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Abstract
Introduction—The use of movement monitors (accelerometers) for measuring physical activity
(PA) in intervention and population-based studies is becoming a standard methodology for the
objective measurement of sedentary and active behaviors and for validation of subjective PA self-
reports. A vital step in PA measurements is classification of daily time into accelerometer wear
and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm.

Purpose—To validate and improve a commonly used algorithm for classifying accelerometer
wear and nonwear time intervals using objective movement data obtained in the whole-room
indirect calorimeter.

Methods—We conducted a validation study of a wear/nonwear automatic algorithm using data
obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay
in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was
compared with actual wearing time. Potential improvements to the algorithm were examined using
the minimum classification error as an optimization target.

Results—The recommended elements in the new algorithm are: 1) zero-count threshold during a
nonwear time interval, 2) 90-min time window for consecutive zero/nonzero counts, and 3)
allowance of 2-min interval of nonzero counts with the up/downstream 30-min consecutive zero
counts window for detection of artifactual movements. Compared to the true wearing status,
improvements to the algorithm decreased nonwear time misclassification during the waking and
the 24-h periods (all P < 0.001).

Conclusions—The accelerometer wear/nonwear time algorithm improvements may lead to
more accurate estimation of time spent in sedentary and active behaviors.
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INTRODUCTION
A sedentary lifestyle and lack of physical activity (PA) are major causes of obesity and
related health risk factors in children, adolescents, and adults (16, 29, 34). Thus, precise
measurements of PA are important in order to estimate the association between PA and
health (3, 10–12). Several methods such as self-reports and accelerometry have been
proposed to assess PA, but a single and comprehensive measure of PA that is applicable to
surveillance, epidemiology, clinical and intervention research still does not exist (31). For
example, PA records have been shown to be quite accurate for capturing total activity and
can provide desired details regarding activity context and the type of activity (e.g., aerobic,
strengthening, or flexibility exercises). However, they are burdensome to respondents since
they are required to record each time there is a change in activity throughout the day. Other
methods such as portable indirect calorimetry and doubly labeled water are costly. Recent
technological advances allow objective measurement of PA frequency, duration and
intensity by wearable monitors that can record movement and/or heart rate. A challenge with
the use of monitors is capturing total activity since activity monitors selectively record
movement of the part of the body to which they are attached (19, 32).

Nevertheless, accelerometers have been frequently used for the measurement of PA using
criteria such as time spent in activities performed at various intensities and for the prediction
of energy expenditure (EE) associated with PA (5, 26). Accelerometers have been also
widely used to obtain measurements of body movements (intensity, duration, frequency, and
type) and to relate them to various health parameters in free-living populations; their
applications range from clinical interventional trials (2) to epidemiological studies (31).

Data collected by accelerometers such as Actigraph in a natural free-living environment can
be divided into wear and nonwear time intervals. Nonwear time intervals include periods
during which participants are asked not to wear their monitor, such as sleeping, showering,
and aquatic activities. Wear time usually includes all waking periods (31) and requires a
specific number of hours of wearing for a day to be considered valid (4, 8). Another
approach frequently used in children is to select a time period during the day (e.g. 6 am to 9
pm) (21, 27). Since the length of wear time is a base for assessing time spent at various PA
intensities and consequently duration, patterns, and amount of PA, it is critical to correctly
classify wear and nonwear time intervals. Typically, an automated algorithm uses monitor-
specific criteria to detect and eliminate the nonwear time intervals, during which no activity
is detected (14, 21, 30). Distinguishing between the two can be difficult since continuous
zero reading may occur for several reasons such as removal of the accelerometer during
certain activities (e.g., water activities, sports) or for no reason, sleeping or sitting still with
or without the accelerometer for long periods (18).

The most commonly used automated algorithm for Actigraph data is based on criteria
proposed by Troiano et al. (31). This algorithm has been used in several population-based
studies including the National Health and Nutrition Examination Survey (NHANES) (20).
The algorithm was implemented using SAS® software and is available for downloading
from the National Cancer Institute (22). This algorithm was designed for detecting nonwear
during waking period, and NHANES participants were asked to remove the Actigraph for a
night’s sleep and to replace it in the morning. The algorithm was not optimized to detect
wear/nonwear during sleep; it would not be expected to perform well in that condition.
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Although to our knowledge the algorithm has never been independently validated in
laboratory-based study, it has proven useful to automatically classify wear/nonwear time
intervals (35).

