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Introduction
The intervertebral disc has a composite structure consisting of a gelatinous proteoglycan-
rich nucleus pulposus surrounded by a collagen-rich anulus fibrosus. The proteoglycan in
the nucleus pulposus provides high water content within the nucleus pulposus, and in turn,
contributes to sustain large loads applied to the vertebral body. The load is distributed
evenly to the anulus fibrosus through hydrostatic pressure. The fiber orientation of the
anulus fibrosus is suitable to resist hoop stresses generated by the hydrostatic pressure in the
healthy conditions (see article by Grunhagen et al).

Degenerative changes in the biomechanical properties can occur in the nucleus pulposus and
anulus fibrosus tissues individually. These can be shown as changes in material properties of
each tissue. Degenerative changes in structural properties may be represented as
consequences of these changes in material properties of the substructure of the disc.
However, degenerative structural changes in the disc, such as loss of the volume of the
nucleus pulposus and fissures in anulus fibrosus, can only be evaluated by analysis of
structural parameters. It is important to understand how these changes affect the function of
the motion segment and relate to symptoms such as low back pain (LBP) (see article by
Karppinen et al).

In this review, we will address on the degenerative changes in the material properties of
nucleus pulposus and anulus fibrosus followed by the changes in structural properties of the
entire disc, with an emphasis on the degenerative changes in viscoelastic properties of the
whole disc. Instability of the motion segment as a consequence of the structural failure
associated with the degenerative changes on the disc will be followed. Finally, instability of
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the lumbar spine, which has been considered as one of the significant causes for mechanical
LBP will be reviewed.

Material Properties of the Degenerative Intervertebral Disc Components
Nucleus Pulposus

The disc degeneration process affects several of the structures differently and apparently at
different times during its progression. It is important to bear in mind the impaired synthesis
of the disc matrix when describing this sequence of events, as it involves all of its
components at different time points.1–4 The process is thought to start in the nucleus
pulposus, exhibiting a decrease in its proteoglycan concentration3,5–9 and gradual change in
collagen type that transitions into a more fibrotic tissue.10 These factors effectively
dehydrate the nucleus pulposus down from a peak nucleus water content in the adult disc, of
approximately 70 to 80%.11 Recently, Murakami et al 12 quantified the difference in water
content between old (3 years) and young (6 months) anulus fibrosus and nucleus pulposus
tissue of rabbits, showing significant differences among them. Additionally, the nucleus
pulposus GAG, DNA, aggrecan and collagen types I and II contents were significantly
larger in the younger tissue. Evidence like this shows that the nucleus tissue is the most
affected. Its decay constitutes perhaps one of the largest enablers of furthering disc
degeneration. This transition into a more fibrotic type of tissue produces a stiffer nucleus
pulposus and the ‘shock-absorbing’ properties of the disc are severely limited.

The nucleus pulposus, usually referred to as fluid,13–17 loses its hydrostatic pressure
feature.1,18–23 A more fibrotic (increased collagen in nucleus pulposus)10,24 tissue will not
behave in the same manner as a fluid/gel nucleus pulposus. The nucleus pulposus tissue
undergoes a process of stiffening by means of gradual loss of proteoglycans and change of
collagens from Type II to Type I,3,24 becoming a more fibrous and solid tissue,25,26 which
was found to amalgamate into one solid phase with the anulus fibrosus in 75% of the cases
from the 6th to 8th decade in a cadaveric study by Haefeli et al.10 The loss of proteoglycans
originates the decrease of swelling pressure in the nucleus pulposus27, identified as the main
load-bearing mechanism in the non-degenerate nucleus pulposus.28 As a consequence, load
mechanics are altered and for a period, during the initial phase of degeneration, the disc is
unstable.

