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ABSTRACT

Primary ciliary dyskinesia (PCD) results from defects in motile
cilia function. Mice homozygous for the mutation big giant head
(bgh) have several abnormalities commonly associated with
PCD, including hydrocephalus, male infertility, and sinusitis. In
the present study, we use a variety of histopathological and cell
biological techniques to characterize the bgh phenotype, and we
identify the bgh mutation using a positional cloning approach.
Histopathological, immunofluorescence, and electron micro-
scopic analyses demonstrate that the male infertility results from
shortened flagella and disorganized axonemal and accessory
structures in elongating spermatids and mature sperm. In
addition, there is a reduced number of elongating spermatids
during spermatogenesis and mature sperm in the epididymis.
Histological analyses show that the hydrocephalus is character-
ized by severe dilatation of the lateral ventricles and that bgh
sinuses have an accumulation of mucus infiltrated by neutro-
phils. In contrast to the sperm phenotype, electron microscopy
demonstrates that mutant respiratory epithelial cilia are ultra-
structurally normal, but video microscopic analysis shows that
their beat frequency is lower than that of wild-type cilia.
Through a positional cloning approach, we identified two
sequence variants in the gene encoding sperm flagellar protein
2 (SPEF2), which has been postulated to play an important role in
spermatogenesis and flagellar assembly. A causative nonsense
mutation was validated by Western blot analysis, strongly
suggesting that the bgh phenotype results from the loss of SPEF2
function. Taken together, the data in this study demonstrate that
SPEF2 is required for cilia function and identify a new genetic
cause of PCD in mice.
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INTRODUCTION

Spermatogenesis is a complex developmental process
whereby immature diploid spermatogonia differentiate into
haploid spermatozoa [1-12]. During the cycle of the
seminiferous epithelium, spermatogonia undergo several
rounds of mitosis, eventually resulting in the formation of
spermatocytes, which subsequently undergo two meiotic
divisions to form round spermatids [1-4, 8—12]. The process
concludes with spermiogenesis, during which spermatids
elongate to form spermatozoa [1-4, 8-12]. This phase of
spermatogenesis involves reorganization of the organelles,
condensation of nuclear chromatin, formation of the acrosome,
elimination of the cytoplasm, and formation and elongation of
the flagellum [3, 4, 11, 13]. Throughout germ cell differenti-
ation, somatic Sertoli cells nurture the developing sperm cells,
regulate proper germ cell movement, and maintain the integrity
of the seminiferous tubules [14, 15]. The sperm cells are
released into the lumen of the seminiferous tubule of the testis
by a process known as spermiation and subsequently migrate to
the epididymis [7, 10—12].

The sperm flagellum extends from the spermatid centro-
some during spermiogenesis and is comprised of four segments
extending distally from the cytoplasm: the connecting piece,
the middle piece, the principal piece, and the end piece [7, 16].
The axoneme, or the flagellar core, generates the motor force
required for flagellar bending [7, 17]. After axoneme
formation, several accessory structures are assembled as
spermiogenesis progresses. Outer dense fibers line the middle
piece and the principal piece and play roles in protecting the
structural integrity of the flagellum and regulating the flagellar
waveform [7, 18]. The outer dense fibers are assembled around
the axoneme in a proximal to distal direction that extends
toward the end piece and are covered by mitochondria along
the middle piece [7, 18-21]. The fibrous sheath lines the
principal piece, where it provides flagellar tension and
flexibility and serves as a site for signal transduction molecules
and glycolytic enzymes [7, 22]. In contrast to the outer dense
fibers, the fibrous sheath is assembled in a distal to proximal
direction as the principal piece is formed [19, 21, 23] and is
attached to the outer dense fibers at the proximal end of the
principal piece, replacing two of the outer dense fibers in the
principal piece [22].

The axoneme of sperm flagella as well as motile cilia on
respiratory and oviduct epithelial cells, ependymal cells on the
ventricular surface of the brain, and nodal cells in the early
embryo, is comprised of a so-called 9+2 microtubule
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arrangement, with nine outer microtubule doublets surrounding
a single central pair [17, 24-28]. Inner and outer dynein arms
associated with the outer microtubule doublets provide the
motor force required for ciliary and flagellar beating [17, 26].
In addition, nexin links consist of the dynein regulatory
complex and connect the neighboring outer microtubule
doublets, while radial spokes link the outer doublets to the
central pair [17, 26]. Unlike respiratory epithelial cilia,
ependymal cilia, and sperm flagella, nodal cilia have a 9+0
structure that lacks the central microtubule pair [17, 26]. The
ciliary and flagellar axoneme is formed through a process
known as intraflagellar transport (IFT) where axonemal
proteins synthesized in the cytoplasm are transported through
the elongating cilia and flagella by IFT proteins [29]. Transport
is dependent on motor proteins kinesin 2, which drives
anterograde transport toward the distal tip, and cytoplasmic
dynein 1b, which drives retrograde transport back toward the
cytoplasm [29].

