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Abstract
The dramatic rise in worldwide prevalence of obesity has necessitated the search for more
efficacious anti-obesity strategies to counter the increased cancer risks in overweight and obese
individuals. The mechanistic pathways linking obesity status with adult chronic diseases such as
cancer remain incompletely understood. A growing body of evidence suggests that novel
approaches and interventional agents to disrupt the feed-forward cycle of maternal to offspring
obesity transfer that is initiated in utero, will be important for stemming both the obesity pandemic
and the associated increase in cancer incidence. The convergence of multiple research areas
including those encompassing the insulin and insulin-like growth factor (IGF) systems,
epigenetics, and stem cell biology is providing insights into the potential for cancer prevention in
adult offspring previously exposed to the intrauterine environment of overweight/obese mothers.
Here, we review the current state of this nascent research field, with a focus on three major
cancers namely breast, colorectal and liver, and suggest some possible future directions to
optimize its impact for the health of future generations.
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Obesity pandemic and cancer risks
Obesity has become a global problem
(http://apps.nccd.cdc.gov/dcpcglobalatlas/DietNutrition.aspx#WorldMap). The last three
decades have seen a huge rise in the number of individuals who are overweight (body-mass
index [BMI] 25-29.9 kg/m2) or obese (BMI ≥30 kg/m2). In the United States alone, the age-
adjusted prevalence of adult obesity during 2007-2008 reached 33.8% while that for obesity
and overweight combined rose to 68.0% of the population (1). Importantly, nearly 50% of
American women of childbearing age are overweight or obese. Among children and
adolescents, 31.7% were at or above the 85th percentile of BMI for age within the same
period (2). These statistics are alarming, as children who are overweight or obese tend to
remain so later in life. The presumed foremost cause of the obesity pandemic is the
imbalance between caloric intake and physical activity, although environmental,
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developmental (fetal, postnatal and trans-generational), and genetic factors are contributors
as well. The excess burden of bodyweight in both the young and adult brings with it
significant health complications including increased rates of: cancer, cardiovascular disease,
type 2 diabetes, hypertension, metabolic syndrome, and non-alcoholic fatty liver disease.

Numerous studies have documented the positive associations of cancer incidence with high
BMI. In one recent report (3), increased risks of multiple cancers were found to be
commensurate with a 5 kg/m2 increase in BMI; this corresponds to weight gains of only 15
kg and 13 kg, respectively in men and women with an average BMI of 23 kg/m2. In men,
these cancers included those of the esophagus, thyroid gland, colon, kidney, and rectum as
well as malignant melanoma, multiple myeloma, leukemia and non-Hodgkin's lymphoma. In
women, cancers whose risk is positively associated with obesity were those of the
endometrium, gallbladder, kidney, esophagus, thyroid gland, (post-menopausal) breast,
pancreas, and colon in addition to leukemia and non-Hodgkin's lymphoma (3, 4). The
magnitude of association of high BMI with colon and rectal cancers was stronger for men
than women, whereas that for renal cancer was stronger for women than men, reflecting the
complex interactions of obesity and gender with cancer risk (3).

Several recent trends in cancer incidence noted for the US population suggest associations
with obesity. For example, whereas the age-adjusted colorectal cancer incidence rates for
1997-2006 declined among both men and women of age 50 years or greater, these rates
increased among those younger than 50 years of age (5) and for which obesity rates have
also greatly increased. In men, incidence of kidney, liver and esophageal cancers as well as
leukemia, myeloma and melanoma have increased between 2002 and 2006 (5). An upward
trend in incidence rates of lung, thyroid, pancreas, bladder and kidney cancers and non-
Hodgkin's lymphoma, melanoma and leukemia were similarly noted for women of the (5).

