, assuming
a reaction volume VTF ¼ 1 nm3. In our model, the effective
dimerization rate is increased by the presence of the DNA
(which acts as a scaffold for the interaction). A similar
increase was observed experimentally in a study of the
Jun,Fos,DNA complex (23).
Quantitative analysis

We now analyze how the quantitative characteristics of the
two-protein-species system depend on the cooperativity u.
The cooperative target state where both target sites are
occupied can be reached via two distinct kinetic pathways:
In the monomer pathway, A and B separately search for
their specific target sites in multiple rounds, alternating
between one-dimensional diffusion along the DNA and



A

B

C

D

FIGURE 3 Characterization of the cooperative search process and

steady-state levels as a function of the cooperativity u and for different

on-state levels pab, given N¼ 1 molecule of each TF species. (A) Dimeriza-

tion probability Pdimer at equilibrium. The dimerization threshold is given

by the entropic cost of dimerization and corresponds approximately to

the length of the genome LG. (B) The fold-change f increases with the

cooperativity as
ffiffiffiffi
u

p
below the dimerization threshold and then approaches

a maximal value. (C) The cooperative search time t displays a maximum at

an intermediate cooperativity. For large u, the search time decreases again

and settles at an on-state independent value, corresponding to the dimer

search time; compare to Fig. 4. (D) The probabilityWD that the cooperative

target state is reached via the dimer pathway is distinct from Pdimer in panel

A, because independent monomeric search and dimeric search have

different timescales. Note that the transition from the monomer to the dimer

pathway marks the position of the maximal search time.
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three-dimensional diffusion in the cytoplasm to a new posi-
tion on the DNA. In this pathway, A and B arrive indepen-
dently, i.e., one after the other, at their specific target sites.
By contrast, in the dimer pathway, the dimer forms before-
hand, either in solution or in the DNA background, such
that A and B reach their target sites simultaneously (compare
to Fig. 2 A).

Clearly, we expect the monomer pathway to dominate
for weak TF-TF interactions (small u), whereas the dimer
pathway should dominate for large u. But what is the
behavior of the overall search time t that results from the
kinetic competition between the two pathways?

Before performing the kinetic analysis, we first charac-
terize the steady-state characteristics of our full model.
We will focus on the signal integration scenario in the
remainder of this study; the behavior in the signal transfer
scenario is qualitatively similar. As discussed above, the
most relevant steady-state characteristic in the functional
context of gene regulation is the attainable fold-change of
the average activity, which determines how tightly a gene
can be regulated. We assume that the expression level of
the regulated gene in the high-activity state, when both TF
species can bind the promoter (the ON-state), is constrained
to its optimal level by evolutionary selection, e.g., the
optimal level of a metabolic enzyme in the presence of its
substrate (24,25). The fold-change between the ON-state
and the OFF-state (in which only one of the TFs can bind)
then determines how tightly the production of the protein
can be suppressed under conditions when it would be
useless or even detrimental.

Hence, when we consider the system at different cooper-
ativity values u, we take for granted that another system
parameter is adjusted to keep the ON-state level constant.
Specifically, we will assume that this compensation occurs
via the target binding threshold, which is programmable
via the DNA sequence of the target site (10). In other words,
we compensate a weaker protein-protein interaction with
a stronger protein-target interaction such that the ON-state
level pab remains constant. In E. coli and yeast, binding sites
indeed tend to deviate from the consensus motif when
multiple TFs bind next to each other in the cis-regulatory
region (15,18,35). For simplicity, we consider a symmetric
pair of TFs, which have different binding sequences, but
the same energetics, such that qa ¼ qb.

Fig. 3 B shows the resulting fold-change f ¼ pab/pa for
the full model as a function of the cooperativity (on
a double-logarithmic scale), with the three curves corre-
sponding to different ON-state levels pab. The fold-change
increases monotonously with the cooperativity, roughly as
f � ffiffiffiffi

u
p

, before it saturates at a maximal level that depends
slightly on the ON-state level. For u >> 1, the dependence
on the ON-state level pab is nonmonotonous, with a larger f
for pab ¼ 0.5 than for both pab ¼ 0.1 and pab ¼ 0.9. Much of
this behavior can be understood already within the simple
approximation of Eqs. 1 and 3 as follows: For large u, coop-
erative binding to the targets becomes dominant in the ON-
state, such that the noncooperative contribution qa þ qb in
the denominator of Eq. 3 can be neglected.

