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Abstract
Micro-RNAs (miRNAs) play a crucial role in post-transcriptional gene regulation by pairing with
target mRNAs to repress protein production. It has been shown that over one-third of human genes
are targeted by miRNA. Although hundreds of miRNAs have been identified in mammalian
genomes, the function of miRNA-based repression in the context of gene regulation networks still
remains unclear. In this study, we explore the functional roles of feedback regulation by miRNAs.
In a model where repression of translation occurs by sequestration of mRNA by miRNA, we find
that miRNA and mRNA levels are anti-correlated, resulting in larger fluctuation in protein levels
than theoretically expected assuming no correlation between miRNA and mRNA levels. If
miRNA repression is due to a catalytic suppression of translation rates, we analytically show that
the protein fluctuations can be strongly repressed with miRNA regulation. We also discuss how
either of these modes may be relevant for cell function.
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1 Introduction
miRNAs are short (on average of 22 nucleotides long), non-coding RNA molecules that act
as post-transcriptional regulators [1]. miRNAs regulate gene expression by base-pairing to
target mRNA molecules at conserved sites in the 3′untranslated regions of mRNAs,
ultimately leading to a reduction in the levels of protein encoded by the target mRNA [2].
Extensive evidence suggests that this suppression can occur by either the repression of
translation or induction of mRNA degradation. In the former, miRNAs act as catalytic
factors, preventing the initiation of translation, suppressing the production of proteins. In the
latter, miRNAs act in a non-catalytic fashion, leading to the degradation of the target mRNA
and the miRNA itself. Through either mechanism, miRNAs can keep gene products at
extremely low copy numbers. Although thousands of mammalian genes are potentially
targeted by miRNAs [2] and miRNAs have been identified as the primary negative
regulators of gene expression, the functions of miRNAs in the context of gene networks are
still not well understood [3, 4, 5, 6].

Of particular relevance is the accumulating evidence that small non-coding RNAs combine
with trancsriptional activators and repressors to regulate key developmental events [4, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16]. Bioinformatic analysis have identified an abundance of
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negative feedback motifs involving miRNAs and transcriptional activators and repressors
that control differentiation [3, 4, 6, 17]. These observations imply the existence of
considerable crosstalk between the miRNA-mediated posttranscription layer, and the
transcriptional regulation layer, whose dominant players, the transcription factors (TFs),
regulate the production of protein-coding mRNAs. Analysis of transcription factor mediated
feedback loops suggests that they serve to maintain protein expression at a fixed level. In
this way, negative feedback loops buffer against fluctuations arising from environmental
variations as well as intrinsic stochasticity of biochemical reactions, imparting precision and
robustness to regulation of gene expression. However, it is not clear whether miRNA-
mediated negative feedback regulation similarly acts to suppress fluctuations in TF numbers.
Moreover, it is not known how the feedback regulation of TF levels by miRNAs impact the
activation of other genes regulated by the same TFs.

To address these questions, we study the dynamics of a negative feedback circuit consisting
of a TF that activates the production of a miRNA, which in turn acts as a translational
repressor of the transcription factor. This model circuit is motivated by a recent study
suggesting that transcription factor, pitx3 and the microRNA, miR-133b, form a negative
feedback circuit in midbrain dopamine neurons [4]. Pitx3 is a transcription factor for genes
that mark the differentiation of precursor cells into dopaminergic neurons in the mammalian
midbrain. These neurons release dopamine, an important neuromodulator involved in
motivated behavior, learning and memory, and the loss of these neurons results in
Parkinson’s disease. miR-133 suppresses the translation of pitx3 mRNA while pitx3 induces
transcription of miR-133b. Thus, the control of pitx3 levels by this feedback circuit may
play a vital role in the maintenance and survival of dopaminergic neurons.