While sperm flagella are required for cell motility,
respiratory epithelial cilia are responsible for clearance of
mucus, ependymal cilia are required for proper flow of
cerebrospinal fluid (CSF), and nodal cilia are required for
proper left-right patterning in the early embryo [24, 25, 27].
Defects in motile ciliary and flagellar function commonly
result in the syndrome termed primary ciliary dyskinesia
(PCD), which was previously referred to as immotile cilia
syndrome. PCD affects approximately 1 in 16000 people
worldwide, and patients commonly suffer from chronic
sinusitis, bronchiectasis, neonatal respiratory distress, male
infertility, and situs inversus, a randomization of left-right
asymmetry [17, 30-32]. The specific presentation of bron-
chiectasis, sinusitis, and situs inversus is a subset of PCD that
is also referred to as Kartagener’s syndrome. Occasionally,
hydrocephalus [33-38], otitis media [39—46], female infertil-
ity [39, 47-50], and retinitis pigmentosa [51-53] are also
associated with PCD.

Several genes have been implicated in PCD in human
patients and mouse models [17, 54]. Many of these genes
encode ciliary components, including dynein heavy chains
DNAHS [55-58], DNAH7 [59], and DNAH11 [60-62], dynein
intermediate chains DNAII [41, 63] and DNAI2 [42], central
pair complex proteins HYDIN [64-68], sperm-associated
antigen 6 (SPAG6) [69-71], sperm-associated antigen 16L
(SPAG16L) [71-73], PCD protein 1 (PCDP1) [74, 75], and
radial spoke proteins RSPH9 and RSPH4A [76]. Additional
ciliary proteins implicated in PCD include the IFT protein
Polaris [77, 78], the structural protein tektin-t [79], and the
leucine-rich-repeat (LRR)-containing protein LRRC50 [39,
80]. In addition, several nonciliary proteins have also been
implicated in PCD, including transcription factors FOXIJ1/
HFH4 [81, 82] and heat shock transcription factor 1 (HSF1)
[83], the retinitis pigmentosa GTPase regulator (RPGR) [51-
53], DNA polymerase lambda [84], thioredoxin family member
TXNDC3 [40], dynein assembly factor kintoun (KTU, official
symbol DNAAF2) [45], canonical WNT pathway inhibitor
chibby [85], adenylate kinase 7 (AK7) [86], and tubulin
tyrosine ligase-like 1 (TTLL1) [87, 88]. Proteomic analyses
from humans [89] and the flagellated unicellular eukaryote
Chlamydomonas reinhardtii [90] have indicated that the cilium
contains approximately 700 different proteins. Given the
complexity of this organelle, it is likely that other genes may
yet be implicated in mammalian PCD.

Identification of new mouse models of PCD will identify the
requirement of ciliary proteins in cilia function and further
uncover the mechanisms underlying ciliary motility. In this
article, we describe an autosomal recessive mouse mutation

that results in severe hydrocephalus and has been named big
giant head (bgh). Consistent with PCD, affected animals also
have sinusitis and male infertility. Using a positional cloning
approach, this study demonstrates that a mutation in the gene
encoding sperm flagellar protein 2 (SPEF2) results in the PCD
phenotype in hgh homozygotes. Spef2, which is also known as
Kpl2, is specifically expressed in ciliated cell types [91, 92].
An intronic insertion affecting splicing of a testis-specific
isoform of Spef2 results in the immotile short-tail sperm defect
in Finnish Yorkshire pigs [93]. Interaction with the IFT protein
IFT20 in the mouse testis suggests that SPEF2 may play a role
in flagellar biogenesis [92]. Consistent with this role, we show
that the infertility in bgh males results from reduction in the
number of elongating spermatids during spermiogenesis and
structural defects in sperm flagella. In contrast, we also
demonstrate that the mutation in Spef2 causes only a reduction
in respiratory ciliary beating without causing ultrastructural
defects, indicating that SPEF2 is required for both ciliary
motility and spermatogenesis.

MATERIALS AND METHODS
Mice

The bgh mutation arose from animals in a line maintaining the fragile red
mutation [94], which was generated by N-ethyl-N-nitrosourea (ENU)
mutagenesis on the C57BL/6J (B6) background and maintained on a mixed
C57BL/6J;C57BL/10J (B6;B10) background. The bgh mutation was
backcrossed to and maintained on the B6 and 129S6/SvEvTac (129)
backgrounds and mapped by crossing to BALB/cByJ (BALB). Analysis of
hydrocephalus was performed on B6 animals at 3—4 wk of age. Analysis of
spermatogenic defects was performed on (B6x129)F1 (B6129F1) animals at
greater than 8 wk of age. Analysis of sinusitis was performed on both B6
animals at 3—4 wk of age and B6129F1 mice at greater than 8 wk of age. All
the animal procedures were approved by the Institutional Animal Care and
Use Committee at Children’s Hospital Boston and the Committee on the
Ethics of Animal Experimentation at the University of Turku in accordance
with the Guide for Care and Use of Laboratory Animals (National Academy
of Science).

Histology

Brains were fixed in 10% buffered formalin, and heads, testes, and
epididymides were immersion fixed in Bouin fixative. Once the bones in the
heads were fully decalcified, coronal sections were cut through the maxillary
sinuses. All the tissues were embedded in paraffin, sectioned, and stained with
hematoxylin and eosin. Analysis of brain histology was performed on four bgh
mice and four wild-type controls. Analysis of testis histology was performed on
five bgh mice and four wild-type controls, and analysis of epididymis histology
was performed on two bgh mice and one wild-type control. Finally, analysis of
maxillary sinus histology was performed on eight bgh mice and eight wild-type
controls on the B6 background as well as two bgh mice and two wild-type
controls on the mixed B6129 background.