Birth weight and birth length as surrogates of fetal growth and nutrition:
links with later obesity and cancer incidence

Birth weight and length for infants of normal gestation period has important predictive value
for later adult BMI as well as propensity for chronic diseases. High birth weight has been
associated with an increased tendency for obesity in later life (6). Low birth weight is
associated with increased risk for heart disease, hypertension, type 2 diabetes and glucose
intolerance in adulthood (7). Importantly, birth weight and birth length are positively
associated with risk for certain cancers (8, 9). Among childhood cancers, birth weight is
positively associated with increased risk for neuroblastoma (10) and leukemia (11-13).
Further, the risk of prostate (14, 15) and testicular (16, 17) cancers in men is positively
associated with birth weight. In contrast, increased risk for colorectal cancers is linked to
lower birth length for men, but not women (18).

The influence of birth weight on breast cancer risk is not as straightforward, although
several recent reports show a modest positive correlation of birth weight (and length) with
occurrence of this cancer in adulthood (19-22). Women who had lower birth weight but had
increased adipose tissue deposition while young had lower breast cancer risk (23). In this
regard, the apparent positive associations of birth weight and length with a pre-menopausal
woman's circulating estradiol levels (considered a major risk factor for breast cancer) are
intriguing (24). However, in another study, pre-menopausal women with lower than average
birth weights who then gained excess weight as adults tended to have elevated serum
estrogen concentrations than did women with higher birth weights and excess weight gain as
adults (25). While it is apparent that birth indices can have long lasting effects on circulating
estradiol levels, the relative contributions of the ovaries, adrenals and adipose depots to
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these programmed changes in estradiol synthesis and secretion, with potential impact on
breast cancer risk, remain unexplored.

Maternal BMI and progeny's adiposity
Maternal BMI is positively associated with increased birth weight and neonatal adiposity
(26). A high pre-pregnancy BMI and/or excessive weight gain during pregnancy confer a
propensity for greater adiposity of children born from these mothers (27-30). Children with
high BMI often become obese adults (31-33). The effect of pre-pregnancy obesity on
adiposity status of progeny may be amplified by concurrent gestational diabetes (and insulin
resistance) in pregnant mothers (30, 34). Thus, a positive feed-forward cycle of adiposity
transferred from mother to child will in all likelihood, increase relative risk for cancers in
the latter during adulthood and maybe even earlier (Figure 1).

Obesity and insulin/IGF systems
The insulin and IGF systems are likely important functional links between obesity and
increased cancer risk. Of particular note, obesity leads to enhanced circulating levels of
insulin, IGF-I, IGF-II and IGFBP-3, while reducing levels of the low molecular weight IGF-
binding proteins (IGFBP-1, IGFBP-2) (Table 1). The net effect of these changes is increased
signaling through the insulin and IGF-I receptors, with resultant increased mitogenesis and
decreased apoptosis, in many if not all tissue sites. An elevated circulating level of insulin is
a major risk factor for colon, breast and liver cancers (Table 2). Similarly, an elevated
circulating level of IGF-I and reduced circulating levels of IGFBP-1 and IGFBP-2 are
known risk factors for colon cancer (Table 2). The circulating IGF system, as well as
pancreatic insulin secretion and tissue insulin sensitivity, are influenced by dietary or obesity
effects in utero and/or during lactation (35-38).

Maternal obesity and breast cancer
Pregnancy weight gain may influence risk for breast cancer in mothers and their daughters.
For post-menopausal women, excessive weight gain during their prior pregnancies was
found to increase risk for development of breast cancer (39). By contrast, a comparable gain
in weight may confer short-term protection against pre-menopausal breast cancer (40).
Interestingly, BMI, pregnancy weight gain and dietary fat intake do not appear to
significantly affect maternal steroid hormone levels during pregnancy (41-43). In animal
models of mammary carcinogenesis, consumption of a high fat diet resulted in enhanced
pregnancy weight gain and an increase in subsequent mammary cancer incidence (44).
Effects of obesity (and of excessive weight gain) during pregnancy on breast cancer risk of
daughter(s) has also been examined, albeit only in limited fashion. Pre-pregnancy BMI was
not associated with breast cancer risk of daughters, whereas a pregnancy weight gain of
25-34 pounds was associated with a slightly increased risk for breast cancer (OR=1.5; CI
1.1, 2.0) in daughters (45). Paradoxically, women whose mothers gained 35 pounds or more
during pregnancy were not at increased risk. While these associations were based on a
limited number of subjects (510 case mothers, 436 control mothers), have not been
replicated, and the mechanism(s) underlying this association at the molecular level remains
unexplored, the potential consequences of these associations if confirmed, are highly
relevant to the current global obesity pandemic.