Thus, the goal of this study was to assess performance of the current algorithm by
comparing its accuracy when classifying wear and nonwear time intervals in data collected
in a whole-room indirect calorimeter with known accelerometer-wearing status. Since it is
uncommon for accelerometers to be worn during sleep, the classification of nonwear time
intervals during the waking period (not sleep) was performed separately. The benefits of
using the room calorimeter in this validation study included strictly monitored, accurately
measured actual accelerometer-wearing time, and the possibility of assessing the outcomes’
clinical relevance by measurement of PA-related EE. We also explored potential
improvements in algorithm accuracy by optimizing criteria for wear and nonwear
classification.

METHODS
Study participants

Participants aged 10 to 67 years were recruited from the Nashville, Tennessee area using
flyers, email distribution, and word of mouth. They participated in a prospective study
focused on methodological aspects of PA measurement in youth and adults (6, 25). Personal
characteristics of the study participants are in Table 1. Before the study, participating adults,
youth and their parents or guardians signed an informed consent approved by the Vanderbilt
University Medical Center Institutional Review Board.

Study design and protocol
Study participants spent approximately 24-h period in a whole-room indirect calorimeter
(28), and followed a structured protocol for simultaneous measurements of PA and EE. The
protocol included a broad range of pursuits ranging from moderate and vigorous to light and
sedentary tasks, including eating meals and snacks and self-care activities. During times (30
to 120 minutes) when no activity was specifically scheduled, the participants were asked to
engage in their normal daily routine as much as possible without specific suggestions. They
also recorded their activities in a diary with a detailed schedule, reporting any episodes of
accidental monitor nonwear intervals and other relevant comments. Sleep was defined as the
period of time spent lying on a mattress at night between 9:00 pm and 6:00 am without any
significant movement as determined by the floor (force platform) in the room calorimeter.
The participants were instructed how to record their activities in a provided diary with a
detailed schedule and a timeline. They checked off each scheduled activity and reported any
episodes of accidental monitor nonwear intervals and other relevant information (e.g.
treadmill speed) or comments. During the day, staff was available for assistance and the
dairy was discussed with each participant after finishing the study.

Body weight was measured to the nearest 0.01 kg with a digital scale and height was
measured using a wall-mounted stadiometer. The minute-to-minute EE was calculated from
the rates of oxygen consumption and carbon dioxide production (33). Nonwear EE was
calculated by summing EE measured by the room calorimeter during time intervals detected
as nonwear by each algorithm.

The PA was measured by commercially available Actigraph GT1M accelerometer
(ActiGraph, Pensacola, FL), calibrated by the manufacturer placed on the anterior axillary
line of the hip on the dominant side of the body. Among commercially available
accelerometers, the Actigraph used in the present study provides consistent and high quality
data, supported by its feasibility, reliability and validity (9). The monitor reports counts from
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the summation of the measured accelerations over a specified epoch (1). Actigraph data
were collected at a 1-second epoch and summed as counts per minute.

Validation of the current algorithm and development of an improved algorithm
Consistent with our experimental design, participants wore the accelerometer for the
duration of their stay in the room calorimeter. Any time interval classified by the algorithm
as nonwear was considered an error or misclassification. The current algorithm and its major
components with the default settings are summarized in Table 2. We systematically
evaluated: (1) threshold for nonzero counts allowed during a nonwear time interval; (2)
minimum length of time window for consecutive zero counts (and nonzero counts below the
threshold) to be considered a nonwear time interval; and (3) maximum length of artifactual
movement interval allowed for nonzero counts during a nonwear time interval.

The validity of the default threshold (100 counts/min) of the current algorithm was
evaluated by examining accuracy of nonwear time interval classification for the thresholds
ranging from 0 to 100 counts/min. The validity of the default 60-min time window was
evaluated based on frequency distribution of the classified nonwear time intervals. We
identified and tested two parameters to process the artifactual movement in the new
algorithm: (1) artifactual movement interval defined as maximum time during a nonwear
time interval for the detected movement to be classified as artifactual; (2) window-2 defined
as the minimum time before and after an artifactual movement interval with no counts
detected. We tested the artifactual movement interval ranging from 2 to 10 minutes and the
window-2 from 15 to 60 minutes.