One then finds that fz
ffiffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pabð1� pabÞ

p
, explaining the

behavior in the intermediate u-range of Fig. 3 B, i.e., theffiffiffiffi
u

p
-dependence and the nonmonotonous dependence on

the ON-state level pab. However, the saturation of the
fold-change at very large u is beyond this simple approxi-
mation, which neglects the background DNA and assumes
that the TFs heterodimerize only on the target. This assump-
tion breaks down in the strongly-interacting regime, as
shown in Fig. 3 A, which plots the equilibrium probability
to find the TFs as a heterodimer. Dimers become prevalent
in the background when the cooperativity outweighs
the entropic cost of dimerization. If the nonspecific DNA
interaction of monomers is optimized for independent
search (see below), the dimerization probability is simply
Pdimer(u) ¼ u/(u þ 2LG) (see Section S1 in the Supporting
Material). Further increase of u has no significant effect
Biophysical Journal 101(7) 1569–1579



FIGURE 4 Average search times hti of a dimer (black) and a monomer

(gray) for the target site. The curves are obtained from hti ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pLG=16kslka

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd=Pc

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc=Pd

p Þ, which predicts an optimum at

a binding ratio of one, Pd/Pc ¼ 1 (see (4,34)). For larger binding ratios,

TFs spend too much time exploring nearby sites with redundant one-dimen-

sional diffusion, whereas TFs spend too much time unbound in solution

when TF-DNA binding is weaker. Because dimers bind DNAmore strongly

than monomers, the binding ratio Pd/Pc of the dimer (indicated on the top x

axis) is consistently larger than that of the monomers (bottom x axis).

Hence, dimers and monomers cannot simultaneously operate in the search

optimum.

1574 Geisel and Gerland
on the fold-change. Hence, the full model confirms our
previous conclusion that a large cooperativity is generally
beneficial for the steady-state response, but only up to
a value of u ~ LG.

Next, we turn to the cooperative search process. We first
consider the situation with only one molecule of each type
(NA ¼ NB ¼ 1). Initially, both monomers are unbound.
The cooperative search time t corresponds to the first point
in time when a and b are both occupied. Fig. 3 C shows its
mean, hti, as a function of u, for three different ON-state
levels pab. Here, the symbols represent simulation results,
where the average is taken over a large number of simula-
tion runs (see Section S2 in the Supporting Material for
details), whereas the solid lines represent an analytical
approximation discussed below and in Section S3 in the
Supporting Material. Note that hti is plotted in units of
the monomer search time htMi, which is defined as the
average time needed by a monomer, e.g., of type A, to
find its target a in the absence of B.

This kinetic ratio, hti/htMi, is a direct measure of the
slowdown of cooperative regulation relative to the timescale
for independent regulation. When the cooperativity is negli-
gible (u z 1), Fig. 3 C shows that the kinetic ratio is only
slightly larger than 1. In this regime, the second protein
arrives independently and on the same timescale as the first,
while each protein is stably bound by itself, such that the
first protein typically does not unbind from its target before
the second protein arrives. Indeed, the probability of such
a missed encounter depends on the ON-state level pab and
is simply 1� ffiffiffiffiffiffi

pab
p

when u¼ 1, which consistently explains
the pab-dependence (at fixed u ¼ 1) in Fig. 3 C.

With increasing cooperativity u, the cooperative search
time also becomes longer. Note that our reference timescale,
the monomer search time htMi, is independent of u, such
that the ratio plotted in Fig. 3 C shows indeed the u-depen-
dence of the absolute timescale for cooperative search. The
slowdown scales with the square-root of the cooperativity,
hti � ffiffiffiffi

u
p

. This scaling reflects the mechanism underlying
the slowdown, which is produced by an increasing proba-
bility of missed encounters: As the cooperativity is
increased, our constraint of a constant pab implies that
a monomer bound to its target becomes less stable and
detaches more often before its partner arrives. The coopera-
tive search time is then determined by the number of times
a TF must return to its target before finding the other target
occupied, which is roughly 1/pa, the inverse of the proba-
bility that a single target is occupied. At intermediate u,
this probability scales as pa ~ u�1/2, leading to the observed
scaling.

