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Abstract

Objective: Metastasis is the most common cause of death of prostate cancer patients. Identification of specific metastasis
biomarkers and novel therapeutic targets is considered essential for improved prognosis and management of the disease.
MicroRNAs (miRNAs) form a class of non-coding small RNA molecules considered to be key regulators of gene expression.
Their dysregulation has been shown to play a role in cancer onset, progression and metastasis, and miRNAs represent a
promising new class of cancer biomarkers. The objective of this study was to identify down- and up-regulated miRNAs in
prostate cancer that could provide potential biomarkers and/or therapeutic targets for prostate cancer metastasis.

Methods: Next generation sequencing technology was applied to identify differentially expressed miRNAs in a
transplantable metastatic versus a non-metastatic prostate cancer xenograft line, both derived from one patient’s primary
cancer. The xenografts were developed via subrenal capsule grafting of cancer tissue into NOD/SCID mice, a methodology
that tends to preserve properties of the original cancers (e.g., tumor heterogeneity, genetic profiles).

Results: Differentially expressed known miRNAs, isomiRs and 36 novel miRNAs were identified. A number of these miRNAs
(21/104) have previously been reported to show similar down- or up-regulation in prostate cancers relative to normal
prostate tissue, and some of them (e.g., miR-16, miR-34a, miR-126*, miR-145, miR-205) have been linked to prostate cancer
metastasis, supporting the validity of the analytical approach.

Conclusions: The use of metastatic and non-metastatic prostate cancer subrenal capsule xenografts derived from one
patient’s cancer makes it likely that the differentially expressed miRNAs identified in this study include potential biomarkers
and/or therapeutic targets for human prostate cancer metastasis.
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Introduction

Prostate cancer is the most common cancer in men and the second

leading cause of cancer deaths in the United States [1]. While

considerable advances have been made in the treatment of localized,

organ-confined tumors, prostate cancer is currently incurable once it

has progressed to metastasis, and most deaths from this disease are

due to metastases that are highly resistant to conventional therapies.

Currently, prostate-specific antigen (PSA) is a major serum

biomarker used for the detection and monitoring of prostate cancer

progression. However, the prognostic value of increased PSA levels is

limited, since advanced prostate cancer can be associated with very

low or normal PSA values. There is therefore an urgent need for

new, more specific biomarkers which can be used to predict cancer

progression on their own or in cooperation with a current biomarker

such as PSA [2]. Furthermore, novel therapeutic targets associated

with prostate cancer metastasis are urgently needed.

MicroRNAs (miRNAs) are small non-coding RNAs (17 to 27

nucleotides) that negatively regulate the expression of target genes by

binding to 39 untranslated regions (UTRs) of mRNAs and inhibiting

translation or promoting mRNA degradation [3]. Recent studies

have shown dysregulation of miRNAs in human tumors indicating a

role for such molecules in cancer pathogenesis, including cancer

onset, progression and metastasis [4,5]. Thus far, only a small

number of studies have investigated miRNA expression in prostate

cancer, and only a few have dealt with metastasis of this disease.

Differences in the expression profiles of miRNAs so far identified

may have prognostic value for the various aspects of the disease and

a better understanding of the role of miRNAs in the development

and progression of prostate cancer is needed [6]. Further research

may also lead to identification of new miRNAs that are specifically

related to prostate cancer progression and metastasis. Such

metastasis-associated miRNAs may serve as metastatic biomarkers

and/or new targets for therapy of metastatic disease.

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24950



Studies aimed at identifying genetic factors with key roles in

prostate cancer metastasis have been impeded by a lack of optimal

experimental models. While xenograft models based on estab-

lished cancer cell lines representing different stages of cancer

progression can be useful for identifying mechanisms underlying

metastasis, they do not adequately mimic clinical disease [7].

Efforts have therefore focused on use of patients’ prostate cancer

tissues. However, the typical heterogeneity of such tissues,

consisting of both non-metastatic and potentially metastatic

subpopulations, makes it difficult to identify factors such as genes

that underlie the development of metastasis [8]. Moreover, it is

difficult to obtain metastatic prostate cancer tissues from patients

for experimental purposes, since they are not routinely or feasibly

biopsied or resected from patients, and rapid autopsy programs

are extremely expensive and difficult to manage. To overcome the

above hurdles, we developed next generation patient-derived

prostate cancer xenograft models, that more closely resemble the

clinical situation, by using subrenal capsule grafting of patients’

cancer tissue into immuno-deficient mice. This methodology

favors retention of the properties of the original cancers [9–11].

Furthermore, it has been possible to establish transplantable,

metastatic and non-metastatic prostate cancer sublines from

heterogeneous xenografts [12,13]. Use of metastatic and non-

metastatic xenografts has already been effective in the identifica-

tion of prostate cancer metastasis-associated genes [13].

Illumina’s massively parallel DNA sequencing by synthesis

technology is a widely-adopted next-generation sequencing

platform. It supports parallel sequencing using a proprietary

reversible terminator-based method that enables detection of

single bases as they are incorporated into growing DNA strands. A

fluorescently-labeled terminator is imaged as each dNTP is added

and then cleaved to allow incorporation of the next base. Since all

four reversible terminator-bound dNTPs are present during each

sequencing cycle, natural competition minimizes incorporation

bias, leading to true base-by-base sequencing [14].

In the present study, Illumina next generation sequencing

technology was utilized to compare the miRNA profiles of a

transplantable metastatic versus a non-metastatic prostate cancer

xenograft line, both derived via subrenal capsule grafting [10–12]

from one patient’s primary cancer tissue. Differentially expressed

known and novel miRNAs were found that may have specific roles

in the metastasis of prostate cancer.

Materials and Methods

Patient-derived prostate cancer xenograft models
NOD/SCID mice used for xenografting were bred and

maintained at the British Columbia Cancer Research Centre

Animal Facility (Vancouver, Canada). All experimental protocols

were approved by the University of British Columbia Animal Care

Committee (A10-0100). A prostate cancer biopsy specimen was

obtained at the BC Cancer Agency with the patient’s written

informed consent. Ethical approval was provided by the University

of British Columbia - British Columbia Cancer Agency Research

Ethics Board (UBC BCCA REB #H04-60131).