We propose two simplified models which implement the non-catalytic and catalytic mode of
translational repression by miRNA: which we term the sequestration model and the kinetic
suppression model respectively. We show that these arise as limiting cases of a more
complete model of miRNA based repression. We characterize and compare the steady-state
behavior and noise properties of the two different modes of action of miRNA in this circuit.
Specifically, we ask 1) how is the intrinsic noise of a gene network influenced by miRNA
regulation and 2) whether miRNA: mRNA degradation and degradation-independent
translational repression have a similar effect on the noise properties of the network. Finally,
we show that these two modes of translational repression have distinct effects on genes
controlled by the common transcription factor.

2 Results
miRNAs are transcribed from independent miRNA genes or are portions of introns of
protein-coding RNA polymerase II transcripts as precursor RNAs that are processed by the
enzymes, Dicer and Drosha. The processed miRNA is assembled into a characteristic stem
loop structure, cleaved into single strands and loaded onto specialized proteins of the
Argonaute (Ago) family, forming an RNA-induced silencing complex (RISC). The RISC
complex can then bind to its target mRNA at complementary sequences (7–8 nucleotides
long) in the untranslated 3′ region of the target. This binding leads to suppression of
translation in a number of different ways [18, 19]. Perfect or almost perfect complementary
leads to the cleavage of miRNA-mRNA duplex [1, 20]. However, this mechanism is
relatively rare in animals [1, 21]. Instead, miRNAs tend to destabilize mRNAs by
deadenlylation, leading to marked reduction in their abundance, and a consequent decrease
in protein levels. The most prevalent mechanism of miRNA action is to repress translation
by blocking steps in translation initiation or elongation [1, 19]. The repressed mRNAs
accumulate into specialized protein aggregates called P-bodies, where they are either
degraded or stored. Importantly, accumulation of miRNA/mRNA complexes into these P-
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bodies is correlated with fewer translating ribosomes, leading to lowered translational output
for that mRNA. In all cases, mRNA and miRNA can pair with each other in a stoichiometric
fashion and move to a translationally incompetent pool.

Extensive work has shown that the complex machinery of gene expression can be described
by a coarse-grained model that treats transcription of mRNA and translation of the mRNA
message into proteins as discrete events, lumping together many of the component steps into
single processes. We assume that the gene encoding the transcription factor (TF) is
transcribed at a rate αm, possibly specified by upstream environmental factors and translated
from the mRNA at a constant rate kp. The TF is degraded at a constant rate γp. The
transcription factor in turn activates miRNA synthesis. Thus, the rate of miRNA synthesis,
αμ is a function of the number of transcription factors modeled as a Hill function:

, where σ is the constant transcriptional rate with sufficient TFs, kd is the
dissociation constant of transcription factor complex from the promoter region of miRNA
gene, and n is the Hill coefficient. A coefficient of one indicates TFs bind to the gene
regulatory region independently of each other and coefficients greater than one indicate
positive cooperativity between TFs. As many TFs dimerize and activate the transcription of
the miRNA (i.e., fos/fos, fos/jun, creb, etc.), we choose a Hill exponent of 2. Thus, the
transcriptional rate of miRNA can be written as . This implicitly
assumes that the dimerization of the transcription factors and their binding to the miRNA
gene promoter is rapid relative to other timescales in the system. However, we note that
relaxing the dimerization assumption does not qualitatively alter our results below. Note that
here we have assumed that the promoters of the TF and miRNA genes are always active
with no “bursting” due to remodeling of the chromatin environment [22, 23, 24]. Both
mRNA and miRNA are degraded at constant rates γm and γμ respectively. Figure 1 shows a
schematic diagram of the generic miRNA based feedback network. The component
processes of translational regulation by miRNA have been described by Levine et al. and
can be generalized to include the negative feedback (Supplementary Information). A key
parameter in this model the probability with which miRNA is co-degraded with the mRNA
in the processed state. Considering the limit where miRNA and mRNA interact as an
irreversible second-order process that forms a RISC complex at a constant rate κ, yields the
“sequestration model ”. Importantly, we note that the suppression of translation following
miRNA/mRNA interaction is relatively rapid [18], justifying our assumption that the
mRNA/RISC complex is effectively incapable of translation. On the other hand, assuming
that the miRNA is released and available for reuse leads to a model where miRNAs act
catalytically to suppress translation leads to a second model, which we term the “kinetic
suppression model”. Below, we analyze the steady-state and noise properties of the miRNA-
based feedback network in the two limiting cases and postpone the discussion of the more
complete model to a later publication.