SAS program validation in implementing the current algorithm
The current algorithm’s SAS program for classifying wear/nonwear time intervals, was
downloaded from the National Cancer Institute (22), and the current algorithm was also
implemented using the programming language R (23). A randomly chosen set of the adults
and youth data was processed using the two programs and the outputs were compared for
validation.

Statistical analysis
The distribution of nonwear time intervals classified by each algorithm was examined using
frequency histograms. The minimum classification error was used as the optimization target
for the threshold. Nonwear time intervals classified during the waking period and during the
24-h room calorimeter stay were used to compare the algorithm’s performance. As a
secondary analysis, the EE measured by the room calorimeter during the misclassified
nonwear time intervals was calculated. The nonwear time intervals classified by each
algorithm and the corresponding EE during these intervals were summarized for each
individual, and the performances of the two algorithms were compared using Wilcoxon
signed-rank tests. The percent of participants having at least one misclassified time interval
with lengths ≥ 60-min was also calculated and compared using two-sample test for binomial
proportions.

The same analyses were performed separately for adults and youth. Data are presented as
means and standard deviations (SD), ranges, and/or interquartile range (IQR). The
programming language R version 2.7.0 (23) was used to develop and implement the
algorithms, and to perform the statistical analyses.
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RESULTS
Accelerometer counts threshold

Figure 1 shows the distributions of time intervals incorrectly classified as nonwear by the
current algorithm with threshold ranging from 0 to 100 (current threshold) counts/min
during the waking period. Each plot also presents the percent of participants having at least
one misclassified time interval with lengths of ≥ 60-min. The x-axis represents categories
for the length (minutes) of misclassified nonwear time intervals and the y-axis represents
their frequency (the number of nonwear time intervals at each x-axis category). The
frequency of nonwear detection and the percent of the misclassified participants decreased
as the count threshold decreased; the least misclassifications were obtained with zero-count
threshold. To handle artifactual movement detection, the current algorithm allows a time
interval with sporadically occurring nonzero counts within a 100-counts threshold to be
classified as nonwear. As such, there is a trade-off between the two features; if the threshold
is lower, the misclassification rate will be lower, but it may not be able to handle artifactual
movement detection. To detangle these two features, we chose zero-count threshold (no-
threshold), and added a new component as a separate feature (the 3rd component) for further
algorithm improvement and development.

Time window for zero/nonzero counts (window-1)
Figure 2 shows the distribution of nonwear time intervals during the waking period,
classified by the improved algorithm (using zero-count threshold) with the 20-, 60- and 90-
min time windows. For example, in adults the improved algorithm with a 20-min time
window detected 83 nonwear time intervals from 20 to 29 minutes. The improved algorithm
with a 60-min window detected 3 nonwear intervals with lengths of ≥ 60-min. The number
of misclassified nonwear time intervals sharply decreased with the 60-min window for both
adults and youth. The optimal window during the waking period was the 90-min window
with no nonwear intervals detected in adults and one in youth. We do not recommend a
larger time window, especially for the current algorithm, because a longer time window
could increase the chance of detecting true nonwear time intervals as wear due to the current
implementation method described below.

Detecting and handling artifactual movement (artifactual movement interval and window-2)
A wide time window-2 (e.g. 60-min) did not determine the artifactual movements that
occurred within relatively shorter periods, and a short window (e.g. 15-min) caused frequent
misclassification of some low intensity activities as nonwear time intervals (data not shown),
prompting the choice of the 30-min window as the default. In handling artifactual
movements, artifactual movement intervals from 2 up to 5 minutes performed similarly. We
set the 2-min interval as the default, which is similar to the 2 consecutive intervals in the
current algorithm. We confirmed the new algorithm’s ability to handle artifactual movement
in two separate 3-day experiments (data not shown).

Table 2 summarizes side-by-side comparison of the current algorithm and proposed
improvements. The new algorithm sets zero-count threshold and 90-min default time
window-1 compared to 100 counts threshold and 60-min time window in the current
algorithm. The new components for artificial movement detection include the artifactual
movement 2-min interval and the up/downstream 30-min window-2.