The establishment of transplantable prostate cancer tissue

xenograft lines via subrenal capsule grafting has been described

previously [9]. In the present study, a recently prepared metastatic

prostate cancer xenograft line, LTL-313H [15], and a non-

metastatic counterpart, LTL-313B (unpublished), were used that

had been derived from different loci of one patient’s prostate

cancer biopsy sample (www.livingtumorlab.com). Both lines were

PSA- and AR-positive as shown via immunohistochemistry ([15];

unpublished data). They were routinely maintained under renal

capsules of male NOD/SCID mice supplemented with testoster-

one, as previously described [9]. The LTL-313H xenografts

showed invasion of the mouse host kidney and cancer cells were

detected in the lungs of the hosts after 3 months of grafting. In

contrast, the LTL-313B xenografts showed no obvious invasion of

the mouse kidney and did not show any distant metastases (data

not shown).

Small RNA library construction and cDNA sequencing
LTL-313H and LTL-313B xenograft tissues were collected and

RNA was extracted using TRIzol (Invitrogen, Mississauga, ON,

Canada) according to the manufacturer’s instructions. The RNA

was submitted to the Genome Sciences Centre at the British

Columbia Cancer Agency (www.bcgsc.bc.ca) for small-RNA

cDNA library construction and sequencing as previously described

[16] with minor modifications. Each library had a specific index

sequence in its 59 adaptor, i.e. ‘‘ACATCGA’’ for the LTL-313H

library and ‘‘CGTGATA’’ for the LTL-313B library; both

libraries were mixed and the sequencing was run in one flow

cell in the Illumina’s platform.

Small RNA mapping and differential expression detection
The 59 indexed cDNA sequences were used to distinguish the

origin of the RNAs. 39 Adaptor sequences were removed from all

reads and those remaining tags that were 16 to 27 nucleotides in

length and expressed at a tag count of 2 or more in each library

were used for further analysis. The trimmed sequences were

mapped to miRBase 15 human stem-loop sequences (http://www.

mirbase.org/) using the Novoalign (www.novocraft.com) program

allowing up to 3 mismatches. Those that matched an miRBase

sequence were then grouped as: 1) known mature miRNA and

miRNA*, 2) putative miRNA*, not previously reported in the

miRBase, 3) loop sequences and 4) sequences which matched the

loop-sequence but did not have known mature sequences. The

sequences matching known miRNAs were further clustered, based

on their starting positions, and counted. The most abundant

variation/starting position tags were used for comparison between

libraries. Tag counts were normalized to the total counts of those

sequences which matched the miRBase 15 stem-loop sequences

and the two libraries were compared for differential expression of

the sequences using the Fisher’s exact test with Bonferroni’s

correction. Sequences were deemed significantly differentially

expressed by the two libraries if the p-value was ,0.001 and there

was at least a 2–fold change in the sequences’ normalized counts.

Novel miRNA identification
The sequences that did not match known miRNA stem-loop

sequences were filtered out with known transcripts sequences

downloaded from UCSC [17]. To identify novel miRNA

candidates amongst the remaining unmatched sequences, the

miRanalyzer program [18] was used (http://web.bioinformatics.

cicbiogune.es/microRNA/miRanalyser.php). The output candi-

dates were checked one by one for homologies to known non-

coding RNA, and non-homologous sequences were taken as novel

miRNA candidates.

miRNA target prediction and pathway analysis
The target genes for each differentially expressed miRNA were

predicted using MicroCosm version 5 [19,20] with a threshold of

p = 0.001. As some of the genes were potentially regulated by both

up-regulated and down-regulated miRNAs, we focused for further

analysis on the genes that were potentially regulated only by up-

regulated or down-regulated miRNAs. Identification of KEGG

miRNAs Associated with Metastatic Prostate Cancer
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pathways associated with potential target genes was carried out

using DAVID 6.7 (Database for Annotation, Visualization and

Integrated Discovery, http://david.abcc.ncifcrf.gov/). In addition,

we compared the target gene lists with gene expression data by

microarray assay using the same xenograft tissues to identify those

putative targets that might be regulated at the mRNA level.

Microarray gene expression analysis
The RNA that was used for the miRNA sequencing library was

also used for mRNA-based gene expression analysis using the

Agilent’s Human GE 44K platform at the Vancouver Prostate

Centre Microarray Facility (www.mafpc.ca). All data are MIAME

compliant and the raw data have been deposited in GEO

(accession number GSE28029). The expression signal was

transformed to z-score and calculated z-ratio and the mRNAs

with more than 1.96 of z-ratio were dealt up-regulated and less

than 21.96 as down-regulated [21]. The data were also filtered by

Flag.

Cell culturing
The 22Rv1 prostate cancer cell line was cultured in RPMI-1640

medium supplemented with 10% fetal bovine serum (FBS) at 37uC
in a humidified atmosphere containing 5% CO2.

miRNA precursor transfection
The precursor sequence of mir-486, shown in the miRBase, and

a non-silencing negative control were subcloned into the

pcDNA6.2-GW/EmGFP miR plasmid (Invitrogen). 22Rv1 cells

were seeded in 12 well-plates at a density of 1.06105 cells per well,

24 hours in advance of transfection. Transfection was carried out

using Lipofectamine 2000 (Invitrogen), following the manufactur-

er’s instructions. The transfection efficiency was validated by GFP

signal monitoring using an inverted fluorescence microscope

system (Zeiss). To confirm increased levels of mature target

miRNA, a portion of the transfected cells was used for validation

by quantitative (qPCR). To this end, total RNA was extracted

using a miRNeasy mini kit (Qiagen) and the quantity of RNA

determined by nanodrop spectrophotometry (Thermo Scientific).

Portions (25 ng) of each of the total RNA preparations were

reverse-transcribed to cDNA using a Universal cDNA Synthesis

Kit (Exiqon) following the manufacturer’s instructions. The cDNA

was diluted and mixed with microRNA LNA PCR primers and

SYBR Green master mix (Exiqon). qPCR was carried out using an

ABIPrism 7900HT (Applied Biosystems) following the manufac-

turer’s instructions. The DDCT was used for calculating the fold

changes relative to the control and U6 was used as an endogenous

control.

MTT assay
The transfected cells were seeded in 96-well plates at a density

of 16104 cells/well. MTT solution (20 ml of 5 mg/ml) was added

to the cultures (200 ml volumes) for a 4 hr incubation at 37uC.

Following removal of the culture medium, the remaining crystals

were dissolved in DMSO and absorbance at 570 nm was

measured.

Migration/invasion assay
BioCoat Matrigel invasion chambers (BD Biosciences) were

used to measure tissue invasiveness of cells. In the upper chambers,

16105 cells/well were plated in 0.50 ml of serum-free medium. In

the lower chambers, 0.75 ml of medium/10% FBS was delivered.