The uterine milieu has been shown to affect offspring's risk for adult breast cancer. For
example, the condition of preeclampsia has been associated with protection against breast
cancer risk in both mothers and their female offspring (19, 46, 47). Pelvic intercristal width
in pregnant mothers, which was used as a surrogate for maternal circulating sex steroid
hormones, was positively associated with risk of breast cancers in adult offspring (48).
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Further, a linkage between higher maternal BMI and elevated cord blood C-peptide levels
(26), a stable biomarker of insulin secretion, has been reported. The latter provides a
possible route by which maternal BMI may adversely influence the fetus.

Exposure of rats or mice during pregnancy and/or lactation to diets rich in energy, fats and/
or sugars has detrimental health effects in their offspring. These include: increased
adiposity; hyperglycemia; hyperinsulinemia; triglyceridemia; depressed immune function;
altered neural and satiety regulatory pathways; hypertension; reduced plasma antioxidant
status; and lower bone mineral density (36, 49-56). Pregnant rats fed a high fat diet delivered
pups with increased birth weight and their female offspring exhibited shortened mammary
tumor latency and increased tumor growth when given a mammary carcinogen as young
adults (57). In a similar model of mammary carcinogenesis, offspring of dams fed diets
containing a large amount of corn oil as fat source prior to and during pregnancy/lactation,
showed increased mammary tumor incidence (58). In contrast, feeding an equivalent amount
of olive oil (considered a healthy source of dietary fats) to dams was inhibitory to tumor
formation in their progeny. These latter studies highlight the value of dietary lipid
composition (good vs. bad fats) in the in utero programming of breast cancer.

Maternal obesity and colo-rectal cancers
Overweight and obesity are positively associated with increased colo-rectal cancer risk in
men and to a lesser degree in women (59-63). The positive linkage between colon cancer
mortality and obesity is also more evident in men than in women (64). Similar findings were
observed in rat (65-67) and mouse (68, 69) models. In obese animals, colon tumor genesis
was correlated with elevations in serum insulin, leptin, glucose, triglycerides, and
cholesterol. However, proof of causality for any of these factors, individually or together,
remains lacking.

Several studies have probed the developmental influences of underweight, overweight and
obesity in children on their subsequent risk for colo-rectal cancer. Exposure to energy
restriction during childhood and adolescence (Dutch famine years of WW II) was associated
with reduced risk of colo-rectal cancer later in life (70), presumably reflecting metabolic
programming and/or an epigenetic phenomenon. High BMI (i.e., above the 85th percentile of
a US reference population) at adolescence (i.e., 14-19 years of age) was positively
associated with increased risk of death (relative risk of 2.1 and 2.0 for males and females,
respectively) from colorectal cancers at later life (71). Interestingly, a recent study showed
that colon cancer risk in men is highly influenced by less drastic weight gains (63). In their
study, Thysegen and colleagues reported that a cumulative mean BMI above 22.5 conferred
increased colon cancer risk. Weight gain (1 lb/year) beginning at age 21 was associated with
increased cancer risk (63). Short-term (2-4 years prior) weight gain of 10 lbs was positively
associated with cancer risk in the proximal half of the colon (63). The rise in propensity for
colon cancer with long-term weight gains was demonstrated in a study of African-American
women (72). In this case, a ≥30 kg weight gain beginning at age 18 was positively
associated with risk for colorectal polyps. Animal studies also support the influence of early
postnatal weight gain on colon cancer incidence. Early over-feeding of pre-weanling rats
enhanced colon tumorigenic capability later in life (65). In a rat model of intestinal
carcinogenesis, switching of pregnant rat dams from a non-obesogenic diet to a more
obesogenic diet at parturition accelerated early neonatal body weight accretion, increased
colon tumor multiplicity and altered circulating levels of IGF system components in male
progeny as later adults (35). However, no studies (using human populations or animals) have
yet evaluated the role of maternal obesity on progeny's colon cancer risk at later adulthood.
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Maternal obesity and hepatocellular carcinoma
Obesity leads to an increased propensity for liver cancers in humans (73-76). Feeding a
‘Western’ or ‘cafeteria’ diet rich in fats and sugars to pregnant and lactating rats promoted
hepatic steatosis and liver oxidative stress response in their progeny (53). Steatosis and
oxidative stress are well-known promoters of the liver pathology that precedes
hepatocellular carcinoma (77). Thus, it is tempting to speculate that the rising incidence of
liver cancer in the US and other western societies (associated with increased rates of
hepatitis virus infection) is further fueled, in part, by maternal obesity. However, to the best
of our knowledge, no studies have directly examined this possibility.