Anulus Fibrosus
The mechanical behavior of the anulus fibrosus has been well documented in terms of
tensile and compressive tests, but not so much in shear. Tensile behavior corresponds to the
circumferential direction on the annular wall and was characterized in static and dynamic
tests in order to explain its mechanism to resist hoop stresses produced by the nucleus
pulposus hydrostatic pressure29. These two loading conditions are commonly accepted to
simulate the body weight borne by the spinal column (compression) and the additional
stresses seen in outward lateral bending and flexion/extension (tension). The largest
strengths are usually seen when loading the lamellae in the direction of the reinforcing
fibers. The arrangement of the elastic fibers plays a very important role in the overall
mechanical properties of the anulus fibrosus.30,31 Elastic anisotropy in the anulus32 is
maintained with degeneration, with posterolateral and outer lamellae regions having
decreases of about 30–50% with advancing degeneration.33–36

However, in cases like spondylolisthesis, anterior-posterior shear seems to be the dominant
failure mode and this has not been studied, as well as shear within the anulus lamellae in
cases of annular failure leading to herniation. In the degenerate anulus fibrosus, the fiber
patterns become disorganized, and the elastic response also varies consequently.37,38 The
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elastic properties in an intact model are anisotropic and highly nonlinear39,40. This non-
linearity, exhibited by a ‘toe-region’ on the stress-strain curves is common to cartilaginous
tissues41–46. Moreover, the response of degenerate anulus fibrosus tissue has been shown to
be of a two-fold increase in the toe-region modulus in tensile testing, which was correlated
with age, as well as fiber realignment towards the loading direction.47,48 Dynamic
viscoelastic testing has shown that the dynamic modulus of anulus fibrosus increases with
degeneration at tensile strains greater than 6%.49 Earlier quasi-static test results from
Acaroglu et al 33,35 described a strong influence of degeneration on elastic properties such
as the Poisson's ratio, failure stress, and strain energy density of the anulus fibrosus. The
work by Guerin et al 47 reports no other significant changes in the elastic properties of the
anulus fibrosus tissue.

In addition to elastic anisotropy, permeability also has been shown to vary spatially and is
influenced by age, degeneration and water content in the disc.50 These values have been
incorporated to a finite element model simulation by Natarajan et al 51 and they showed
their effect on disc height and annular failure.

Degenerative Changes in Structural Properties of the Motion Segment
The function of the motion segment is to provide the spine with axial stability while
allowing mobility.52 The intervertebral disc is responsible for carrying enormous amounts of
compressive loading while maintaining flexibility.53 The load on the disc is mainly
compressive, but it is also subjected to other types of loads such as tensile and shear
stresses.26,54 As the compressive load is subjected to the disc, hydrostatic pressure develops
within the inner core of gelatinous nucleus pulposus, which pushes outward causing the
outer ring of fibrous anulus fibrosus to bulge and experience tensile stress in the fibers.55

Loads on the lumbar disc (L3/4) of volunteers performing different body postures19,56,57 as
well as disc pressures58 have been measured in vivo. These studies revealed that the load on
the L3/4 level disc in a sitting position and in a standing position with 20 degrees of flexion
was 250% of the total body weight, although the portion of the body above the L3/4 level
represented only 60%. Such large loads have been validated with mathematical models.59,60

This suggests that the load on the lumbar disc is composed of external and internal inputs.54

The external load is the weight of the body above the lumbar disc, and the internal load is
the muscle force required to stabilize the spine under different postures. Increases in disc
pressure should also be expected when a fluid is injected, as Andersson and Schultz61 have
shown, when they inquired about the effects of injecting saline in a disc, and found varied
responses in cases where the injected fluid was retained, notably the large increases in
pressure (up to 83%). On the other hand, a decrease in pressure was observed in the
degenerated disc.16