The chambers were incubated for 30 hr at 37uC in a humidified

atmosphere with 5% CO2. The cells that remained in the upper

chamber were removed and the transmigrated cells fixed in

methanol and stained with crystal violet and stained cells were

counted by microscopic analysis. Tumor cell invasion was

expressed as the percentage of cells that had passed through the

Matrigel-coated membranes relative to the number of cells that

had passed through the uncoated membranes (invasion index). All

assays were performed in triplicate.

Results

miRNA sequencing and annotation
Small RNAs were isolated from metastatic LTL-313H and non-

metastatic LTL-313B prostate cancer tissue xenografts and

processed to allow deep sequencing using the Illumina’s platform.

The reads with adaptor index sequences ‘‘ACATCGA’’ and

‘‘CGTGATA’’ were given LTL-313H origin and LTL-313B

origin, respectively. More than 10 million total reads were

obtained for each of the libraries. These reads were compared

with the sequence data in the miRBase 15 microRNA Sequence

Database. For the metastatic and non-metastatic prostate cancer

tissue libraries, 3,445,642 and 2,272,677 tags, respectively, were

fully mapped to human miRNA stem-loop sequences present in

the miRBase database (Table 1). The completely matched reads

were annotated, according to their position in the stem-loop

structure. A shift of up to 2 bases in the starting and ending

positions was allowed for sequences to be annotated as isomers of

known mature miRNAs (isomiRs). The total numbers of known

miRNAs plus miRNA*s in the metastatic and non-metastatic

libraries were 447 and 509, respectively (Table 1). The most highly

expressed miRNA (and isomiR) was the miR-148a with total

counts of 270,801 and 763,877 reads per metastatic and non-

metastatic libraries, respectively. When the isomiRs were grouped

using the same starting position, the miR-148a remained the most

abundant miRNA in the non-metastatic library with a total count

of 846,468, whereas in the metastatic library miR-21 was most

abundant with a total count of 310,102.

miRNA and miRNA* expressions
In the miRBase, miRNAs derived from a precursor are

designated miRNA, the predominantly expressed arm, and

miRNA* the less-expressed, opposite arm. If both arms are

similarly expressed, they are referred to as 5p and 3p arms. The

expression of known miRNAs in the prostate cancer xenografts

was in general higher than that of miRNA*s. In a number of cases,

miRNA*s (as identified by miRBase) were more expressed than

the corresponding miRNAs (Table 2). Thus miR-144* was

substantially more expressed than miR-144 in both metastatic

and non-metastatic libraries; similarly miR-126* was more

expressed than miR-126, but only in the non-metastatic library.

Differences were also found in the expression patterns of 3p and

5p arm miRNAs (Table 2). The 3p arms of miR-28 and miR-339

showed higher expressions than the corresponding 5p arms in the

metastatic line, whereas they showed lower expressions than the

corresponding 5p arms in the non-metastatic line. In the

metastatic line, the miR-542 showed up-regulation of the 3p

arm but down-regulation of the 5p arm. Fragments that were

counterparts of known mature miRNAs, but that had not

previously been reported to the miRBase database, were

designated ‘‘putative novel miRNA*’’ species (Table 3). A total

of 32 of such putative miRNA*s was observed showing at least two

reads in one of the two libraries. Some of these miRNA*s also

showed higher expression than their corresponding miRNAs, e.g.,

miR-1277* and miR-1307*.

miRNAs Associated with Metastatic Prostate Cancer
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Novel miRNA candidates
One advantage of utilizing a sequencing approach for miRNA

profiling is the opportunity to identify novel miRNAs or

miRNA*s. To this end, we used an miRanalyzer, a microRNA

detection and analysis tool [18], in combination with homology

searches to identify known transcripts, including non-coding

RNAs (e.g., rRNA, tRNA, etc.). Using miPred software to

distinguish real pre-miRNAs from other hairpin sequences with

similar stem-loops [22], we identified 36 novel miRNA candidates.

Their sequences, chromosome locations and number of reads in

the metastatic and non-metastatic libraries are presented in Table 4

and Table S1. Comparative analysis of the two libraries showed

significant differential expression of some of these novel miRNAs,

including down-regulated miR-5680-3p and miR-5681a-3p.

Potential metastasis-associated miRNAs
Comparative analysis of the metastatic and non-metastatic

xenograft miRNA libraries revealed a total of 104 differentially

expressed miRNAs or miRNA*s with 55 down-regulated and 49

up-regulated in the metastatic line (Table 5,6,7). Of the down-

regulated miRNAs, 24 miRNAs showed a .5-fold decrease,

including four miRNAs, i.e. miR-205, miR-503, miR-708 and

miR-2115*, which were undetectable in the metastatic line. Two

miRNAs, i.e. miR-24-2* and miR-101*, showed increased

expression in a one-base-shift form. A one-base-shift form of

miR-203 showed some increased expression in the metastatic line

relative to reference miR-203, whereas in the non-metastatic line it

showed a lower expression. Of the up-regulated miRNAs, 23

miRNAs showed a .5-fold change in normalized counts. One-

base-shift forms of miR-9*, miR-148b* and miR-1246 showed

higher expression than the reference forms in both metastatic and

non-metastatic lines.

Some of the differentially expressed miRNAs have previously

been associated with prostate cancer, prostate cancer metastasis or

metastasis of other types of cancer (Table 5,6,7). Of the down-

regulated miRNAs a number have been reported to be down-

regulated in prostate cancer relative to benign prostate tissues, i.e.

miR-16 [23–25], miR-24 [26–28], miR-29a [26], miR-145

[23,24,27,29,30], and miR-205 [24,31,32]. The down-regulation

of miR-16 [25], miR-34a [33], miR-126* [34], miR-145 [35] and

miR-205 [36] correlated with the development of prostate cancer

metastasis. Of the up-regulated miRNAs (in the metastatic library),

miR-210 has been reported to be up-regulated in prostate

carcinomas relative to BPH samples [23] and miR-301 has been

linked to prostate cancer metastasis [37]. In some cases, miRNAs

that were found to be up-regulated in the present study have been

reported to be either up-regulated in prostate carcinomas

compared to normal prostate tissue [38–40], or down-regulated

[23,24,27–29]. Furthermore, some of the differentially expressed

miRNAs have been reported to play a role in the metastasis of

other types of cancer, for example, the up-regulated miRNAs, let-

7i, miR-9, miR-30a, miR-125b, miR-142-5p, miR-151-3p, miR-

450a and the down-regulated miRNAs, miR-24, mir-145, miR-

146b-5p, miR-185, miR-186, miR-203 and miR-335.