Maternal obesity and the fetal/neonatal epigenome
Effects of diet and nutrition can be trans-generational. Chronic consumption of high fat diets
by young female rats conferred glucose intolerance, hyperinsulinemia, triglyceridemia, and
increased adiposity to their male progeny, indicating long-term, programmed and heritable
alterations in metabolism, gene expression, and tissue phenotype (78). Feeding a high
carbohydrate diet to female rat pups around weaning led to hyperinsulinemia and increased
adiposity later in life; effects they transmitted to their progeny (79). Similarly, consumption
of a high fat diet for four weeks by dams from pre-pregnancy through to weaning induced a
heritable increase in body length and a decrease in insulin sensitivity in first and second-
generation rat offspring (80). Most interestingly, these trans-generational effects were
propagated via maternal and paternal lineages, indeed supporting an epigenetic basis (80).

The long-term contributions of maternal diet to adult offspring health have been postulated
to also involve altered stem cell numbers and/or rates of stem cell renewal (81, 82). To date,
only a few known links between nutrition, the insulin and IGF systems, and stem cell
renewal have been defined (83-85). While the relevance of insulin as an essential factor for
in vitro sphere-forming ability (a measure of cancer stem cell renewal) of multiple cancer
stem cell types is compelling, given this factor's mitogenic action, further studies are
required to mechanistically explain these connections.

With increased interest in the role that epigenetics plays in disease evolution, studies seeking
to understand if, and how, maternal obesity (and maternal diet) affects the epigenome of the
fetus and neonate and in so doing, modifies disease susceptibility at later adulthood have
grown in numbers within the last several years. Initial studies have focused on rat liver
metabolic and metabolism-regulatory genes to model dietary influences involving the
epigenome in the impairment of developmental processes in progeny. Dietary protein
restriction and folic acid supplementation in pregnant rats were found to elicit specific
changes in DNA methylation of liver glucocorticoid receptor and peroxisomal proliferator-
activated receptor-α genes in progeny, correlating with respective levels of expression
(86-88). Importantly, both of these nuclear receptors are key players in metabolic regulation
by the liver. In a study of intrauterine growth-restricted rat fetuses, altered histone
methylation status of the liver IGF-I gene was associated with corresponding modifications
in hepatic IGF-I expression and deregulated metabolic status (38). Remarkably, a high fat
diet fed to male rats programmed pancreas β-cell dysfunction, as well as hypomethylation of
a specific pancreatic islet gene in their female progeny (89). Neonatal overfeeding, via litter
size restriction, led to increased methylation of the insulin receptor gene promoter in adult
rat hypothalamus (90). Such phenomena are not restricted to rodents. A recent study of
pregnant women found that maternal folic acid supplementation during pregnancy correlated
with increased DNA methylation of the IGF-II gene differentially methylated region (DMR)
in their children at age 1½ years (37). Most significantly, an inverse association between
extent of IGF-II gene DMR methylation and birth weight was documented. While none of
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the above studies specifically examined for effects of maternal obesity or overweight on
epigenetic phenomena in progeny, they do provide impetus for further investigations in this
direction.