A number of animal models have been established to investigate degenerative changes in
structural properties of the lumbar motion segment. A commonly used mechanical damage
method to cause disc degeneration is the needle puncture or stab wound. Several researchers
have recently arrived at the same conclusions when reporting that the diameter of the wound
has to be large enough to create degeneration.62–64 Korecki et al 65,66 have shown that in an
in vitro cyclic testing setting, bovine discs showed immediate and progressive differences in
the dynamic modulus and stiffness of the anulus fibrosus tissue after puncture. Aside from
the lamellar disturbances, cell viability and matrix remodeling were observed. Another
animal model (ovine) of disc degeneration from induced lesions has also shown regeneration
in the mid anulus fibrosus wall.67 In a different loading condition, a murine tail model has
shown also differences in the anulus fibrosus tissue as a consequence of dynamic
compression, but did not achieve degenerate disc quality after long cycles of compression.68

In all, these reports suggest that puncture injuries lead to degenerative remodeling including
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granulation tissue, which current image-based diagnostics methods might not be able to
distinguish.69

MacLean et al 70 investigated static viscoelastic behaviors of rat caudal motion segments,
vertebrae and isolated disc explants under different permeability conditions and
demonstrated that differences in endplate permeability conditions had a significant effect on
the viscoelastic behaviors. Johannessen et al 71 demonstrated a decrease in stress-relaxation
after ten thousand cycles of compressive loading in adult sheep lumbar motion segments and
recovery of the stress-relaxation after 18 hours of unloading in PBS solution, suggesting
intervertebral disc fluid transport during loading and unloading.

Boxberger et al 72,73 used a degenerative disc model in rat by injection of Chondroitinase-
ABC to the discs. In this model, nucleus pulposus degeneration has been successfully
induced through with GAG loss as a consequence of Chondroitinase-ABC injection to the
discs, which were tested in a linear viscoelastic tension/compression regime afterwards.
Results showed that the dynamic stiffness was decreased at low loads. Nucleus pulposus
GAG content was shown to be related to the neutral zone properties in the tension-
compression cyclic tests. However, the tension and compression extremes of the load
displacement curve were not. This shows that a degenerate nucleus produces hypermobility
in addition to low pressures. Such distortion in load sharing leads to the development of
hoop stresses in the anulus that resist compressive loads.72,73

Kim et al 74–76 used a rabbit degenerative disc model by 18-gauge needle puncture of the
disc to investigate changes in dynamic viscoelastic properties of the whole disc associated
with the disc degeneration. In this model, the proteoglycan content decreased and collagen
content increased 4 weeks after puncture. The dynamic viscoelastic test showed a decrease
in elastic and viscous properties in the punctured disc (Figure 1). The correlation study
showed that the proteoglycan content positively correlated with the elastic and viscous
mechanical properties and height of the disc; however, there was no correlation with the
collagen content. These results suggest that the proteoglycan is a governing factor for
viscoelastic properties and structural properties of the disc.

Using the same rabbit degenerative disc model and the dynamic viscoelastic testing method,
Miyamoto et al 77 investigated effects of OP-1 injection in the lumbar disc on biomechanical
and biochemical restoration of the disc. In this study, a significant increase in wet weight
and proteoglycan content was observed in both nucleus pulposus and anulus fibrosus tissues
of the OP-1-injected discs, compared with the lactose injected control discs, whereas an
increase in collagen content was observed only in the nucleus pulposus. These results
suggested that an increased proteoglycan content, induced by the injection of OP-1, resulted
in tissue hydration in both the nucleus pulposus and anulus fibrosus. The results of the
dynamic viscoelastic test showed that the elastic modulus has a significant positive
correlation with the proteoglycan content in the nucleus pulposus and the proteoglycan and
collagen content in the anulus fibrosus. Similarly, the viscous modulus was shown to have a
significant positive correlation with the proteoglycan content in the nucleus pulposus and the
proteoglycan and collagen content in the anulus fibrosus.