Putative target genes for differentially expressed miRNAs
As a first step in the identification of miRNAs with potential

significance in the metastatic process, we identified putative target

genes for each of the differentially expressed miRNAs using

Microcosm analysis, a target prediction program with a specific

algorithm and coverage of miRNA, including varieties in star arms;

a threshold p-value = 0.001 was maintained to get more reliable

target identification (Microcosm) [41]. Putative target genes were

Table 1. Small-RNA library sequencing summary.

Metastatic library Non-metastatic library

index tag sequence ACATCGA CGTGATA

total cDNA reads 10,525,988 11,644,175

reads mapped to miRNA miRBase stem-loop sequences 2,272,677 3,445,642

unique sequences 1,875,353 2,941,722

most abundant miRNA miR-148a (270,801) miR-148a (763,877)

most abundant miRNA grouped at starting position, total miR-21 (310,102) miR-148a (846,468)

total known miRNA plus miRNA* 447 509

doi:10.1371/journal.pone.0024950.t001

Table 2. Levelsa of miRNA and miRNA* showing
dysregulation in (i) miRNA:miRNA* ratios in metastatic and
non-metastatic xenografts and (ii) the levels of miRNA or
miRNA* in the two xenograft lines.

Expression level

miRNA metastatic non-metastatic fold change

miR-7 72.35 22.5 3.22

miR-7-1* 2.76 24.54 28.88

miR-126 26005.24 1799.7 14.45

miR-126* 1099.03 3798.06 23.46

miR-144 915.16 134.98 6.78

miR-144* 5429.24 418.37 12.98

miR-335 22.58 54.63 22.42

miR-335* 65.9 91.74 1.39

miR-374a 1638.17 674.3 2.43

miR-374a* 954.79 825.93 1.16

miR-28-3p 317.5 188.15 1.69

miR-28-5p 184.78 1264.17 26.84

miR-339-3p 65.43 102.55 21.57

miR-339-5p 35.94 189.03 25.26

miR-542-3p 100 26.88 3.72

miR-542-5p 0.92 12.27 213.31

aTag counts were normalized to the total counts of sequences that matched the
miRBase 15 stem-loop sequences and are expressed as number per 1,000,000
tags.

doi:10.1371/journal.pone.0024950.t002
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identified for 49 out of 55 down-regulated miRNAs and for 47 out

of 49 up-regulated miRNAs (Table S2); they were annotated using

the DAVID program. The putative target genes of the down-

regulated miRNAs were associated with a variety of KEGG

pathways including ‘‘Fc gamma R-mediated phagocytosis’’ and

‘‘ECM-receptor interaction (Table S3). For the putative target genes

of the up-regulated miRNAs, pathways such as ‘‘Pathways in

cancer’’, ‘‘Focal adhesion’’ and ‘‘Purine metabolism’’ were noted.

Comparison of putative miRNA target genes with
genes differentially expressed in the metastatic and
non-metastatic xenograft lines

Although miRNAs are thought to alter protein levels, they have

in some cases been shown to also affect mRNA levels [3]. In view

of this, the two xenograft lines were examined for differential

mRNA expression. As shown in the Table S4, 622 mRNAs were

down-regulated and 348 mRNAs were up-regulated in the

metastatic line. Some of the genes identified by differential mRNA

expression were potentially targeted by both up- and down-

regulated miRNAs. In view of this, further analysis was restricted

to genes that were potentially targeted by either up-regulated or

down-regulated miRNAs. The group that showed up-regulated

mRNAs associated with only down-regulated miRNAs consisted of

85 mRNAs; the group that showed down-regulated mRNAs

associated with only up-regulated miRNAs consisted of 58

mRNAs. Among the mRNAs up-regulated in the metastatic line,

some have been reported to have a role in tissue invasion and/or

metastasis of a variety of cancer cells, including mRNA expressed

by FSCN1 [42], VEGFA [43] FGFR1 [44], ADAMTS1 [45], CCL2

Table 3. Putative miRNA*s, i.e. fragments complementary to known miRNAs but not reported in the miRBase.