Spermatozoa Preparations

Spermatozoa collected from the cauda epididymis were diluted in PBS and
spread on slides. Epididymal sperm from two bgh mice and one wild-type
control were analyzed by light microscopy.

Squash Preparations

Testes were dissected, decapsulated, staged, sectioned, and visualized by
phase contrast microscopy as previously described [95]. Squash preparations
were performed on testes from one bgh mouse and one wild-type control.

Drying Down Preparations

Stage-specific segments of seminiferous tubules were isolated, and cells
were released and fixed on slides as described previously [95]. Preparations
from two bgh and one wild-type control were visualized by phase contrast
microscopy and used for immunofluorescence.
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Immunofluorescence

Sperm slides and drying down preparations were postfixed with 4%
paraformaldehyde for 15 min and permeabilized with 0.2% Triton X-100 for 5
min. Nonspecific sites were blocked in 10% normal goat serum and 3% bovine
serum albumin in PBS. Samples were probed with an anti-AKAP4 monoclonal
antibody (1:200; BD Biosciences) or an anti-acetylated tubulin monoclonal
antibody (1:500; Sigma Aldrich). Mouse immunoglobulin G (IgG) (1:500) was
used as a negative control. Alexa Fluor 488 or 594 goat anti-mouse IgG (1:500;
Molecular Probes) was used as a secondary antibody. For detection of
mitochondria, slides were incubated with 200 nM Mitotracker (Invitrogen) in
PBS for 15 min. Fluorescence was visualized on a Leica DMRB fluorescence
Mmicroscope.

Electron Microscopy

Tracheae from six bgh mice and one wild-type control were fixed overnight
in a modified Karnovsky solution containing 2.5% glutaraldehyde and 2.0%
paraformaldehyde, pH 7.4. Fixed tissues were rinsed in cold 0.1 M sodium
cacodylate buffer, pH 7.4 and treated with cacodylate-buffered 2.0% osmium
tetroxide for 1.5 h. The tissues were dehydrated, embedded, cut, stained, and
visualized as previously described [75]. Testis and epididymal sperm samples
were fixed in 5% glutaraldehyde and treated with a potassium ferrocyanide-
osmium fixative. The samples were embedded in epoxy resin (glycidether 100;
Merck), sectioned, stained with 5% uranyl acetate and 5% lead citrate, and
visualized on a JEOL 1200 EX electron microscope. Testes were analyzed from
three bgh mice and two wild-type controls, and epididymal sperm was analyzed
from two bgh mice and one wild-type control.

Ciliary Beat Frequency Analysis

Tracheae from 3- to 4-wk-old B6 mice were isolated in Dulbecco modified
Eagle medium supplemented with 1% penicillin-streptomycin. The ciliary beat
frequency was analyzed using the Sisson-Ammons video analysis system as
previously described [75, 96]. Tracheae were analyzed from nine bgh mice and
nine wild-type controls.

Positional Cloning

To map the bgh mutation, we crossed B6 heterozygotes to wild-type BALB
animals and backcrossed the confirmed heterozygous (B6xBALB)F1
(B6BALBF1) animals to their heterozygous B6 parent to generate affected
N2 progeny. Using the Harvard Medical School-Partners Healthcare Genetics
and Genomics Core Facility, we mapped the mutation to the proximal region of
chromosome 15 by genotyping 11 affected N2 animals with a genomewide
panel of single nucleotide polymorphism (SNP) markers. Fine mapping with
microsatellite repeat markers in a total of 18 affected N2 animals refined the
interval to an approximately 8 Mb region between 3.9 and 12.2 Mb. The
proximal end of this interval is defined by a microsatellite marker (F:
GCAAGGGTTAGATGGGTGTC; R: CACCCTCAAATCCCTCATTC) at 3.9
Mb that amplifies 24 CA repeats in B6 and 22 CA repeats in BALB. The distal
end is defined by SNP marker rs13482436 (F: CCATGGGTTCCCT
TATTTCC; R: GCCAGGGGATTTTTGTTAGG) at 12.2 Mb, where the
polymorphic base is G in B6 and C in BALB.

Spef2 Gene Annotation

The Spef2 gene structure was determined using the following methods: 1)
online gene prediction programs GeneMark (exon.biology.gatech.edu/
eukhmm.cgi) [97] and GenScan (genes.mit.edu/GENSCAN.html) [98], 2)
alignment with predicted human exons, 3) sequencing of predicted mouse
exons from genomic DNA, and 4) sequencing of reverse transcribed Spef2
cDNA. Predicted protein domains were determined using the NCBI Conserved
Domains search (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?) [99]. Se-
quences were analyzed using the Sequencher software (Gene Codes).

