Tandem trinucleotide repeats throughout the nucleotide sequence of a cDNA encoding an *Eimeria* tenella sporozoite antigen

P.A.Liberator, J.Hsu and M.J.Turner

Department of Biochemical Parasitology, Merck Sharp & Dohme Laboratories, Rahway, NJ 07065, USA Submitted July 31, 1989 EMBL accession no. X15898

Polyclonal anti-Eimeria tenella sporozoite antibody was used to isolate cDNA clone S07 from a λ gtll expression library constructed using mRNA from <u>E</u>. <u>tenella</u> sporulating oocysts⁽¹⁾. The nucleotide sequence of clone SO7 was determined by dideoxy sequencing of ExoIII generated deletion mutants⁽²⁾ from both ends of the cDNA in pUCl19 and is shown The sequence is 957 nucleotides long and the deduced amino acid here. sequence predicts the occurrence of only one in-frame methionine residue at nucleotide position 65. This ATG codon is in an environment that is ribosomes(3). favorable for translation initiation by eukaryotic ribosomes⁽³⁾. Initiation at this position would result in an open reading frame of 216 amino acids with a predicted molecular weight of 22.4 kD. A striking feature of the sequence is the tremendously high frequency of the trinucleotide AGC dispersed in a tandemly repeated fashion throughout the length of the clone, i.e., in both protein coding and untranslated regions. Interestingly, those trinucleotide repeats located within the protein coding region are not in the same reading frame. The majority code for either serine (AGC) or glutamine (CAG) residues. In both of these, the third position is a G or C nucleotide which is in good agreement with the overall 69.5% G/C content for this cDNA and the 83% third position G/C bias within the open reading frame.

1	CTC	ecc	CCA	ÂCI	111	TCC	ċċċ	ece	CTC	cec	AGC	AGC	AGC	ÅGC	AGC	AGC	AGC	AGC	AGC	AGC	***	ATG M	GCA A	GAC D	CTC L	TTC F	AGC S	GGA G	CTC L	616 V	GGC G	GGC G	GTC V	61C V	66C 6	GCT A	108
109	GTT V	GCT A	GCA A	есі А	GAT D	TTG L	CCT P	ÉCE A	GAG E	66C 6	ene E											TGG V											ecc A		GAG E	CTG L	216
217													ANG	CTG		TEC	TEC	CTG	CGG		666	éce A	GAG					TEC C	ect A	ece A	ene E	6	CGG R	C16 L	¢	AGC S	324
325																						стс L														AGC	432
433															A	T	R	6	L	L	L	۷		5	s		D				CGC R	AGC S	ATT I	ссс Р	CAC H	ACC	540
541														GGC		CAG	666	GCA	GCA	606		AGG R			GGC												648
649												TCC S										TAG	CCC	TEC	AGC	AGC	AGC	Â	AGC	AGC	ŃĠĊ	AGC	AGC	ARC	AGC	GCG	756
757	99C	ééc	AGC	CGC	eec	666	ecc	666	909	CCG	CTG	ĊAG	CAA	CAG	cÁG	CAG	CCG	ecc	CGG	CTA	ece	ĊCE	C66	AGC	ACT	COC	AGG	-	CTC	CAC	AGG	ĊAG	C66	GAG	AGC	AGC	864
865	AGG	GAC	GAG	***	CAG	6TC	ATG	TAG	cec	AGG	CAG	CAG	CGC	CAG	CTG	ĊAG	CAG	CAG	ĊŇG	CAG	CAG	CAG	CAG	CAG	CAG	ĊAG	CAG	CTC	cie	CAC	6						

REFERENCES:

- Profous-Juchelka, H., Liberator, P., Turner, M.J. (1988). Molec. Biochem. Parasit. 30, 233-242.
- 2. Henikoff, S. (1984) Gene 28, 351-359.
- 3. Kozak, M. (1986) Cell 44, 283-292.