Expression levels

putative miRNA* sequence
matched to
miRNA stem-loop

starting
position putative miRNA* miRNA

metastatic non-metastatic metastatic non-metastatic

CTGTACAACCTTCTAGCTTTCC hsa-let-7c{ 56 4.15 1.17 2039.08 1584.38

TCAATAAATGTCTGTTGAAT hsa-mir-95 15 0 0.88 44.70 973.18

TATACAACTTACTACTTTCC hsa-mir-98 81 0 0.58 105.99 79.47

CGGGGCCGTAGCACTGTCTGA hsa-mir-128-1 15 0.92 0 42.39 5.26

ATGTAGGGATGGAAGCCATGA hsa-mir-135a-2 61 1.38 1.75 379.25 588.99

TGGAAACATTTCTGCACAAACT hsa-mir-147b 12 0 1.17 1.38 0.29

GTCATTTTTGTGATGTTGCAG hsa-mir-153-2 14 12.44 1.46 219.34 554.81

AGTGGTTCTTAACAGTTCAACA hsa-mir-203 27 0 6.14 116.12 296.54

AGCCCCTGCCCACCGCACACTG hsa-mir-210 28 1.38 1.17 13967.09 302.97

GCTCTGACGAGGTTGCACTACT hsa-mir-301b 10 1.38 0.88 4.15 3.21

GTTCCTGCTGAACTGAGCCAGT hsa-mir-3074 12 0 0.58 0.46 0.00

AGGGACTTTTGGGGGCAGATGTG hsa-mir-365-1 16 1.38 1.17 16.59 22.50

GCGACGAGCCCCTCGCACAAACC hsa-mir-375 5 0 0.88 6414.45 11574.16

TGTGTTGCATGTGTGTATATGT hsa-mir-466 14 0.92 0 0 0

CAAAAGCAATCGCGGTTTTTGC hsa-mir-548e 15 0 3.80 0.46 0

CAAAAACTGCAATTACTTTTGC hsa-mir-548h-3 65 0 0.58 0 0

TTTGGTGCATATTTACTTTAGG hsa-mir-559 57 2.76 0.58 0 0

ATCAAGGATCTTAAACTTTGCC hsa-mir-561 26 3.23 1.46 0 0.88

TCGCGGTTTGTGCCAGATGAC hsa-mir-579 25 0.92 0 0.46 2.34

ACAACCCTAGGAGAGGGTGCCATT hsa-mir-652 20 0 1.17 11.06 16.65

GGACCTTCCCTGAACCAAGGA hsa-mir-659 23 2.76 1.17 0 0

ACCTCCTGTGTGCATGGATT hsa-mir-660 52 0 1.17 32.26 68.37

CGGCCCCACGCACCAGGGTAAG hsa-mir-874 10 0.92 0 3.23 2.05

CGGGAACGTCGAGACTGGAGC hsa-mir-1247 77 0.92 0.58 0 0.29

CTATCTTCTTTGCTCATCCTTG hsa-mir-1255a 69 0 1.17 2.76 1.75

AGTTGGCATGGCTCAGTCCAAGT hsa-mir-1269 25 0 5.55 9.22 7.89

TATATATATATATGTACGTATG hsa-mir-1277 11 16.59 46.45 0 2.05

ATCTCACTTTGTTGCCCAGG hsa-mir-1285-1 13 0.92 0 0 2.05

CTCTAGCCACAGATGCAGTGAT hsa-mir-1287 55 0 2.05 0.92 7.89

GAGTGGGGCTTCGACCCTAACC hsa-mir-1296 59 0 0.58 10.60 12.27

CCACCTCCCCTGCAAACGTC hsa-mir-1306 15 1.38 1.75 0 0.58

TCGACCGGACCTCGACCGGCTCG hsa-mir-1307 41 82.48 126.50 11.98 26.59

{putative let-7c* sequence is not identical to the let-7c* in the miRBase but shows complementarity to let-7c.
doi:10.1371/journal.pone.0024950.t003

miRNAs Associated with Metastatic Prostate Cancer
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[46] and VIM [47] genes. Similarly, mRNAs down-regulated in

the metastatic line, including mRNAs expressed by the CTGF [48]

and SERPINB5 [49] genes, have been found to be down-regulated

in various metastatic cancers, attesting to the reliability of our

analyses (Table S5).

Increased levels of mature miR-486 in transfected cells
At 24 hours following transfection of 22Rv1 cells with

pcDNA6.2-GW/EmGFP-mir486 or pcDNA6.2-GW/EmGFP-

control sequence, more than 90% of the cells were found to be

GFP positive. The mir-486 precursor had been properly processed

to the mature miR-486 form as indicated by qPCR. Relative to the

control, the expression levels of both miR-486-5p and -3p arms

were 11.6 fold higher, indicating that the majority of the cells

expressed elevated miR-486 levels.

Invasiveness of miR-486-transfected 22Rv1 cells
The proliferation rate of miR-486-transfected and control

sequence-transfected cells was similar as indicated by the MTT

assay (Fig. 1A). However, the miR-486-transfected cells showed an

Table 4. Novel miRNA candidates.

reads in

ID Sequence chromosomal location metastatic non-metastatic

hsa-miR-5680-3p GAGAAATGCTGGACTAATCTGC 8q22.3 28 318

hsa-miR-5681a-3p AGAAAGGGTGGCAATACCTCTT 8q21.11 4 66

hsa-miR-5682-3p GTAGCACCTTGCAGGATAAGGT 3q13.33 2 29

hsa-miR-548aw-5p GTGCAAAAGTCATCACGGTT 9q34.13 26

hsa-miR-5683-5p TACAGATGCAGATTCTCTGACTTC 6p25.1 25 22

hsa-miR-5684-5p AACTCTAGCCTGAGCAACAG 19p13.13 2 2

hsa-miR-548ax-5p AGAAGTAATTGCGGTTTTGCCA Xp22.2 12

hsa-mir-5685-5p ACAGCCCAGCAGTTATCACGGG 6p12.1 9

hsa-miR-5692c-3p AATAATATCACAGTAGGTGTAC 5q31.1 8

7q21.3

hsa-miR-5686-5p TATCGTATCGTATTGTATTGT 10q24.1 8

hsa-miR-5687-3p TTAGAACGTTTTAGGGTCAAAT 5q11.2 6

hsa-miR-5688-3p TAACAAACACCTGTAAAACAGC 3p12.1 5

hsa-miR-5681b-5p AGGTATTGCCACCCTTTCTAGT 8q21.11 4

hsa-miR-548at-5p AAAAGTTATTGCGGTTTTGGC 17q21.31 4

hsa-miR-5689-5p AGCATACACCTGTAGTCCTAGA 6p24.3 4

hsa-miR-5690-5p TCAGCTACTACCTCTATTAGG 6p21.31 3

hsa-miR-5691-5p TTGCTCTGAGCTCCGAGAAAGC 11p15.4 3

hsa-miR-5692a-5p CAAATAATACCACAGTGGGTGT 7q21.3 3

8p23.1

hsa-miR-4666b-5p TTGCATGTCAGATTGTAATTCCC Xp21.2 3

hsa-miR-5693-3p GCAGTGGCTCTGAAATGAACTC 13q14.3 2

hsa-miR-5694-5p CAGATCATGGGACTGTCTCAG 14q23.3 2

hsa-miR-5695-3p ACTCCAAGAAGAATCTAGACAG 19p13.13 2

hsa-miR-5696-5p CTCATTTAAGTAGTCTGATGCC 2q11.2 2

hsa-miR-5697-5p TCAAGTAGTTTCATGATAAAGG 1p36.22 2

hsa-miR-5698-5p TGGGGGAGTGCAGTGATTGTGG 1q21.3 2

hsa-miR-5699-3p TCCTGTCTTTCCTTGTTGGAGC 10p15.3 2

hsa-miR-5700-5p TAATGCATTAAATTATTGAAGG 12q22 2

hsa-miR-5701-5p TTATTGTCACGTTCTGATT 15q11.2 2

hsa-miR-5702-3p TGAGTCAGCAACATATCCCATG 2q36.3 2

hsa-miR-5703-3p AGGAGAAGTCGGGAAGGT 2q36.3 2

hsa-miR-5692b-5p AATAATATCACAGTAGGTGT 21q22.3 2

hsa-miR-5704-5p TTAGGCCATCATCCCATTATGC 3q22.1 2

hsa-miR-5705-3p TGTTTCGGGGCTCATGGCCTGTG 4q22.1 2

hsa-miR-5706-5p TTCTGGATAACATGCTGAAGCT 5q23.1 2

hsa-miR-5707-5p ACGTTTGAATGCTGTACAAGGC 7q36.3 2

hsa-miR-5708-5p ATGAGCGACTGTGCCTGACC 8q21.13 2

doi:10.1371/journal.pone.0024950.t004
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increase of about 85% in tissue invasiveness relative to the control

cells (Fig. 1B). Although this result has borderline significance

(p = 0.08), it indicates that increased expression of miR-486

enhances tissue invasiveness.