Genomic Sequencing

Genomic DNA was isolated from wild-type and bgh mouse tails using the
Puregene tissue kit (Qiagen). Spef2 exons were amplified by PCR and
sequenced. Sequences were analyzed using the Sequencher software. All 37
exons were initially sequenced in one bgh heterozygote, and each exon
containing a putative disease variant, which was identified by two peaks in the
chromatogram, was sequenced in more than 100 animals comprised of wild
types, heterozygotes, and bgh homozygotes. Heterozygotes were confirmed by
breeding, and bgh homozygotes were confirmed by phenotypic analysis.

Reverse Transcription Polymerase Chain Reaction

RNA was isolated from one wild-type B6 testis using the RNeasy kit
(Qiagen), and first-strand cDNA was synthesized from 1 pg of total RNA using
the SuperScript III First Strand reverse transcription kit (Invitrogen). Twelve
overlapping segments spanning the entire predicted Spef2 cDNA were
amplified and sequenced to determine the complete cDNA sequence.
Sequences were analyzed using the Sequencher software.

Western Blot Analysis

Wild-type and bgh testes from three bgh mice and two wild-type controls
were homogenized in 1% Triton X-100 in PBS. Proteins were separated by
SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membrane, and
blocked in 1% nonfat dry milk in TBS (10 mM Tris base, 150 mM sodium
chloride; pH 8.0) with 1% Tween-20 (TBS-T). Blots were probed with
polyclonal anti-SPEF2 antibody (1:250) [92] or monoclonal anti-acetylated
tubulin antibody (1:2000, Sigma-Aldrich) and detected with horseradish
peroxidase-conjugated anti-rabbit or anti-mouse secondary antibodies, respec-
tively (1:10000, GE Healthcare). Proteins were visualized by enhanced
chemiluminescence (Perkin-Elmer) according to the manufacturer’s instruc-
tions and exposed to film.

Nucleotide Sequence Accession Number

The cDNA sequence for mouse Spef2 derived from wild-type C57BL/6J
testis was deposited in GenBank as accession number HQ856050.

RESULTS
bgh Mice Have Hydrocephalus

A mutation causing hydrocephalus occurred in mice on a
mixed C57BL/6J;C57BL/10J background (Fig. 1). The muta-
tion was heritable, and the number of affected animals was
consistent with an autosomal recessive mode of inheritance.
Because of the dramatic hydrocephalus, this mutant was named
big giant head (bgh). Homozygous mutants had an enlarged
cranial vault indicative of ventricular dilatation (Fig. 1A),
which is typically caused by accumulating cerebrospinal fluid
in the ventricular system. As a result, the average brain:body
ratio for a 3-wk-old bgh animal on the B6 background was
approximately 2.2 times greater than that of unaffected
littermates (Fig. 1B). Histological analysis demonstrated
extensive dilatation of the lateral ventricles in bgh mutants
(Fig. 1, C and D). Intact ependymal cells lining the mutant
ventricles possessed histologically normal cilia (Fig. 1E).
However, there was evidence of extensive ependymal
sloughing and substantial gliosis in the underlying white
matter (Fig. 1F). This damage was likely a secondary effect of
excessive pressure from accumulating CSF.

The severity of the hydrocephalus in hgh homozygotes was
variable. For 62 affected B6 animals that died naturally or were
euthanized due to severe hydrocephalus at greater than 1 wk of
age, the average age of death was 24.5 days. In addition, an
undocumented number of animals died within a few days of
birth, suggesting that the hydrocephalus may be severe enough
to cause perinatal lethality. Of the animals that lived to
adulthood, one male lived to 96 days and two males lived to 59
days. One female lived to 28 wk despite the presence of gross
hydrocephalus. Because of the unusual lifespan, this outlier
was not factored into the average age of death. The mutation
was backcrossed to the 129S6/SvEvTac (129) background, and
mutant B6129F1 animals were analyzed for the presence of
hydrocephalus. Interestingly, animals on the mixed background
showed no evidence of gross hydrocephalus, as indicated by a
normal cranial vault, and did not exhibit early mortality,
despite being infertile and developing sinusitis. This finding
indicates the presence of genetic modifiers of the bgh
hydrocephalus.
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FIG. 1. Hydrocephalus in bgh mice. A)
Gross hydrocephalus in bgh homozygote.

B) Graph showing brain to body ratios for
ES wild type and bgh mutants. Ratios are

plotted as (mg brain)/(g body). The ratio for
bgh mutants is approximately 2.2 times

greater than that of wild-type animals (n =
8 bgh and 4 wild type; P < 0.005). C-F)

Coronal sections of wild-type (C) and bgh
(D-F) brains through the lateral ventricles.

mg brain : g body

Original magnification is 4X (C, D) or 40X
(E, F). High magnification images show that

cilia are present on intact bgh ependyma (E)
and that substantial gliosis has occurred in

bgh Males Are Infertile Because of Defects
in Spermatogenesis

Although most bgh homozygotes on the B6 background
died around weaning age, affected animals occasionally lived
to adulthood. The inability of wild-type females to become
pregnant when paired with mutant males reaching the age of
spermatogenesis suggests that the males are infertile. Upon
mating, wild-type females paired with three adult B6 bgh males
for 1-2 wk formed vaginal plugs but did not become pregnant.
To further study the infertility phenotype without the
complicating factors of severe hydrocephalus and early
mortality, homozygous mutant animals were generated on the
mixed B6129 background. One bhgh homozygote on the mixed
B6129 background also failed to produce progeny when paired
with a wild-type female for 2 wk.