Comparison of the current and new algorithms for individual data processing
Figure 3 shows representative data sets for two adults (panel A) and two youth (panel B)
during the 24-h room calorimeter stay and the nonwear time intervals misclassified by the
current and new algorithms. Plots for the measured EE (gray lines) and the raw counts
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(black lines) were overlaid in a normalized scale from 0 to 1. The horizontal short solid lines
and values above the lines show the length of the misclassified nonwear time intervals, and
the dashed boxes represent the classified wear time intervals. Each individual’s waking
periods are presented (thick solid lines); dotted lines corresponding to 1.5 MET are also
added as a reference for sedentary PA periods. The plots show that the performance of the
two algorithms differs mainly during sedentary PA periods (< 1.5 MET). The current
algorithm falsely classified sedentary PA (< 1.5 MET) as a nonwear more often than the
new algorithm, including during the waking period.

Classification of nonwear time intervals and assessment of PA-related EE
The total nonwear times misclassified by the two algorithms and the corresponding EE were
calculated for each participant, and the summary statistics are presented in Table 3. The new
algorithm significantly lowered the nonwear time misclassification for both adults and youth
during the waking and 24-h periods (Wilcoxon signed-rank tests, all P <0.001). Similar
improvements to the PA-related EE were also observed for both adults and youth during the
waking period and the 24-h stay (Wilcoxon signed-rank tests, all P < 0.001). The current
algorithm misclassified nonwear time of at least 60 minutes in more participants compared
to the new algorithm (during the waking period: 47% versus 12% of adults, P = 0.0002;
22% versus 4% of youth, P = 0.0008). Although the new algorithm performed better than
the current algorithm, overall performance of the current algorithm was relatively good
during the waking period. This could be expected because the current algorithm was
developed to classify nonwear/wear during non-sleep periods. The current algorithm
appeared to perform better in youth compared to adults during the waking period but not
during the 24-h stay; an explanation might be that youth are usually more active than adults
during the waking period, but not during sleeping. Thus, our results suggest that the current
algorithm would perform better for people (such as youth) with a more active lifestyle
compared to people having a relatively sedentary lifestyle.

SAS program validation in implementing the current algorithm
We confirmed that the nonwear time intervals classified by the SAS and our R programs
were not different. However, we noted that the current algorithm implemented in SAS
classifies nonwear time intervals on a 24-h basis (midnight-to-midnight). That is, the
algorithm classifies nonwear time intervals until midnight and summarizes them for the day.
It classifies again starting from just after midnight and ending at midnight of the next day,
and so on. Thus, for individuals who go to bed late, say after 11 pm, the algorithm can
falsely classify this true nonwear time as wear since the total minutes of the interval is less
than 60 minutes, which does not meet the time window criteria for nonwear time (see Figure
SDC-1, Supplemental Digital Content 1, which illustrates this problem). Thus, use of the
current algorithm could lead to misclassification of nonwear intervals < 60-min before
midnight as wear. To avoid this problem, the new algorithm is processing data continuously
without the midnight break and adds a day stamp after the wear/nonwear classification.

DISCUSSION
In this study, we systemically evaluated the automated algorithm most commonly used in
population-based studies to classify accelerometer wear and nonwear time intervals and
proposed improvements to the algorithm. The recommended elements in the new algorithm
are: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for
consecutive zero/nonzero counts, and 3) allowance of a 2-min interval of nonzero counts
with up/downstream 30-min consecutive zero counts windows for artifactual movement
detection. These improvements would mostly affect the misclassification of time intervals
spent in sedentary behaviors that do not pass the wear/nonwear classification criteria for the
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low activity counts. Thus, studies in populations with a low active and high sedentary
behavior PA patterns could likely benefit from these improvements.

In the current algorithm, classification of time intervals to wear/nonwear depends on three
major criteria: 1) nonzero counts threshold, 2) time window for zero/nonzero counts, and 3)
artifactual movement detection. In this study, to test the validity of nonzero counts threshold
criterion, we examined counts threshold ranging from 100 to 0 counts/min since the 100-
counts threshold is the default in the original version of the algorithm and specific for the
accelerometer used in the analysis (31). The number of misclassified nonwear time intervals
decreased as the counts threshold decreased, resulting in the optimal threshold at zero count.
Thus, we have chosen the zero-count threshold for further testing and potential algorithm
improvement. We also evaluated time windows; the number of misclassified nonwear time
intervals sharply decreased until the current default 60-min window and reached an optimal
90-min for both youth and adults. However, due to the implementation method in the current
algorithm, the 90-min window could increase false detection of wear time intervals around
midnight. Thus, the 60-min time window was used for comparison of the current and new
algorithms.