Discussion

MicroRNAs have been implicated in the regulation of gene

expression at the post-transcriptional level in almost every

biological event, and there is an increasing body of evidence that

altered expressions of specific miRNAs are involved in the

development and progression of cancers [4,5]. Using next

generation sequencing for small RNA identification, the present

study was aimed at identifying differentially expressed known and

novel miRNAs in metastatic versus non-metastatic prostate cancer

xenografts that could play a role in the progression of prostate

cancer to the metastatic form. The transplantable cancer lines that

were used appear to be highly suitable for the purpose since they

had been derived from one patient’s cancer and thus possessed a

common genetic background. Furthermore, they had been

developed via subrenal capsule grafting of cancer tissue into

NOD/SCID mice, a methodology that tends to preserve

important properties of the original cancers (e.g., tumor

heterogeneity, genetic profiles) [9–11,50]. As well, the mainte-

nance of the tumor lines in the same type of graft site (under the

kidney capsule) ensured that their growth was not markedly

influenced by micro-environmental differences that can have an

important impact on cancer development [51]. Similarly, the same

type of graft site would minimize differences in miRNA production

by host cells present in the xenografts. Although it has been shown

Table 5. miRNAs down-regulated in the metastatic library1.

references

prostate cancer metastasis in

miRNA metastatic non-metastatic fold change prostate cancer
other types of
cancer

miR-7-1* 2.76 24.54 28.88

miR-15b 489.84 2660.69 25.43 [28]#

miR-16 999.03 17741.34 217.76 [23–25], [38]# [25]

miR-24 1046.96 8903.54 28.50 [26–28], [76]# [61]

miR-24-2*{ 5.07 22.50 24.44

miR-26b 1964.89 8991.18 24.58 [28]#

miR-28-5p 184.78 1264.17 26.84

miR-29a 446.06 13028.23 229.21 [26,28,29]

miR-29c 299.99 1643.68 25.48

miR-33b 22.12 62.81 22.84

miR-34a 76.03 194.87 22.56 [77], [26]# [33] [78]

miR-95 57.60 1128.90 219.60 [26]#

miR-101*{ 4.61 105.76 222.95

miR-106b 906.41 6545.23 27.22 [30]#

miR-126* 1099.03 3798.06 23.46 [28]# [34]

miR-145 103.68 297.71 22.87 [23,24,27,29,30] [35] [61]

miR-146b-5p 1335.88 2765.57 22.07 [26]# [79], [61]#

miR-185 84.79 448.76 25.29 [60]

miR-186 1666.28 5838.21 23.50 [61]#

miR-188-5p 0.92 9.64 210.46

miR-191 1822.50 12911.66 27.08 [26]#

miR-193a-3p 35.94 196.91 25.48

miR-195 116.58 560.65 24.81 [23], [26]#

miR-196a 33.64 70.99 22.11 [26]#

miR-200b* 146.54 499.30 23.41

miR-200c* 12.44 54.34 24.37

miR-203 147.92 434.73 22.94 [26]# [61]

miR-203{ 224.41 334.81 21.49 [26]#

miR-205 0.00 31.26 N/A [24,31,32] [36]

{most abundant miRNA started one base upstream from the mature form of miRBase.
{most abundant miRNA started one base downstream from the mature form of miRBase.
1Differential expressions all had a .2-fold change and a p,0.001 and are considered statistically significant.
#Results from the literature that do not match the down- or up-regulation found in the present study.
doi:10.1371/journal.pone.0024950.t005
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that xenografting can alter the expression of miRNAs [52], our

study focused primarily on differences in miRNAs between

matched samples and these differences are therefore likely to be

real. Taken together, the data obtained in this study should be

useful for the delineation of miRNAs with oncogenic properties

that are involved in the development of prostate cancer metastasis.

The highest reads in the two RNA libraries were observed for

miR-148a. The expression of this miRNA is androgen-inducible in

LNCaP cells [53]. This suggests that the relatively high expression

of miR-148a found in the two libraries is a result of the

testosterone supplementation of the animals.

Of the 104 miRNAs that were found to be down- or up-

regulated in the metastatic prostate cancer xenografts, relative to

their non-metastatic counterparts, 39 had previously been

reported to be involved in prostate cancer (Table 5,6,7). These

reports were mostly based on comparisons of miRNA expressions

in prostate cancer tissues versus normal prostate tissues without

defining the metastatic ability of the malignant samples. It is of

interest that 21 of the 39 miRNAs showed down- or up-regulations

in the metastatic xenografts which matched those reported for the

prostate cancer tissues (relative to benign tissues), suggesting that

these prostate cancer tissues may have had metastatic ability. Of

the miRNAs found to be down-regulated in the metastatic

xenografts, miR-16, showing a .17-fold decrease in expression,

has been reported to be down-regulated in prostate cancer [23,24]

and to have a metastasis-suppressing function. Moreover,

metastatic prostate tumor growth in vivo could be inhibited by

systemic delivery of synthetic miRNA-16 [25]. The reduced

expression of miR-34a in the metastatic xenograft line is consistent

with its reported inhibition of prostate cancer metastasis [33]. The

lower expression of miR-126* is in agreement with reports that

this miRNA is down-regulated in prostate cancer metastasis [34]

and that ectopic expression of miR-126* inhibited the migration

and invasiveness of prostate cancer cells [34]. The latter being an

example of a miRNA* playing a role as a tumor suppressor.