Consistent with the apparent male infertility, histological
analysis demonstrated that there were abnormalities during
spermiogenesis in the bgh testis. The cycle of the seminiferous
epithelium is divided into 12 stages (I-XII) in the mouse, with
each stage corresponding to a defined arrangement of cell types
[96]. There were no obvious defects in the organization of the
seminiferous tubules, and spermatogenesis appeared to prog-
ress normally in bgh mice until the spermatid elongation phase
(Fig. 2, A-D). Bundles of elongating spermatids were visible,
but there was a reduction in the number of elongating
spermatids in stage II-V tubules (Fig. 2, A and B). Those
bundles contained nuclei, but no flagellar structures were
detectable (Fig. 2, A and B). Stage VII-VIII tubules contained
the most mature germ cells just prior to spermiation in the wild-
type testis (Fig. 2C). However, very few mature spermatozoa
were detected in the bgh testis, and the sperm tails appeared to
be absent in the lumen of the seminiferous tubule (Fig. 2D).
Consistent with this finding in the testis, histological analysis
of the bgh cauda epididymis revealed the presence of very few
mature sperm compared to wild type (Fig. 2, E and F).

the bgh white matter (F). All the sections are
stained with hematoxylin and eosin.

The progression of spermatogenesis was further analyzed in
staged squash preparations that were isolated on the basis of
recognizable transillumination patterns generated by different
organizations of condensed elongating spermatid nuclei at
specific stages of the seminiferous epithelial cycle [95]. Mouse
spermiogenesis is divided into 16 steps, with steps 1-8
comprising the round spermatid phase and steps 9-16
comprising spermatid elongation [95]. Detailed living cell
analysis of the squash preparations under phase contrast
microscopy confirmed the normal associations of spermato-
genic cell types in various stages of bgh tubules (Supplemental
Fig. S1; all the supplemental data are available online at www.
biolreprod.org). Acrosome formation in round spermatids in
the early steps of spermiogenesis appeared unaffected (Sup-
plemental Fig. S1). Elongating spermatid bundles were present
in stage IV-V tubules, but the orientation of the spermatids
inside the bundles was disrupted and a dramatic reduction in
the number of bundle-associated elongating spermatids (Sup-
plemental Fig. S1). Stage VII-VIII tubules contained very few
mature spermatozoa, and those that were present had
abnormally formed flagella (Supplemental Fig. S1). All the
bgh flagella appeared to be short and disorganized (Supple-
mental Fig. S1).

Altered Sperm Morphology in bgh Mice

To further understand the spermatogenic defect in bgh mice,
sperm morphology was analyzed by phase contrast microsco-
py, immunofluorescence, and transmission electron microsco-
py. Analysis of round and elongating spermatids by phase
contrast microscopy showed malformations in sperm flagellar
development throughout axonemal formation (Fig. 2, G and
H). Abnormally short and disorganized flagella were observed
on bgh spermatids from steps 8 to 16 (Fig. 2, G and H).

Flagellar malformations were further highlighted by immu-
nofluorescence staining with markers for specific tail struc-
tures. Expression of acetylated tubulin, a marker for the
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FIG. 2. Males with bgh have spermato-
genic defects. A, B) Sections of wild-type (A)
and bgh (B) testes showing stage I-V
tubules. C, D) Sections of wild-type (C) and
bgh (D) testes showing stage VII-VIII
tubules. Original magnification is 40X for
all the testis sections. E, F) Sections of wild-
type (E) and bgh mutant (F) cauda epidid-
ymis show a reduction in the number of
mature sperm. Original magnification is
20X. All histological sections are stained
with hematoxylin and eosin. G, H) Phase
contrast microscopy of stage-specific drying
down preparations of seminiferous tubules
from wild-type (G) and bgh (H) testis. The
step of spermatid differentiation (1-16) is
indicated in the lower left corner. ES,
elongating spermatids; PSc, pachytene
spermatocytes; RS, round spermatids.

flagellar axoneme, confirmed that axonemal formation was
already disrupted in the spermatids in stage IX—X tubules (Fig.
3, A and B). The shortened tail and disrupted axonemal
development were also evident in stage II-V (Fig. 3, C and D)
and stage VI-VIII (Fig. 3, E and F) tubules. In addition to
axonemal abnormalities, defects in other structures were also
apparent. Mitotracker staining showed that mitochondria were
either absent from the sperm tail or highly disorganized (Fig. 3,
G and H). Absence of fibrous sheath marker AKAP4 in stage
-V (Fig. 3, I and J) and stage VI-VIII (Fig. 3, K and L)
tubules also indicated a defect in fibrous sheath formation in
bgh spermatids. No sperm flagella were correctly assembled in
the hundreds of flagella observed in these analyses. Mature
sperm isolated from the bgh epididymis showed the same
flagellar defects observed in bgh elongating spermatids. Light
microscopic analysis indicated that mutant epididymal sperm
had short tails and an abnormal flagellar shape (Fig. 3, M-0).
The presence of sperm in the epididymis, albeit in a markedly
reduced number, suggested that spermiation was not prevented
in bgh animals.