The third criterion in the algorithm is a procedure for proper classification of nonzero counts
potentially caused by artifactual monitor movements during nonwear periods, which may be
caused by accidental movement of the monitor (e.g. nudged or touched while sitting on a
table or nightstand). During validation, we found that the current algorithm misclassified
nonwear/wear time intervals, especially in sedentary behaviors (<1.5 MET). A plausible
explanation is that it is difficult to distinguish between artifactual movement and a sporadic
movement during sedentary PA. To mitigate this misclassification, in addition to the 2-min
interval (artifactual movement interval) in the current algorithm, we included a second
criterion termed window-2 in the new algorithm.

We validated the current algorithm using the programming language R (23) and compared it
with the SAS program available from the NHANES (20) website using the same data sets.
We found that both algorithms generated the same result when the entire monitoring study
period is classified without daily segments. During the validation, we also examined the
effect of daily summation of wear/nonwear classification with the midnight time break used
by the SAS program. This is a potential source of misclassification of wear/nonwear time
periods in cases when the actual wear stops and nonwear starts after 11 pm. Thus, we
suggest that the minute-to-minute output for the entire monitoring study period be classified
into wear/nonwear intervals and then further categorized into daily segments. This approach
is implemented in the new algorithm.

To make the new algorithm applicable for specific studies and other types of accelerometer,
the parameters in Table 2 (i.e. windows 1 & 2 and artifactual movement interval) can be
defined by users depending on their experimental needs. In addition, our R program is
readily applicable for data collected with various (e.g. 1-second) epochs and can be provided
to interested investigators upon request.

A potential clinical consequence of wear time underestimation by the algorithm could be
miscalculation of time spent in sedentary, light, moderate and vigorous PA categories,
expressed as a proportion of the total wear time, which is very often used to quantify PA in
population-based studies. In the context of the current study, we estimated that the observed
mean of 50-min misclassification of wear time as nonwear during waking period could lead
to approximately 8% underestimation of time spent in sedentary behaviors. Subsequently,
the calculated percentage of time spent in light and/or moderate intensity activities would be
overestimated. In addition, misclassification of wear/nonwear time could cause bias in the
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prediction of PA-related EE. Although the estimated EE daily bias might be relatively small,
the differences could be substantially higher when extrapolated over longer periods such as
week, month, or year in epidemiological and cohort studies. Assuming that 30% of total
energy is spent for PA, we estimated that the difference in misclassification of wearing time
during sedentary activities as rest (~60 kcal/day) would create an approximately 20 kcal/day
gap between the two assessments. For an average person this would equate to ~7,000 kcal/
year overestimation of energy spent on PA, the amount often linked to the current obesity
epidemic and related health consequences (13).

Thus, even modest increases in the accuracy of wear/nonwear time classification have the
potential to improve our understanding of the relationships between PA, PA-related EE, and
health outcomes. The proposed algorithm improvements might be especially important in
cohort studies in which the baseline PA assessment is often linked to longitudinal health
risks and disease outcomes (7, 15, 17, 24).

Our study has several strengths. First, the room calorimeter allowed us to validate wear/
nonwear intervals and assess clinical importance of the improvements by measuring PA-
related EE. Second, we used a relatively large group of males and females with a wide range
of ages (10 to 67 years old) and BMI (16 −52 kg/m2). Finally, since our R program uses
modifiable arguments, it could be easily modified for each study’s needs and adopted to
other accelerometers (e.g. RT3, Actical, Actiwatch).

We also recognize that our methodology has some limitations. First, the standardization of
activity bouts performed in the room calorimeter may not accurately represent individuals’
habitual daily PA patterns. This could include variations in sleep patterns and longer periods
of sedentary PA that may be misclassified, causing overestimation of nonwear time
intervals. Second, although we confirmed that adding criteria for artifactual movement
detection improved the correct classification of artifactual movement, the proposed criteria
should be validated in other studies with larger number of participants in various free-living
settings. Third, data were collected for a single 24-h period. Longer observation period (e.g.
total 36-h) would provide additional data from wear day-time activities. Finally, we did not
find substantial differences in the criteria for the new algorithm between men and women or
adults and youth. While it is possible that differences may emerge in larger studies, or in
studies of older adults, our results do not suggest a compelling need for gender or age-
specific algorithms. More work is needed to verify and/or optimize the algorithm in studies
of older adults.