Instability of the Motion Segment Associated with Intervertebral Disc
Degeneration

As disc degeneration progresses, structural failure of the disc is manifested by tears and
clefts in the anulus fibrosus. These material disruptions occur in different directions and are
the result of a variety of influencing factors, including altered loading of the disc. Potential
relationships between osteophytes and peripheral tears were first reported by Schmorl and
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Junghanns,78 and also highlighted the fact that because of the tears, segmental instability
would be affected. Farfan 79 and Kirkaldy-Willis 80 concluded that tears were by-products of
torsional stresses, implicating them as initiators of the failure of other disc components in
the disc degeneration cascade.

Disc fissures have been classified in three categories, depending on their morphology and
anatomical position in the disc: a) peripheral tears or rim lesions, parallel to the endplates
and exhibiting normally separation of the disc from the subchondral bone of the vertebral
body, which with time developed b) circumferential tears that present evidence of
delamination as a failure mode. Finally, c) radial tears, as it name implies, propagate in a
direction perpendicular to an imaginary axis of the disc (if it is considered as a flat cylinder),
which usually lead to disc herniations and expulsion of nucleus material. The literature
shows few reports that address the crack propagation phenomena involved in disc tears, as it
is common to report only the resulting condition (ruptured anulus, herniated disc).38,81,82

Many of the models consider the anulus as a bulk material, but recently, more advanced
models have incorporated annular layers83 and implemented permeability and porosity84–87,
as well as the disc’s osmo-viscoelastic properties.88,89 The interlamellar structures have
been deemed especially sensitive to shear stresses,25,90,91 and the literature is lacking reports
of their allegedly weaker mechanical properties. They are thought to play a predominant role
when destructive processes such as delamination occur as part of herniation, as it has been
attempted in analytical models of the disc92, of anulus fibrosus tissue93 and of individual
lamellae.94 Schollum et al 67,95 have been one of the few who recently analyzed in detail the
interface between annular lamellae in an ovine model by subjecting thin slices of immature
and mature anulus fibrosus tissue to micro-tensile tests. While their studies was mostly
attempting to describe the architecture of the interlamellar interface, important differences in
the response to tensile forces were shown between young and old tissue, with the older
tissue exhibiting a more ordered and uniform lamellar separation than the young tissue;
however the authors did not report elastic properties.

Fujiwara et al 7,96 studied the effect of disc degeneration graded by MRI on the segmental
motion of the lumbar spine using a total of 106 motion segments obtained from 44 cadaveric
lumbar spines taken from 18 females and 25 males with a mean age of 69 years. The
investigators found that segmental motion increased with increasing severity of disc
degeneration to grade 4 but decreased when the disc degeneration advanced up to grade 5.
Such segmental motion changes were much greater in axial rotation when compared with
those in lateral bending, flexion and extension, demonstrating the importance of torsional
instability in diagnosing spinal instability. The results of these studies are important for
understanding the kinematic property changes in relation to the types or grades of disc
degeneration. The results were consistent with the previous reports and the concept of three
stages of spinal degeneration: dysfunction, instability and restabilization proposed by
Kirkaldy-Willis and Farfan.97

Instability of the Lumbar Spine Associated with Intervertebral Disc
Degeneration

Segmental instability of the lumbar spine is frequently considered a cause of LBP, but
instability of the spine is poorly defined and understood.97–105 The basic concept of spinal
instability is that excessive motion beyond normal constraints causes either compression or
stretching of the neural elements or causes abnormal deformations of ligaments, joint
capsules, annular fibers, or endplates, which are known to have a significant number of
nociceptors. Even though several studies have indicated that excessive motion on flexion/
extension radiographs is associated with LBP or degenerative disc disease,106,107 other
studies cite decreased motion in patients with degenerative changes and such pain.108,109
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Lumbar segmental instability may be associated with a spectrum of clinical manifestations
of degenerative changes in the intervertebral disc.97,110–114 Intervertebral disc degeneration
has been studied using MR imaging, and grades of degeneration have been reported.111–118

The relationship between the types (or grades) of disc degeneration and kinematic
characteristics of the motion segment has been studied using cadaveric spinal motion
segments.96,119–123 Despite some variation in results, likely because different loading
conditions and methods of grading degenerative disc changes were used, the overall results
of these studies indicate that the biomechanical characteristics of the motion segment can
become altered significantly when degenerative changes develop in the intervertebral disc.