The increase of the search time hti with u is not indefi-
nite, however, because the relative importance of the dimer
pathway increases with u. The contribution of the dimer
pathway is shown in Fig. 3 D. It displays a sigmoidal
form, with a narrow transition region where the cooperative
search switches from the monomer mode to the dimer mode.
Biophysical Journal 101(7) 1569–1579
This transition is accompanied by a peak in the cooperative
search time in Fig. 3 C. Note that this transition occurs
at significantly smaller u-values than the transition in the
equilibrium probability for heterodimerization shown in
Fig. 3 A.

To understand the nonmonotonous behavior of the coop-
erative search time in Fig. 3 C, it is instructive to consider
the extreme case of a purely dimeric search. Fig. 4 shows
the purely dimeric search time (dashed line and circles) as
a function of the dimer binding ratio, i.e., the relative
probability Pd/Pc to find a dimer on the DNA versus in the
cytoplasm (top x axis). Here, the binding ratio is varied by
changing the nonspecific binding strength Ens. For compar-
ison, the gray line and squares show the corresponding
curve for a monomer (search time for a single target;
monomer binding ratio on the bottom x axis). Both curves
display the same qualitative behavior, with the well-known
optimum (4,34) where the respective binding ratio equals 1
(i.e., the average time spent on the DNA matches the time
spent in the cytoplasm).

At larger binding ratios, the local one-dimensional search
becomes too redundant, whereas at smaller binding ratios
TFs spend too large a fraction of their time in solution,
not searching. However, the minima of the two search
time curves do not coincide, because dimers bind DNA
more tightly than monomers. Consequently the protein-
DNA interaction cannot be simultaneously optimized for
monomer and dimer search. We generally assume that the
protein-DNA interaction is optimal for monomers, because
single TFs are the basic functional unit for transcription
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control in bacteria (see below for further discussion). At this
point in Fig. 4, the purely dimeric search time is roughly
a factor-10 longer than the monomer search time. Returning
to Fig. 3, this factor corresponds to the level of the plateau
that is reached for very large u in Fig. 3 C.

We now consider again the intermediate u-range in Fig. 3
C. With increasing u the monomer pathway eventually
becomes slower than the dimer pathway, due to the
increasing probability of missed encounters. At the same
time, the dimerized state is increasingly stabilized. Upon
dimerization of A and B in the background, it becomes
more likely that this dimer localizes the target before it
dissociates again into monomers. The increasing predomi-
nance of the faster dimer pathway explains the regime
where the cooperative search time decreases with u. It
also explains why the kinetic monomer-dimer transition in
Fig. 3D occurs before the equilibrium monomer-dimer tran-
sition in Fig. 3 A: even when the dimer fraction has not
reached 50%, the dimer pathway can be kinetically domi-
nant. At very large u, the monomer pathway is entirely
negligible. The TFs form relatively stable dimers, either
already in solution or when bound to nontarget sites, which
subsequently search together for most of the time, and ulti-
mately arrive at the target as a pair. This search mode is
independent of the target binding energy and the coopera-
tive search time then becomes independent of u and equal
to the pure dimer search time plotted in Fig. 4.

The cooperative search kinetics admits an analytical
treatment, to quantitatively describe the kinetic competition
between the monomer pathway and the dimer pathway.
This description takes a coarse-grained view of the problem,
with effective transition rates between only four states, as
depicted in Fig. S1 in the Supporting Material. The initial
state has both TFs A and B unbound in solution (state 2 in
Fig. S1), from where the proteins either enter the dimer
pathway by dimerizing (state 1) at rate r2

� or one of them
independently finds its target site on the DNA (state 3) at
rate r2

þ. From state 1, the dimer either locates its pair of
target sites at rate r1

� or reverts back to state 2 at the effec-
tive dissociation rate r1

þ. Along the monomer pathway,
from state 3, either the other TF locates its target as well
(at rate r3

þ), or the waiting TF leaves its target, leading
back to state 2 at rate r3

�. In Section S3 in the Supporting
Material, we express the six effective rate constants in terms
of the parameters of the full model, and then use the mean
first-passage time formalism to calculate the mean coopera-
tive search time analytically. We have used this approach to
obtain the curves in Fig. 3, C and D, which agree well with
the simulation data.