In conclusion, we found that the classification of Actigraph nonwear and wear time intervals
could be improved by modifying the currently used algorithm. The improvements include
eliminating nonzero counts threshold during a nonwear time interval along with 90-min
window for consecutive zero/nonzero counts, and handling artifactual movement detection
using an additional component. Application of the improved algorithm in population-based
studies may lead to a better prediction of time spent in PA and especially sedentary
behaviors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The frequency distribution of nonwear time intervals misclassified by the current algorithm
(with the default time window 60-min) during waking period for adults (A) and youth (B).
The thresholds with 100 (current default), 50, 25 and 0 counts/min are presented. The
percents of subjects having at least one misclassified time interval with lengths of ≥ 60-min
are also presented.
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Figure 2.
The frequency distribution of nonwear time intervals misclassified by the new algorithm
without the 3rd component during waking period for adults (A) and youth (B). The time
windows with 20-, 60- (dashed lines), and 90-min (solid lines) are presented.
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Figure 3.
Representative data for two adults (A) and two youth (B) during a 24-h stay in the whole-
room indirect calorimeter are presented along with nonwear time intervals misclassified by
the current and new algorithms using a 60-min time window. Plots for the measured EE
(gray lines) and the raw counts (black lines) were overlaid in a normalized scale from 0 to 1.
The horizontal dotted line represents 1.5 metabolic equivalents (MET) and the dashed boxes
shows the detected wear time intervals. The horizontal short solid lines along with the values
above show the length of the misclassified nonwear time intervals. The waking period is
also presented.
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Table 1

Characteristics of study participants.

(A) Adults

All Participants (n = 49) Males (n = 19) Female (n = 30)

Age (years) 39 (13) (20 to 67) 36 (15) (20 to 67) 41 (12) (22 to 67)

Ethnicity/race (% w/b/o) 35/ 63 / 2 42 / 53 / 5 30 / 70 / 0

Height (cm) 166 (15) (116 to 185) 178 (5) (169 to 185) 158 (14) (116 to 176)

Weight (kg) 84.50 (21.19) (47.80 to 134.50) 87.55 (18.03) (60.50 to 134.50) 82.58 (23.06) (47.80 to 130.10)

BMI (kg/m2) 30 (8) (19 to 52) 28 (5) (20 to 40) 32 (10) (19 to 52)

(B) Youth

All Participants (n = 76) Males (n = 29) Females (n = 47)

Age (years) 13 (2) (10 to 17) 13 (3) (10 to 17) 13 (2) (10 to 17)

Ethnicity/race (% w/b/o) 37 / 62 / 1 41/59/0 34/ 64 /2

Height (cm) 161 (9) (141 to 187) 163 (13) (141 to 187) 160 (6) (146 to 177)

Weight (kg) 67.69 (19.98) (38.60 to 129.50) 70.96 (24.39) (38.60 to 129.5) 65.67 (16.67) (39.00 to 111.50)

BMI percentilea 81 (24) (4 to 99) 83 (19) (38 to 99) 79 (27) (4 to 99)

a
BMI percentile was calculated using Centers for Disease Control software. w – White, b – Black, o – other ethnicities.

Values are means (SD), and the ranges in parentheses.
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Table 2

Description of the current and new algorithms for nonwear time intervals detection

Current algorithm New algorithm

Nonwear/wear Algorithm Description 1-min time intervals with consecutive
zero counts for at least 60-min time
window, allowing up to 2 consecutive
intervals with non-zero counts less than
or equal to 100 counts; any encounter
of counts above 100 is considered as
wearing

1-min time intervals with consecutive zero
counts for at least 90-min time window
(window 1), allowing a short time intervals
with nonzero counts lasting up to 2 minutes
(allowance interval) if no counts are
detected during both the 30-min (window 2)
of upstream and downstream from that
interval; any nonzero counts except the
allowed short interval are considered as
wearing

Algorithm components

Threshold (counts/min) 100 0

Overall window 1 (min) 60 90

Artifactual movement interval (min) 2 consecutive 2

New component in the
new algorithm

Up/downstream window
2 (min)

Not included 30

-
Threshold: threshold for nonzero counts allowing in a nonwear time interval

-
Window-1: minimum length of time window for consecutive zero counts to be considered a nonwear time interval

-
Artifactual movement interval: maximum length of time interval allowed for the artifactual nonzero counts during a nonwear time interval

-
Window-2: minimum length of up/down-stream time window for consecutive zero counts required before and after the artifactual movement

interval to be considered a nonwear time interval
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