In vivo measurement of lumbar segmental movement
There have been numerous in vivo studies on segmental instability of the lumbar spine in
which dynamic flexion/extension radiographs were used.108,124–133 However, these dynamic
radiographic techniques have been found to be inaccurate.134,135 The errors associated with
sagittal plane translational motion measurement reported in the literature range from 1 to 4
mm134,136 or 3% to 15% of the vertebral depth.137–139 Schaffer et al 135 reported
surprisingly high false-positive and false-negative rates (i.e., normal translations are
categorized outside of the normal range and vice versa) with significant differences between
measurement methods despite very high reliability across radiographic quality, raters, and
measurement. More sophisticated techniques such as biplanar stereoradiography,140–145

centrode pattern analysis,100,137,146–156 and traction-compression radiography,138,157 have
been introduced but have not been widely accepted. More accurate methods involve invasive
techniques by inserting metal beads or spinous process wire to determine three-dimension
(3-D) motion.158–160 However, because these methods are invasive, they are not appropriate
for routine use in clinical practice as well as for in vivo human studies. Studies on segmental
instability also have been limited by other factors in addition to these problems associated
with accurate measurement of segmental motion in vivo. For example, the range of motion
measured in most of these studies is affected by the variability in voluntary efforts that the
subject applies at the time of examination and also can be limited because of pain.

Other 2-D imaging methods for measuring axial rotation, as opposed to flexion/extension,
have involved MR imaging of subjects in various rotated positions.161,162 While these
studies were non-invasive and controlled for voluntary motions, they could only determine
changes in segmental motion around one axis. It has been suggested that coupled motions
could play an important role in determining spinal instability. To measure these coupled
motions, studies have been conducted to measure 3-D motions in vivo. More invasive
techniques involve inserting wires into the spinous process of subjects to determine 3-D
motion.163 While this method has proven more accurate than radiographs, its invasive nature
limits its wide spread clinical use. Other studies have used biplanar radiography, where the
radiograms of the spine were taken from two directions simultaneously and 3-D motions are
calculated by the positions of anatomical landmarks in corresponding images.142,164–167

There has been some concern about the accuracy in determining anatomical landmarks for
biplanar radiography, as well as a lack of equipment for this method in typical clinical
settings.

To overcome some of these limitations to 3-D motion measurement, Lim et al 168 developed
a 3-D imaging technique using dynamic computed tomography (CT) to determine 6 degree-
of-freedom (3 rotations and 3 translations) transformation of individual cadaveric cervical
vertebrae during motion by tracking eigenvectors of the individual vertebrae. The authors
illustrated that accurate measurements (±1 mm and ±1°) can be made using CT in vitro. The
research group expanded on this technique to measure vertebral segmental movements in
human lumbar spines in vivo (Figure 2). Although this method was able to determine the
rotations and translations of the lumbar vertebrae during motion in vivo, it was limited in
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determining transformation of the sacrum because an entire 3-D CT model of a sacrum is
difficult to obtain clinically and the eigenvector analysis using a partial sacrum 3-D model
caused an error of the measurement of the segmental motion at L5-S1. The same research
group developed another method to determine transformation of individual vertebrae
including the sacrum during motion using the 3-D CT model and a Volume-Merge method
(Figure 3).169,170 This method can determine the rotations and translations during motion
even if the 3-D geometry of the bone is incomplete, as in the case of the sacrum (an
assumption of the bone as a rigid body still holds) at each position. Thus, it is able to
determine the transformation of the incomplete sacrum 3-D CT model with an accuracy of
less than 0.1 mm in translation and 0.2° in rotation.