So far, we have focused on the case of a single TF mole-
cule of each type. We now turn to the general case where we
have NA molecules of type A and NB molecules of type B.
If we increase both molecule numbers simultaneously
(NA ¼ NB ¼ N), mass action drives the monomer-dimer
equilibrium toward the dimerized state. Fig. S2 A shows
the probability for a molecule to be dimerized, Pdimer, as
a function of u, with the different curves corresponding to
different N values. As expected, the dimerization threshold
of the sigmoidal curves moves to smaller u-values as N is
increased. Note that although we have treated the case of
exactly one molecule for N ¼ 1, we keep the number of
proteins constant only on average for N > 1, via the chem-
ical potential in the grand canonical ensemble (see Section
S1 in the Supporting Material for details). This choice is
technically motivated, but is also biologically meaningful,
because proteins are constantly produced and degraded in
cells and their numbers can, at best, be constant on average.

Fig. S2 B displays the N-dependence of the fold-change
f. In contrast to Fig. 3 B, the ON-state level is now kept
fixed at pab ¼ 0.5 and instead the different curves are for
different N values (the fold-change is defined here with
respect to the state where NA ¼ N and NB ¼ 0). For u below
the dimerization threshold, the fold-change is independent
of the molecule number N. However, as in Fig. 3 B,
increasing u does no longer raise the fold-change once the
dimerization threshold is reached. As the dimerization
threshold decreases with N, the fold-change saturates at
smaller u and the maximal f decreases as 1=

ffiffiffiffi
N

p
.

The average time required for the parallel cooperative
search with NA ¼ NB ¼ N molecules is shown in Fig. S2
C. As in Fig. 3, we have used the monomer search time as
the reference timescale, but now scaled by N�1, because
the expected timescale for the parallel search of N mono-
mers is htMi/N. Consequently, the fact that all curves fall
on top of each other in the regimes of weak and very strong
interaction shows that in these regimes the cooperative
search time exhibits the simple 1/N scaling, which corre-
sponds to a linear increase of the frequency at which the
targets are visited by monomers (in the small u regime) or
by dimers (in the large u regime). In the intermediate
regime, we find a more complex dependence on N, indicated
by the fact that the curves do not collapse. To understand
this dependence, we extend our simplified analytical expres-
sion developed above. Under the conditions of interest here,
the dimerization equilibrium Pdimer(u) of Fig. S2 A is
reached on a timescale much shorter than the cooperative
search. As detailed in Section S3 in the Supporting Material,
we can then approximate the search process as a parallel
search of N , Pdimer dimers and N , (1 � Pdimer) monomers
of each kind, resulting in

htðuÞi ¼ 1

N
,

�
PdimerðuÞ
htDi þ 1� PdimerðuÞ

htA;BðuÞi
��1

: (4)

Here, 1/htA,B(u)i is the independent search rate of the

monomers, which indirectly depends on u through the prob-
ability of missed encounters (see Section S3 in the Support-
ing Material), whereas the dimer search rate is 1/htDi, as in
Fig. 4. We used Eq. 4 to obtain the lines in Fig. S2 C, which
display good agreement with the full simulation, showing
Biophysical Journal 101(7) 1569–1579
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that the analytical approximation yields a useful description
of the cooperative search kinetics.

On a more qualitative level, Fig. S2 C shows how the peak
in the search time at intermediate u-values is affected by N.
The peak shifts to smaller u-values with larger N, and also
becomes less pronounced. From Fig. S2 D, which shows the
weight of the dimer pathway in the cooperative search
process according to Eq. S26 in the Supporting Material,
we see that the position of the peak remains determined
by the switch from the monomeric to the dimeric search
mode. The shifted switch to the dimeric search mode, which
occurs at smaller u for larger N, also explains the reduction
in the peak height: The dimeric search mode takes over
before the slowdown of the monomeric search mode
becomes dramatic. However, even with hundreds of TF
molecules of each species, we still find a peak in the coop-
erative search time, which divides the u-values into three
regimes, as discussed below.
DISCUSSION

We studied the kinetics and the equilibrium statistics of
cooperative transcription factor-DNA binding to specific
target sites in the genomic background. For our analysis,
we considered the dimensionless cooperativityu as a param-
eter with a broad range of biochemically feasible values, and
sought to identify functional tradeoffs associated with the
choice of this value. We focused on the functional context
of a signal integration scenario with AND-logic, but the
results hold in a similar fashion for a signal transduction
scenario (see Fig. 1). From this functional context, we
derived the central assumption that the average activity of
the regulated gene has an optimal level in the ON-state,
such that there is a strong selection pressure to maintain
this level fixed regardless of the u-value. We satisfied this
constraint by compensating changes in u via the target
site binding energy, which is programmable through the
binding site sequence (10). Such a compensation has been
observed in an analysis of combinatorial promoters, i.e.,
binding sites tend to deviate from the consensus motif
when multiple TFs bind next to each other in the cis-regula-
tory region (35). It is also biologically plausible, as it does
not interfere with the regulation of genes that are only regu-
lated by one of the TFs or combinatorially with other TFs.