In order to comprehensively address the contribution of the maternal environment, fetal stem
cells and the fetal epigenome to the etiology of breast cancer, the epigenetic program of
mammary gland development and functional differentiation was recently elucidated (91).
This information will provide an initial roadmap into understanding how the in utero and
immediate postnatal environments (and interactions with maternal obesity phenotype)
modify the mammary gland epigenome as well as this organ's predisposition to or protection
from, tumorigenesis in adult progeny. Similar strategies will invariably prove useful for
other tissues subject to fetal programming and high cancer incidence such as the liver, colon
and uterus. The ultimate goal of such studies is to enable reversal of in utero-instigated
epigenetic events (i.e., silencing of tumor suppressive genes and pathways) that contribute to
tumor initiation and progression (92-95).

Need for new metabolism-based screening paradigms for cancer pre-
disposition

It is now recognized that a greater than average weight gain during the first years of
postnatal life is positively associated with obesity and insulin resistance later in life (6, 27,
31, 96), thereby also leading to increased cancer risk. Weight gains from 0 to 3 months of
age were negatively associated with serum ghrelin and adiponectin when corrected for body
fat at age 17 years (96). Children born from mothers with type 1 diabetes exhibit increased
frequency of overweight/obesity and the BMI of their children were found to be positively
correlated with cord blood leptin, albeit not with insulin levels (97). Moreover, daughters
born from mothers who had gestational diabetes mellitus and impaired glucose tolerance
during pregnancy had increased waist circumference and increased insulin resistance at 15
years of age (98). These findings point to the utility of screening paradigms for children
born from overweight, obese, or gestational diabetic mothers to estimate pre-disposition for
adiposity and associated co-morbidities. Such screens could include indices of rates of
weight gain, adiposity, adipose-related serum hormones, and insulin sensitivity/resistance
during early childhood. Screening could be coupled with nutritional or other preventive
interventions such as changes in lifestyle and increased physical activity.

Interventions prior to and during pregnancy
Dietary interventions prior to and during pregnancy may confer some degree of protection
against the programming effects of maternal obesity status (99). Indeed, an increased
understanding of the maternal influence on health status of progeny has led to current goals
to reduce weight gain prior to and during pregnancy for obese/overweight women and to
control hyperglycemia in mother and fetus. The newly revised Institute of Medicine
guidelines
(http://www.iom.edu/Reports/2009/Weight-Gain-During-Pregnancy-Reexamining-the-
Guidelines.aspx) call for less overall body weight gain during gestation for those women
who begin pregnancy already overweight or obese. Nonetheless, there is a dearth of
understanding, borne from a lack of science, for how children's cancer risk is influenced by
the mother's BMI at peri-conception and pregnancy. Additionally, the relative contribution,
if any, of paternal overweight and obesity status during the peri-conceptual period to an
offspring's cancer risk is unknown. These are important questions, ripe for elucidation using
new high-throughput methodologies.

Simmen and Simmen Page 6

Eur J Cancer Prev. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.iom.edu/Reports/2009/Weight-Gain-During-Pregnancy-Reexamining-the-Guidelines.aspx
http://www.iom.edu/Reports/2009/Weight-Gain-During-Pregnancy-Reexamining-the-Guidelines.aspx


Several hypoglycemic agents that potentially are useful (in combination with diet) during
preconception and pregnancy to mitigate the negative effects of maternal obesity include
metformin, glyburides and glucagon-like peptide (GLP-1) analogs (100-105). Metformin, in
particular, has recently been associated with reduced cancer incidence of multiple tissue
sites (including breast, colon and liver) in diabetic individuals (106-111). While actively
investigated as a treatment for gestational diabetes, to our knowledge, no studies have
examined the efficacy of metformin during pregnancy to prevent cancers in progeny (either
animal or human studies). The ‘promise’ of metformin in prevention of cancer programming
is highlighted by its ability to traverse the placenta and its lack of teratogenic activity for the
human fetus (112).