Interestingly, miR-126, a miRNA reported as down-regulated in

prostate cancer relative to normal prostate tissue [54], was up-

regulated in the metastatic xenograft line. In this context it is of

interest that whereas in LNCaP cells, the antagomir of miR-126

did not affect cell migration, the antagomir of miR-126* induced

Table 6. miRNAs down-regulated in the metastatic library1(Continued from Table 5).

references

prostate cancer metastasis in

miRNA metastatic non-metastatic fold change prostate cancer other types of cancer

miR-324-5p 27.19 61.94 22.28

miR-331-3p 2.76 14.32 25.18 [80]

miR-335 22.58 54.63 22.42 [62]

miR-339-5p 35.94 189.03 25.26

miR-342-3p 61.75 247.46 24.01

miR-361-5p 103.68 259.73 22.51

miR-363 1298.10 8476.40 26.53

miR-424 22.12 76.25 23.45 [28]

miR-425 1869.04 10985.75 25.88

miR-454 10.60 32.72 23.09

miR-497 164.05 373.67 22.28 [23]

miR-503 0.00 7.30 N/A [23]#

miR-542-5p 0.92 12.27 213.31

miR-556-5p 1.84 13.15 27.13 [26]#

miR-582-5p 49.77 203.93 24.10

miR-590-5p 12.44 213.86 217.19

miR-627 2.30 93.20 240.45

miR-651 11.06 54.63 24.94

miR-652 12.90 33.89 22.63

miR-660 51.15 110.14 22.15

miR-664 8.76 30.97 23.54

miR-708 0.00 42.36 N/A

miR-1180 3.69 15.48 24.20

miR-1269 11.06 42.66 23.86

miR-1287 1.84 12.85 26.97

miR-2115* 0.00 7.89 N/A

miR-3065-5p 14.75 117.74 27.98

1Differential expressions all had a .2-fold change and a p,0.001 and are considered statistically significant.
#Results from the literature that do not match the down- or up-regulation found in the present study.
doi:10.1371/journal.pone.0024950.t006
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Table 7. miRNAs up-regulated in the metastatic library1.

references

prostate cancer metastasis in

miRNA metastatic non-metastatic fold change prostate cancer other types of cancer

let-7d 671.86 322.84 2.08 [26]

let-7g 8690.38 3448.64 2.52 [23]#

let-7g* 42.39 3.21 13.19

let-7i 851.11 400.55 2.12 [26] [61]

miR-7 72.35 22.50 3.22

miR-9 20121.64 1386.00 14.52 [65],[61]#

miR-9*{ 352.98 35.64 9.90

miR-17 12228.92 5600.39 2.18

miR-18a 1023.45 142.57 7.18

miR-18b 90.78 26.59 3.41

miR-20b* 89.40 7.60 11.77

miR-27a 1568.59 721.34 2.17 [26], [28]#

miR-27b 1406.39 425.38 3.31 [28]#

miR-30a 30144.22 10956.83 2.75 [61]#

miR-30a* 1300.40 532.90 2.44

miR-31 80.64 3.80 21.23 [30], [24]# [67,81]

miR-34c-5p 2190.22 51.13 42.84

miR-99a 1017.92 330.43 3.08 [23]#

miR-106a 2790.65 845.51 3.30 [26],[28] [38]#

miR-125b 1699.46 287.19 5.92 [38–40], [23,24,27,29]# [61]

miR-125b-2* 15.67 1.46 10.73 [57]

miR-126 26005.24 1799.70 14.45 [54]#

miR-128 81.10 15.48 5.24 [26]#

miR-136 40.55 7.89 5.14

miR-138 38.25 1.46 26.18

miR-140-5p 2458.87 723.97 3.40

miR-142-5p 104.60 26.00 4.02 [61]

miR-144 915.16 134.98 6.78

miR-144* 5429.24 418.37 12.98

miR-148b*{ 258.97 111.31 2.33

miR-151-3p 4377.22 1866.89 2.34 [66]

miR-152 2662.55 582.56 4.57 [28]#

miR-181a-2* 19.81 0.88 22.61

miR-200a 7217.64 1066.09 6.77 [58]#

miR-210 16686.78 347.38 48.04 [23]

miR-218 140.55 70.12 2.00 [25],[26]#

miR-223* 16.13 0.29 55.20

miR-301a 60.83 21.62 2.81 [37]

miR-340* 46.08 16.36 2.82

miR-374a 1638.17 674.30 2.43

miR-379 104.14 35.94 2.90

miR-449a 18.43 1.17 15.77 [59]#

miR-450a 191.24 24.83 7.70 [61]

miR-451 4504.40 2197.62 2.05

miR-486-3p 9.22 0.88 10.52

miR-486-5p 430.86 54.93 7.84

miR-542-3p 100.00 26.88 3.72

miR-744* 17.05 3.80 4.49
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cell migration with up-regulation of prostein [34], suggesting that

miR-126* affects cell migration more than miR-126. This raises

the possibility that alternative strand selection as a mechanism for

changing the expression of either arm is involved in the

development of cancer or cancer metastasis.

The down-regulation of miR-145 in the metastatic xenograft

line is in agreement with many reports identifying it as down-

regulated in prostate tumors [23,24,27,29,30]. As well, a role for

miR-145 in prostate cancer metastasis is suggested by its down-

regulation observed in clinical samples of metastatic prostate

cancer relative to localized high grade prostate cancer [35];

furthermore, miR-145 is considered a putative tumor suppressor

in colon cancer cells [55] and can reduce breast cancer cell

motility [56]. The expression of miR-205 was also reported to be

down-regulated in prostate cancer cells, and ectopically expressed

miR-205 showed a tumor-suppressive effect, including reduction

of cell migration and tissue invasion [36].

Of the miRNAs found to be up-regulated in the metastatic

xenografts, miR-125b has been reported to be up-regulated in

prostate cancer and shown to be oncogenic [24,29,40]; other

studies, however, have reported miR-125b to be down-regulated

in prostate cancer [23,24,27–29]. miR-125b-2, a component of the

miR-125b cluster, has been identified as part of an androgen

receptor-mediated transcriptional network [57]. In a number of

single studies, miRNAs such as let-7d [26], let-7i [26] and miR-

210 [23] were also found to be up-regulated in prostate cancer, in

contrast to let-7g [23], miR-27b [28], miR-99a [23], miR-126

[54], miR-128 [26], miR-152 [28], miR-200a [58] and miR-449a

[59] which were down-regulated in prostate cancer samples. Both

up- and down-regulation in prostate cancer was reported for a

number of miRNAs. The reason for these discrepancies is not

clear. Our finding indicating that upregulation of miR-486 is

coupled to increased tissue invasiveness, as found with 22Rv1

human prostate cancer cells (Fig. 1b), supports the biological

significance of the present study.