Relationship between instability and disc degeneration
Most patients with segmental instability have disc degeneration, but the relationship
between instability and degeneration is not clear. Takeuchi et al 171 presented a study using
MR images in which T1 relaxation time was decreased in degenerative discs and the energy
dissipated to axial loading was linearly correlated with T1 relaxation time. The authors
attempted to correlate the intrinsic biomechanical properties of the disc with MR imaging
findings, but no information could be derived about the segmental motion characteristics
from this study. Toyone et al 172 reported that bone marrow adjacent to the disc in patients
with symptomatic lumbar segmental instability, defined by flexion more than 5° and
dynamic anterior-posterior translation more than 3 mm, had decreased signals on T1
weighted spin-echo MR images or Modic type I changes. Inaccurate flexion/extension
radiographs of patients were used in this study by Toyone et al 172 and pathogenesis of the
osseous changes with disc degeneration is not known.

Results of the in vitro studies of segmental motion characteristics and disc degeneration
done by Fujiwara et al 96 demonstrated that torsional motion was most significantly affected
by the degenerative changes in disc and facet joints. In addition, some investigators advocate
the importance of torsional loads and stability on the injuries and degeneration of the motion
segments.173–178 Torsional instability in relation to the degenerative changes in the disc had
been investigated in vivo using the aforementioned in vivo 3-D measurement technique.168

The investigators found that a relationship exists between the severity of IVD degeneration
and increases in the torsional movement in vivo, which was previously demonstrated only in
the cadaveric studies.169,170

Summary
A decrease in proteoglycan content and an increased collagen fiber associated with
degeneration contribute changes in material properties of nucleus pulposus from a fluid-like
material to a solid-like material. Changes in material properties of the anulus fibrosus tissue
are also affected by water content, which is a direct consequence of proteoglycan content.
Degenerative structural changes of the entire disc are well documented as are the changes in
its viscoelastic properties. Decrease in proteoglycan content in the nucleus pulposus is also
considered as a governing factor affecting the dynamic viscoelastic properties of the entire
disc. The highest correlation between the instability and the severity of the disc degeneration
in torsion, among different loading directions, indicates that the fissures in the anulus
fibrosus contribute the instability. This result agrees with the concept of “degenerative
cascade” proposed by Kirkaldy-Willis. Increased segmental movement with disc
degeneration up to grade 4 has also been measured in vivo. Further investigation will still be
needed to confirm whether LBP is associated with increased segmental motion. To this end,
current progress made on image analysis techniques using clinical imaging modalities will
be a powerful tool to investigate this challenging problem.
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Figure 1.
Experimental test chamber for an unconfined dynamic compression experiment to record
viscoelastic properties of a rabbit disc. The bone-disc-bone complex was secured between
two porous pucks that prevented friction of the endplates with respect to these structures.
Discs can be altered chemically to promote and recover from degeneration. Their dynamic
viscoelastic properties can be assessed in this way.
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Figure 2.
Schematic of a subject’s positioning inside a CT gantry to study torso rotation. Straps hold
subject onto a torso rotation apparatus and CT records evidence of coupled motion during
torsion. Segmental movements are level dependent and a pattern of the segmental movement
is different between healthy subjects and subjec ts with low back pain.
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Figure 3.
Description of the Volume Merge method for analysis of segmental movement. A vertebral
body in the neutral position (a) was virtually rotated and translated toward the rotated
position (b). The position was refined with 0.05° and 0.05 mm increments, respectively,
until the maximized volume merging was determined (d). A voxel with a dimension of
1.0×1.0×1.0 mm was created for each point of the stationary target. The number of points of
the moving vertebra (white dots) that fell within the voxel of the stationary target (yellow
dots) was determined and the percentage of volume merge was defined: e) no volume
merge, f) volume merge achieved within the voxel region of interest.
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