Detailed analysis of the bgh sperm tail ultrastructure was
investigated by transmission electron microscopy. Consistent
with data from staged squash preparations, acrosome formation
was normal in round and early elongating spermatids (Fig. 4,
A-C). In contrast, axonemal abnormalities were already
evident at this stage. Recognizable axonemal structures were

present, suggesting that flagellar formation was initiated in the
bgh testis (Fig. 4, D-F). However, there were defects in the
microtubule structure that include disorganization or absence of
central pair microtubules (Fig. 4, D-F). Disorganization of the
microtubules were more extensive in early elongating sperma-
tids (Fig. 4G). By step 16, there was a complete disorganization
of the axoneme, mitochondria, and outer dense fibers, and there
was a lack of organized fibrous sheath structures (Fig. 4, H-J).

Electron microscopic analysis of epididymal sperm further
demonstrated the disorganization of flagellar structures in bgh
mice. Longitudinal sections showed an absence of recognizable
axonemal structures (Fig. 4, K and L). In addition, completed
outer dense fiber or fibrous sheath structures were not found
(Fig. 4, K and L). Mitochondria, which normally form a sheath
along the outer dense fibers in the middle piece, were nearly
absent in bgh sperm, with only small clusters located near the
connecting piece (Fig. 4, K and L). Cross sections of bgh
sperm flagella further demonstrated the absence of recogniz-
able axonemal structures and the disorganization of mitochon-
dria and outer dense fibers (Fig. 4, M-0). These defects in
spermatid elongation and flagellar formation likely account for
the infertility in bgh mutant males. No mature sperm flagellum
was correctly assembled in over 100 flagella observed by
electron microscopy. In contrast to the male infertility, bgh
females are fertile.
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FIG. 3. Abnormal sperm flagellar morphology in bgh mutants. A—F) Immunofluorescence (IF) of axonemal marker acetylated tubulin in wild-type (A, C,
E) and bgh (B, D, F) seminiferous tubules. G, H) IF of mitochondrial marker Mitotracker in wild-type (G) and bgh (H) epididymal sperm. I-L) IF of fibrous
sheath marker AKAP4 in wild-type (I, K) and bgh (J, L) seminiferous tubules. Tubule stages are indicated in the upper left corner of each IF panel. The
nucleus is indicated by blue 4’,6-diamidino-2-phenylindole staining in each image. M-O) Morphology of mature spermatozoa isolated from the cauda
epididymis of wild-type (M) and bgh (N, O) mice and stained with hematoxylin. Original magnification is 40X.

bgh Mice Have Sinusitis and a Defect in Ciliary Motility

In addition to the hydrocephalus and male infertility, bgh
homozygotes also developed sinusitis. There was an accumu-
lation of mucus in the maxillary sinus cavity of bgh animals on
the B6 background, and there was a dramatic infiltration of
neutrophils, which is indicative of an acute inflammatory

response (Fig. 5, A—C). Despite the defects in sperm flagellar
formation, electron microscopic analysis of tracheal epithelial
cilia indicated that bgh cilia were present and ultrastructurally
normal (Fig. 5, D-H). Mutant cilia possessed a normal 9+2
axonemal structure, and there were no apparent defects in the
dynein arms (Fig. 5, F-H). However, the beat frequency of
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FIG. 4. Transmission electron microscopy : 2 AT
showing ultrastructural defects in bgh i
sperm. A—C) Analysis of the acrosome from
wild-type elongating spermatids (A), bgh
round spermatids (B), and bgh elongating
spermatids (C). Note the normal appearance
of the acrosome (arrows) in bgh spermatids.
D-J) Cross sections of the developing
spermatid axoneme in wild-type round
spermatids (D), bgh round spermatids (E, F),
bgh early elongating spermatids (G), wild-
type step 15-16 elongating spermatids (H),
and bgh step 15-16 elongating spermatids
(I, ). Microtubule defects including loss of
one or both of the central pair tubules are
present in bgh round spermatids (E, F), but
there is complete disorganization of the
axonemal structure by the late elongating
spermatid stage (G, 1, J). K, L) Longitudinal
sections of epididymal sperm from wild-
type (K) and bgh (L) mice. Note the loss of
recognizable axonemal or accessory flagel-
lar structures (arrows), the disorganization
of mitochondria (arrowheads), and an ex-
cess of cytoplasm in the bgh sperm (L).
M-0) Cross sections of the epididymal
sperm flagellum in wild-type (M) and bgh
(N, O) mice. Note the disorganization of the
axoneme and mitochondria in the bgh
sperm tail (N, O). Original magnification is
6000X (A-C, K, L), 60000X (D-H), or
50000X (1, J, M-0O).

tracheal epithelial cilia in bgh mice was approximately 17%
lower than wild-type littermates, with a difference of
approximately two beats per second (Fig. 5I). This decrease
in ciliary motility presumably accounted for the defect in
mucus clearance in the sinus cavity and may also have
contributed to a defect in CSF flow in the brain that resulted in
hydrocephalus. Mutant animals on the mixed B6129 back-
ground also developed sinusitis with a similar accumulation of
mucus and infiltration of neutrophils (Supplemental Fig. S2),
demonstrating that the PCD was present in mutant animals on
this background. Despite the presence of hydrocephalus, male
infertility, and sinusitis, situs inversus was not observed in bgh
mutant mice.