It is apparent from the above discussion that a number of the

differentially expressed miRNAs identified in this study probably

have a significant role in prostate cancer metastasis. Thus some of

the miRNAs have already been linked to this phenomenon, in

particular down-regulated miRNAs such as miR-16, miR-34a,

miR-126*, miR-145 and miR-205, supporting the validity of our

analytical approach. However, the prostate cancer xenografts did

not show significant differential expression for miRNAs such as

miR-221, whose down-regulation in a study using prostate cancer

samples from a large number of patients was reported to be a

hallmark in human prostate cancer metastasis [37]. This

deficiency likely stems from the tumor heterogeneity of prostate

cancers and illustrates the need for using a larger number of

matched metastatic and non-metastatic xenografts and also

clinical samples.

The present study has also identified differentially expressed

miRNAs that have not previously been linked to prostate cancer,

references

prostate cancer metastasis in

miRNA metastatic non-metastatic fold change prostate cancer other types of cancer

miR-1246{ 95.39 22.50 4.24

{most abundant miRNA started one base upstream from the mature form of miRBase.
{most abundant miRNA started one base downstream from the mature form of miRBase.
1Differential expressions all had a .2-fold change and a p,0.001 and are considered statistically significant.
#Results from the literature that do not match the down- or up-regulation found in the present study.
doi:10.1371/journal.pone.0024950.t007

Table 7. Cont.

Figure 1. Effects of overexpression of miR-486 on proliferation
and tissue invasiveness of 22Rv1 human prostate cancer cells.
A) As indicated by MTT assay, there was no significant difference
between the growth of miR-486-transfected cells and control cells over
a 72-hr period. B) Tissue invasiveness, as measured by Matrigel invasion,
of miR-486 transfected cells and control cells. Data are expressed as
percent invasiveness 6 S.D. and show increased invasiveness of miR-
486-transfected cells (85% ; p = 0.08).
doi:10.1371/journal.pone.0024950.g001
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but to metastasis of other types of cancer (Table 5,6,7). Of the

miRNAs down-regulated in the metastatic xenografts, miR-185

has been shown to suppress growth and progression of certain

human cancers (e.g., breast, ovary) by targeting the Six1 oncogene

which regulates c-myc expression [60]. The miR146b-5p [61] and

miR-335 [62] miRNAs have been shown to be metastasis

suppressors in breast and colon cancers, facilitating the metastatic

phenotype at reduced levels [63]. Of the up-regulated miRNAs in

the metastatic line, miR-9 has been reported to target E-cadherin

[64] and CDH1, the E-cadherin-encoding messenger RNA [65];

overexpression of miR-9 in non-metastatic breast tumor cells

enables such cells to form pulmonary micrometastases in mice

[65]. The miR-30a, miR-142-5p and miR-450a have roles in

metastatic breast and colon cancer [61] and the miR-151-3p can

enhance hepatocellular carcinoma cell mobility [66]. The

upregulation of miR-31 is consistent with its ability to induce

migration and tissue invasion of colon cancer cells via targeting of

T-cell lymphoma invasion and metastasis 1 (TIAM1) [67]. It

appears likely that these miRNAs also have a critical role in the

development of prostate cancer metastasis on the basis of their role

in the metastasis of other cancers, but further validation is needed.

The identification of novel putative miRNAs (Table 4) is of

major interest for follow-up studies. In advanced prostate cancer,

DNA copy number gain is commonly observed in the chromo-

some 8q arm [68], and the LTL-313 xenograft lines that were used

in the present study also show an 8q arm copy number gain (data

not shown). The finding that five of the 46 novel miRNAs were

located on chromosome 8q, including the most abundantly

expressed candidates (Table 4), suggests that there is a correlation

between tissue-specific expression of an miRNA and its DNA copy

number.

As found in the present study, some of the miRNA*s (identified

by miRBase) are more highly expressed than their corresponding

miRNAs (Table 2). This is likely a result of cancer-induced

changes in miRNA processing and stability, including strand

selection [69]. The latter is thought to normally involve an RNA-

Induced Silencing Complex (RISC), a multiprotein complex that

can incorporate one strand of an miRNA for subsequent silencing

of the complementary mRNA [70]. Switching of a strand should

lead to activation/inhibition of a different set of target genes and

may underlie oncogenic properties of miRNA*s. There are several

reports of miRNA* contributions in cancer progression [34,71,72].

The occurrence of miRNA isoforms (isomiRs) in the present

study has also been observed in other studies using miRNA deep

sequencing [16]. The variability in isomiR expression during

Drosophila melanogaster development, generally thought to result

from inexact Dicer processing and RNA editing, may not be

arbitrary and in fact be regulated and biologically meaningful [73].

At present, the contribution of isomiRs in target recognition is not

clear. However, it appears likely that the seed sequence of mature

miRNA, i.e. the first 2–8 nucleotides at the 59 end, is a key of the

miRNA’s target recognition and a variation of the 59 end could

readily alter the group of target genes of the miRNA. Likewise, the

role of isomiRs in cancer has to be elucidated. Lee et al. [74] have

constructed a database cataloguing an entire repertoire of miRNA

sequences that can be useful for showing isomiR expression

pattern differences in various cell types and conditions. The role of

the differentially expressed miRNAs, including miRNA*, isomiR

and novel miRNA (candidates), in the development of metastatic

prostate cancer remains to be shown. Use of patient-derived

prostate cancer xenograft models in conjunction with clinical

sample analysis and in vitro models may bring unique perspectives

to translational research.

It is of interest that many of the genes associated with the

differentially expressed mRNAs in the xenografts were found to be

identical to predicted target genes of differentially expressed

miRNAs, and that they were related to cancer and metastasis, e.g.,

FSCN1 [42], CCL2 [46], ADAMTS1 [45], FGFR1 [44], CTGF [48]

and SERPINB5 [49]. However, while an miRNA potentially has

hundreds of target genes, relatively few targets have been

experimentally validated and few miRNA loss-of-function pheno-

types have been assigned [75]. More research is required into the

effect of specifically inhibiting/enhancing the function of miRNAs

on the activity of their putative target genes, gene translation and

the various stages of cancer development.

In summary, we have utilized next generation sequencing to

identify differentially expressed known and novel miRNAs in a

pair of metastatic and non-metastatic prostate cancer xenografts

derived from one patient’s primary cancer. The use of xenografts

generated by subrenal capsule grafting of cancer tissue, a

technique that tends to preserve properties of the original cancers,

coupled to the finding that a substantial number of the

differentially expressed genes have previously been linked to

metastasis of prostate cancer or other types of cancer, makes it

likely that the identified miRNAs include potential biomarkers

and/or therapeutic targets for prostate cancer metastasis.
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