Maternal obesity and high fat/high calorie maternal diets impose a pro-inflammatory state
on the fetus (113, 114). In a study of pregnant rat dams, supplementation of a high-fat diet
with the anti-oxidant (and dietary factor) quercetin partially reversed the metabolic
syndrome phenotype in progeny (51). This remarkable result raises the possibility that anti-
oxidant-enriched maternal diets could be used to favorably affect an offspring's cancer risk.
While there are only few pre-clinical studies that directly address this potential, there are
many dietary phytochemicals with known anti-oxidant properties and which also exhibit in
vivo bioavailability and in vitro or in vivo cancer-inhibiting actions; examples include
quercetin, lycopene, resveratrol, anthocyanin(s), curcumin, silymarin, and catechins (115).
Diets enriched for these factors, and perhaps used in combination with metformin, may
provide benefits to expectant mothers who are obese. Since some of these same bioactive
factors appear to be modifiers of the epigenome, the elucidation of their influence on the
expression and activity of chromatin-modifying enzymes may provide insights into their
potential cancer-inhibitory actions in offspring (116, 117). The feasibility of this approach
for minimizing susceptibility to cancer and other adult-onset chronic diseases clearly
necessitates pre-clinical studies in rodent models of maternal obesity.

Cancer risk, both in the immediate and longer term, is potentially modifiable by nutritional
means (118). A striking example of this is the observation that soyfood consumption during
childhood and adolescence lowers breast cancer risk in females during later adulthood (119,
120). Indeed, a soy protein-based diet fed only during gestation delayed the first appearance
of tumor, decreased tumor multiplicity, and inhibited tumor grade in female rat progeny
given a mammary carcinogen, when compared to control animals (121). Similarly, a
maternal (gestation/lactation) diet containing a soy protein isolate resulted in significant
reductions in body weight, mammary terminal end bud number, and abdominal fat pad
weight, and enhanced mammary gland differentiation in female weanling rats, compared to
a control maternal diet (122). A maternal (gestation plus lactation periods) diet containing
blueberry powder (a rich source of anthocyanins and polyphenols with demonstrated anti-
oxidant activities) enhanced mammary epithelial differentiation in weanling rats, an effect
that may indicate tumor-protective actions in later life (123). Lastly, a recent report
demonstrated significant improvement in glucose tolerance for 6-month-old mice, whose
dams received a soy protein-based diet from preconception and throughout pregnancy (124).
These studies provide strong rationale for further development of specific dietary
formulations for pregnant obese/overweight mothers with the goal of reducing the potential
for cancers in offspring as adults (125). Lastly, given the reports that breast-feeding may
confer a lower risk of overweight/obesity for children borne of obese mothers (126), the
question of whether the risk of adult disease in progeny may differ with maternal BMI status
during pregnancy and lactation in breast-feeding mothers warrants further scrutiny.
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Perspectives
Emerging data predict a positive impact of anti-obesity strategies for children on decreasing
their long-term cancer risk (127). However, most current strategies do not consider targeting
obesity risk beginning in the womb for the dual-prevention of obesity and cancer. Data
summarized above demonstrate the maternal contributions to determining an offspring's
relative risks for obesity and attendant cancer risk (Figure 1). Intervening in the feed-
forward cycle of maternal to offspring adiposity/obesity with new strategies and approaches
will be required to stem the obesity pandemic. Given the increasingly acknowledged link
between obesity and many cancers, such approaches may also counter the expected rise in
occurrence of cancers in children and adults borne from overweight or obese mothers. The
fields of epigenetics and stem cells will undoubtedly be important in addressing the large
gaps in our understanding of the mechanistic aspects of fetal programming of adult cancers
and specifically as influenced by maternal obesity and/or maternal diet. Mature fields such
as epidemiology, the study of bioactive dietary factors, and the molecular endocrinology of
insulin and IGFs also will find application to the above challenges. Since many aspects of
embryo-maternal interaction, placentation, fetal organ system development, and pregnancy
are species-specific, it will be important to study multiple animal models, as well as
primates and the human where appropriate, to elucidate the generalities of maternal obesity
effects on a fetus/neonate's later cancer risk and how this may be countered by targeting the
pregnant uterus.
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Fig. 1.
Model for maternal to offspring transmission of obesity and cancer risk. IGF-I, insulin-like
growth factor-I, (mitogen, cell survival factor); IGFBP-1, insulin-like growth factor-binding
protein-1, (an IGF-I binding protein present in sera and tissues and which regulates IGF-I
bio-availability); IGFBP-2, insulin-like growth factor-binding protein-2, (an IGF-I binding
protein present in sera and tissues and which also regulates IGF-I bio-availability). The
experimental data supporting this model are discussed in the text. The model predicts the
efficacy of early intervention (i.e., in overweight/obese mothers, prior to or during
pregnancy) in lowering risks for both obesity and cancer in their offspring.
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Table 1
Associations of obesity or body mass index (BMI) with blood levels of insulin and insulin-
like growth factor system components in adults and children