Given this functional setting, we determined which fold-
change in the steady-state activity could be implemented at
a given u, and how the kinetic search time depends on u.
The fold-change quantifies the discrimination in the
promoter output between the states where one or two input
signals are present, whereas the search time is a lower limit
to the response time of the regulatory system. The search
process has contributions from a monomer and a dimer
search pathway, the relative weights of which we deter-
mined, again as a function of u. In the regime of weak
protein-protein interactions, e.g., u > 103�104, we found
Biophysical Journal 101(7) 1569–1579
a tradeoff between the kinetics and the steady-state
behavior, in the sense that a higher fold-change is associated
with a slower response due to a longer assembly time for the
protein-complex on the target site. This tradeoff is a conse-
quence of gene activation via the monomer pathway, where
individual TFs visit their targets independently and consec-
utively, possibly dissociating from the target before the
cooperative partner arrives (i.e., missed encounters). In
this regime, search time and fold-change both increase as
~u1/2. At larger u, heterodimers are more stable, increasing
the probability that the target is located simultaneously by
both proteins (dimer pathway). At the same time, the missed
encounters further slow down the independent monomer
search, to timescales larger than the dimeric search time.
Thus, a transition occurs where the dimer pathway gains
weight and the search time decreases again to settle at the
purely dimeric search time.
Assumptions and limitations

We made a number of simplifying assumptions in our
coarse-grained theoretical model. For instance, we assumed
that the DNA-binding energy of the dimer is the sum of the
binding energies of the monomers. While dimerizing, the
monomers may undergo conformational changes that affect
the DNA-binding strength (36), possibly speeding up the
dimeric search. In that case, the peak of the cooperative
search time as a function of u can be even more pronounced
than in our model. For simplicity, we assumed identical
binding properties of the two TFs A and B; however, this
assumption is without loss of generality and the extension
to asymmetric cases is straightforward. We performed the
analysis reported here under the assumption of a nonspecific
background, although we have formulated our model and
the theoretical methods to also cover the more general
case of a heterogeneous DNA background.

A brief analysis of the heterogeneous case has shown that
the most significant effect of the heterogeneous background
is to slow down the search time in all regimes. For our
model, we have also assumed that the cooperativity between
the TFs is mediated by a direct interaction. Indirect cooper-
ativity mediated, e.g., by DNA bending or looping has the
same steady-state properties as direct cooperativity in the
low u regime. However, these indirect mechanisms lead
to different steady-state behavior at large u-values and to
different kinetics. A detailed analysis of these mechanisms
is beyond the scope of this study.
Biological ramifications and examples

A central and robust result of our theoretical study is that
one can distinguish three qualitatively distinct regimes of
TF-TF interaction strengths for transcription regulation:

1. Weak interactions, with a cooperativity u < 103�104,
suffice to implement regulation functions with moderate
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fold-changes, of ~10-fold, in the transcription level. In
this regime, the cooperative search time is only moder-
ately elevated above the search time of a single TF
(also of ~10-fold). In bacteria, where the search time of
a single TF molecule is ~1 min (11), the parallel cooper-
ative search of 10–100 copies of each TF would then still
result in fast responses on the minute timescale. The
principal advantage of this regime from a design point
of view is that TFs with weak interactions are flexible
components, which can be used to control different genes
in different ways, alone or cooperatively in various
combinations (37). Each TF then only needs to be sepa-
rately optimized for monomeric search (via the non-
specific protein-DNA interaction), while cooperative
regulation by pairs of TFs is still sufficiently fast.

2. Interactions of intermediate strength, with u-values in
the approximate range of u ~ 104�106, lead to coopera-
tive search kinetics that are prohibitively slow, due to an
excessive amount of missed encounters. Recent single-
molecule experiments have been able to monitor the
search process of a single TF in vivo (11). Our prediction
of slow cooperative search kinetics could, in principle, be
verified using two-color fluorescence methods. Alterna-
tively, one could measure the transcriptional response
time of a synthetically designed, cooperatively regulated
gene with a rapid reporter. We also expect that TF-TF
interactions within this intermediate regime are avoided
by cells. A test of this implication of our study will
require a large dataset quantifying a significant subset
of the TF-TF interactions in a model organism. To our
knowledge, a quantitative high-throughput assay for
TF-TF interactions is not yet available and remains as
an experimental challenge in the field. Instead, we
discuss several specific biological examples below.