Positional Cloning of the bgh Gene

To map the bgh mutation, confirmed heterozygotes on the
B6 background were crossed to wild-type BALB mice, and F1
heterozygotes were subsequently backcrossed to their hetero-
zygous B6 parent to obtain affected N2 progeny. Using a
genomewide screen of affected N2 animals, we mapped the
mutation to proximal chromosome 15. Fine mapping with
microsatellite markers in the region reduced the bgh interval to
approximately 8.3 Mb between 3.9 and 12.2 Mb (Fig. 6A).
This interval contains 57 genes or novel open reading frames.
Candidate genes were prioritized based on known function or
expression patterns, and the gene encoding sperm flagellar
protein 2 (SPEF2) was considered the top bgh candidate gene.
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FIG. 5. Sinusitis in bgh mice. A-C) Coro-
nal sections of wild-type (A) and bgh (B, C)
maxillary sinuses. Note the accumulation of
mucus and infiltration of neutrophils in the
bgh sinuses (arrowhead). Original magnifi-
cation is 10X (A, B) or 40X (C). Sections are
stained with hematoxylin and eosin. D-H)
Electron micrographs showing cross sec-
tions of wild-type (D, E) and bgh (F-H)
tracheal epithelial cilia. Note the normal
ultrastructure in bgh cilia. Relative sizes are
indicated by the scale bars. 1) Analysis of
tracheal epithelial ciliary beat frequency
(CBF) in beats per second (Hz). The CBF of
bgh cilia is approximately 17% lower than
that of wild-type cilia (n = 9 wild type and
9 bgh; P = 0.03).

Based on alignment with other species, we determined that
the gene and protein sequences in the NCBI and Ensembl
databases were incorrectly annotated. To determine the correct
gene structure, we used a combination of several methods. We
first used online gene prediction programs GeneMark and
GenScan to locate potential exons in the genomic sequence
spanning this region of chromosome 15. The most likely exons
were selected through alignment of the predicted exon
sequences with predicted exon sequences from homologs in
other mammalian species. Predicated exons were verified by
direct sequencing of genomic DNA from wild-type mice.
Finally, we verified the location of splice sites as well as the 5’
and 3’ ends of the gene by sequencing reverse transcribed testis
cDNA spanning the entire predicted open reading frame. As a
result, we determined that the mouse Spef2 gene was
comprised of 37 exons and encoded a predicted protein of
1798 amino acids in the testis. Using the NCBI Conserved
Domain search tool, we determined that the SPEF2 predicted
protein contained two conserved domains: 1) a domain of
unknown function (DUF) from amino acids 5 to 136 and 2) an
adenylate kinase domain from amino acids 618 to 800. A
calcium-binding EF-hand motif has also been predicted in the
porcine homolog [93].

To identify potential disease causing mutations in Spef2, we
sequenced all 37 exons in bgh heterozygous DNA. Sequence
analysis revealed two distinct single base substitutions that
were confirmed in affected mutants (Fig. 6B). We identified a
missense mutation in exon 3 that caused an amino acid
substitution of glutamine to lysine in the DUF domain.
Substitution of the positively charged lysine for the uncharged
glutamine could disrupt folding or function of this domain. In

addition, we identified a nonsense mutation in exon 28 that
presumably resulted in a truncated protein after amino acid
1320. Although this did not delete any identifiable domains,
loss of the C-terminal 26% of the protein could prevent proper
protein folding or function. Sequencing of genomic DNA from
wild-type B6 and B10 animals indicated that neither of these
variants was a common polymorphism, suggesting that either
could be a disease-causing mutation. Furthermore, both exons
had been sequenced in well over a hundred mice from the bgh
line, and both mutations were consistent with the presence of
the PCD phenotype.

To validate the putative nonsense mutation, a Western blot
of wild-type and bgh testis lysates was probed with an antibody
raised to the C-terminus of SPEF2 [92]. While this antibody
detected full-length SPEF2 in wild-type testis, the protein was
not detected in the bgh testis, suggesting that full-length SPEF2
is absent (Fig. 6C). While it is possible that a missense
mutation in exon 3 could cause misfolding and subsequent
degradation of SPEF2 that would prevent detection on a
Western blot, this finding is more likely due to the nonsense
mutation in exon 28, which would result in either a truncated
protein or nonsense-mediated decay, thereby providing bio-
chemical validation of this putative mutation. Taken together,
these data strongly suggest that the PCD and spermatogenesis
defects in bgh mice result from the loss of SPEF2 function.