Obesity (men) ↑ insulin ↓ IGFBP-1 Ref. 128

↑ free IGF-I ↓ IGFBP-2

Overweight/obesity (women) ↑ insulin ↓ IGFBP-1 Ref. 129

↓ IGFBP-2

BMI (men) ↑ IGFBP-3 ↓ IGFBP-2 Ref. 130

BMI (men and women) ↑ IGF-II ↓ IGFBP-2 Ref. 131

BMI (women) ↑ IGF-II Ref. 132

↑ IGFBP-3

↑ bioactive/total ↓ total IGF-I Ref. 133

IGF-I ↓ IGFBP-1

Obesity (children) ↑ insulin ↓ IGFBP-1 Ref. 134

↑ IGF-II ↓ IGFBP-2

↑ IGFBP-3

↑ IGFs/IGFBPs

↑ insulin ↓ IGFBP-2 Ref. 135

↑ insulin Ref. 136

↑ IGF-I

↑ IGFBP-3

↑ insulin Ref. 137

↑ IGFBP-3

Only those factors that exhibited a statistically significant association with obesity or BMI within a given study are listed. IGF-I, insulin-like
growth factor-I; IGFBP-1, insulin-like growth factor-binding protein-1; IGFBP-2, insulin-like growth factor-binding protein-2; IGFBP-3, insulin-
like growth factor-binding protein-3; IGF-II, insulin-like growth factor-II.
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Table 2
Associations of insulin and insulin-like growth factor system components (in serum or
plasma) with risk for three major cancers

Elevated insulin ↑ Colon cancer risk Refs. 138-143 ↑ Breast cancer risk
(pre-menopausal)
Ref. 144

↑ Breast cancer risk
(post-menopausal) Refs.
4, 138, 145

↑ Hepatocellular
carcinoma risk Refs.
107, 146-148

Elevated IGF-I ↑ Colon cancer risk Refs. 139, 141, 149,
150

IGFBP-1 ↓ Colon cancer risk Refs. 139, 141, 142

IGFBP-2 ↓ Colon cancer risk Refs. 139, 142

Only those endocrine factors that exhibited a statistically significant and consistent (i.e., over multiple studies) association with specific cancer risk
are shown. Some studies reported significant associations of serum IGF-I, IGFBP-1, IGFBP-2 and/or IGFBP-3 with pre-menopausal or post-
menopausal breast cancer risk, however a comparable number of other studies reported a lack of such associations.

The liver is the major tissue source of circulating IGF-I and IGFBPs. The relationships of serum IGF-I and IGFBPs with hepatocellular carcinoma
risk (and status) are complex, due to the dys-regulated expression of these genes in pre-neoplastic, transformed or cancerous liver cells.
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