3. Strong interactions, with a cooperativity u > 106�107,
allow high fold-changes and a passable response time
at the cost of losing combinatorial flexibility: Suppose
that each TF signals a different environmental cue, and
a set of genes needs to be activated whenever A is
present, whereas another, more specialized group of
genes is to be activated only if both signals are present.
In this situation, a strong heterodimer would not lead
to a favorable regulatory design, because the regulation
of the unconditional genes by A would be strongly
affected by the presence of B. In other words, the strong
cooperativity can lead to undesired cross talk. Neverthe-
less, this regime of TF-TF interactions is biologically
interesting: For instance, strong homodimers can exploit
the cooperative stability mechanism to improve the
robust function of regulatory circuits (38). Also, in cases
where the combinatorial flexibility described above is
not needed, strong heterodimers could be used to
perform a very sharp and AND-like signal integration.
This signal integration can be made very rapid by tuning
the nonspecific protein-DNA interaction of the TFs into
a weaker regime, such that the dimer DNA binding ratio
Pd/Pc is closer to the optimal value 1 for search on the
DNA. As Fig. 4 shows, this would lead to a concomitant
decrease of the monomer-binding ratio. For TFs that
work in this regime, we therefore expect that monomers
spend <50% of their time bound on DNA. So far, the
DNA binding ratios of transcription factors have not
been assayed on a large scale. Such an experiment would
yield interesting clues about the design and the mode of
operation of these TFs.

Finally, we discuss biological examples. Currently, 383
operons in E. coli are known to be transcriptionally regu-
lated by two or more TFs (see Section S4 in the Supporting
Material). However, it is not known what fraction of these
regulatory interactions involves cooperative protein-DNA
binding. One well-studied case of codependent activation
is the melAB promoter, where CRP and MelR bind cooper-
atively and activate transcription (19). The interaction of
CRP and MelR occurs via a weak surface contact and the
binding of either is found to be reduced if the binding of
the partner is impeded. In the presence of both, the tran-
scription rate is 10-fold increased (19). This case is
a good example for our regime 1.

It is interesting to note that the binding sites of CRP and
MelR in the melAB promoter display a relatively poor match
to the consensus sequence, which is consistent with our
assumption that the target binding energies are evolution-
arily tuned. Also, CRP is a well-known global regulator
that controls many other genes in different ways, and hence
the combinatorial flexibility achieved with a small coopera-
tivity u appears to be amply exploited by E. coli. Other
examples of prokaryotic coactivation are the ansB promoter,
activated by CRP and FNR (15), and the activation of the
mapEP promoter by CRP and MalT (18,39). More gener-
ally, the regime 1 corresponds to the regulated recruitment
mechanism for transcription regulation (29), which appears
to be widely used in eukaryotes. Indeed, the case of the
melAB promoter described above has been described as
a bacterial version of eukaryotic enhanceosomes (19). A
prokaryotic example for regime 3 may be the RcsA/RcsB
heterodimer that is required to activate capsule expression
through the RcsF phosphorylation cascade (40). Interest-
ingly, RcsB can also from homodimers and regulate the
transcription of other genes by itself, suggesting that this
TF may be optimized to always search and function as
a dimer (homo- or heteromeric).
CONCLUSION

We reported a biophysical analysis of the design principles
for TF-TF interactions. The exploration of our theoretical
model leads us to two functionally favorable regimes for
the cooperativityu, corresponding toweak, gluelike promis-
cuous interactions and very strong heterodimerization,
Biophysical Journal 101(7) 1569–1579
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respectively. Cells appear to implement both favorable
regimes, but in different biological contexts. On the other
hand, our model predicts that the search kinetics will be
prohibitively slow at intermediate u-values, at least when
the protein copy number is small as is typically the case for
transcription factors. Hence, the intermediate u-regime
appears undesirable in this functional context. This predic-
tion could be tested with experimental approaches from
single-molecule biophysics. Currently, there are only limited
biochemical data available for the cooperativity values
involved in transcription regulation, typically from in vitro
experiments with selected DNA-binding proteins. Once
more data become available, it will be interesting to see
whether the intermediate u-regime is indeed avoided.
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