DISCUSSION

In this study, we have shown that loss of SPEF2 function
results in PCD with severe spermatogenic defects in the mouse
mutant bgh. Homozygous mutants have hydrocephalus, male
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FIG. 6. The bgh phenotype results from a mutation in Spef2. A)
Schematic diagram of the bgh functional interval, which is defined by a
CA repeat microsatellite marker at 3.9 Mb and SNP marker rs13482436 at
12.2 Mb. Spef2 is the top candidate gene in the interval. The proximal end
of chromosome 15 is depicted by an arrow with a circle indicating the
acromere. B) Sequence chromatograms showing the two putative
mutations in Spef2. Sequences are shown for wild-type (top), heterozy-
gous (middle), and bgh homozygous (bottom) animals for both the
missense mutation in exon 3 (left) and the nonsense mutation in exon 28
(right). Each mutated base is indicated by an arrow. C) Western blot of
SPEF2 in wild-type and bgh testis lysates using a polyclonal antibody to
the C-terminus of SPEF2. The absence of full-length SPEF2 in the bgh testis
validates the presence of a nonsense mutation. Acetylated tubulin was
used as a control.

infertility, and sinusitis. The infertility results from a reduction
in the number of elongating spermatids and mature sperm, as
well as structural defects that include short tails and
disorganization of axonemal and accessory structures. The
sinusitis and hydrocephalus likely result from an observed
decrease in ciliary beat frequency.

The morphological and ultrastructural defects associated
with bgh axonemes and accessory structures likely result from
perturbed IFT. Consistent with this hypothesis, SPEF2 has
been shown to localize to the sperm manchette and flagellum
and interact with the IFT protein IFT20 in the testis [92], which
implies a possible role in protein transport during spermatid
elongation. Furthermore, mutations in the porcine homolog of
Spef2 result in a similar sperm tail phenotype [93]. In addition
to the flagellar defects, slightly abnormal head shapes were also
observed in bgh sperm, although further studies are required to
elucidate the mechanism affecting sperm head development.

Interestingly, despite the defect in spermatogenesis and the
absence of 9+2 axonemal structures, bgh mutants have a
normal respiratory ciliary ultrastructure with a decreased beat
frequency. The bgh phenotype is very similar to the phenotype
that results from loss of the ciliary protein PCDP1 [75]. The C.
reinhardtii homolog of PCDP1 localizes to the central pair
apparatus and regulates ciliary motility in a calcium-dependent
pathway [74]. Consistent with this finding, murine SPEF2 is
21% identical to the C. reinhardtii protein central pair complex

1 (Cpcl) with conserved DUF and adenylate kinase domains,
strongly suggesting that Cpcl is the C. reinhardtii homolog of
SPEF2. Cpcl has been shown to localize to the central pair
complex of the C. reinhardtii flagellum and interact with
central pair protein HYDIN [66, 100]. Therefore, in addition to
arole in IFT in the developing spermatid, it is also possible that
SPEF2 may localize to the central pair of motile cilia on the
respiratory epithelium.

A potential role for SPEF2 in the central pair complex is
supported by two pieces of evidence in this study. First, bgh
cilia are ultrastructurally normal but have a reduced beat
frequency, suggesting that SPEF2 may be involved in
regulation of ciliary beating rather than ciliogenesis. This is
in contrast to the ultrastructural defects observed in sperm
flagella, which appear in round spermatids and become more
severe as spermiogenesis progresses. Second, the absence of
situs inversus in bgh mice suggests that SPEF2 does not play a
critical role in nodal cilia, which do not possess a central
microtubule pair. A role for SPEF2 in the central pair is
consistent with human mutations that affect the central pair and
result in PCD without situs inversus [101] as well as the
absence of situs inversus in mice lacking Pcdpl [75]. Tt is
therefore possible that SPEF2 has multiple, tissue-specific
functions. In epithelial and ependymal cilia, it may localize to
the central pair and regulate ciliary motility, whereas in the
testis, it is essential for spermatid elongation and likely
functions in IFT. This is supported by the finding that full-
length SPEF2 is testis-specific [92], despite the presence of
hydrocephalus and sinusitis in bgh mice. This is also consistent
with colocalization of SPEF2 with IFT20 in the Golgi of
developing spermatids and flagellar localization of SPEF2 in
mature sperm [92], suggesting that SPEF2 may have distinct
roles in elongating spermatids and mature flagella. Further
studies are required to fully understand the biochemical
function of SPEF2 in these various cell types; however, these
studies suggest that, despite the structural similarities between
cilia and flagella, there appear to be fundamental differences in
the biogenesis and regulation of the two organelles.

Although the presence of the nonsense mutation in exon 28
was validated by Western blot analysis, it is possible that both
mutations in Spef2 result in the same bgh phenotype.
Alternatively, because full-length SPEF2 was shown to be
testis-specific [92] and a mutation in the exon homologous to
28 in Finnish Yorkshire pigs causes only sperm tail defects
[92], the ciliary abnormalities could be caused by the missense
mutation in exon 3, while loss of the C-terminus could
specifically result in the spermatogenic defects. It is also
possible that the missense mutation in exon 3 is a passenger
mutation from the original ENU mutagenesis [94] and that the
PCD phenotypes result solely from the nonsense mutation in
exon 28. Based on sequencing of genomic DNA from B6 and
B10 animals, it is unlikely that either variant is a common
polymorphism.

To date, no mutations have been identified in the human
ortholog of Spef2 that result in PCD. However, given the
severity of the phenotype, studies elucidating the function of
SPEF2 will continue to reveal the molecular mechanisms that
regulate ciliary function and spermatogenesis. These studies
will likely contribute to improved understanding, diagnosis,
and treatment of male infertility and PCD.
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