2.1 Sequestration model
A large body of evidence suggests that gene expression is inherently stochastic in nature [22,
23, 25, 26, 27, 28, 29, 30, 31], with both intrinsic fluctuations generated by the noisy timing
of individual chemical reactions and extrinsic fluctuations due to environmental and other
cell-extrinsic factors. Assuming that the intermediate states of the miRNA-mRNA complex
are at steady-state, the phase space of the network is characterized by the following three
variables, the mRNA number, m, the miRNA number, μ and the protein number, p. The
probability of having m mRNA, μ miRNA and p protein molecules at time t thus satisfies the
following master equation:
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(1)

where P (m, μ, p) is the joint probability for mRNA, miRNA and protein numbers to be m,μ
and p respectively. The steady state joint distribution, P (m, μ, p) cannot be solved
analytically. However, experimentally accessible variables are often not the entire
distribution, but the mean molecule numbers and their variance. A generating function
approach can be generally used to derive these moments, but the presence of the nonlinear
term, κmμ, means that the moment equations do not close. However, some progress can be
made by multiplying this master equation in turn by m, μ and p, and summing over all
possible m, μ and p, to obtain the familiar mass action equations:

(2)

The angle brackets represent the average values of a large ensemble of different realization
of these stochastic processes. At steady-state, the average value over large population equals
the mean value over the time, showing correspondence between the mass-action and the
mean-field models.

2.1.1 miRNA-based feedback introduces an expression threshold—These mass
action equations cannot be solved analytically. In the following, we will explore the general
steady-state properties and the nature of intrinsic fluctuations within this negative feedback
circuit. For concreteness, we fixed some of the parameters based on experimental
observations [32, 33, 34, 35]. Specifically γm, γp have been measured in eukaryotic cells.
Across the population, typically , i.e., protein life times are significantly longer than
their mRNA. Since the rates of degradation of miRNA have not been extensively measured,
we assumed γm = γμ. In order to make analytic progress, we derive a mean-field model by
assuming that the miRNA and mRNA numbers are uncorrelated. Then, the nonlinear term in
Eq. 13 factorizes to yield 〈mμ〉 = 〈m〉〈μ〉. This allows us to simplify the equations and obtain
steady state solutions for the mean-field equations. Under this approximation, mRNA
production can be treated as a birth-death process, with a birth rate α and an effective
degradation rate . Since miRNA-mediated suppression involves an intermediary
species, another natural control parameter is the rate of mRNA synthesis itself. As such, this
serves as a proxy for upstream control factors, such as environmental signals, developmental
events etc., that engage transcriptional machinery to initiate synthesis of the TF. As shown
in Figure 2, the mean mRNA number and the mean TF number exhibit a threshold-linear
behavior as a function of the mRNA transcription rate αm in this negative feedback loop.
This has been previously shown for the case when miRNA serves to repress translation in
feed-forward fashion [36] and also appears to be qualitatively operant in a similar fashion
even when the miRNA acts in a feedback mode. Thus, in either case, miRNAs serve to
impose an expression threshold allowing cells to buffer against environmental fluctuations.

A second natural control parameter is the peak transcriptional rate of miRNA, σ. When it is
very small relative to mRNA production (α), (as in Figure 2 for σ=0.01), the miRNA
production is very small, almost negligible. Thus, the system can be treated as the simplest
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case with the property of linear relationship between gene product and αm: 〈m〉 = αm/γm, 〈p〉
= αm * kp/(γmγp).. For larger σ, depending on the value of transcription rate of αm compared
to the peak transcriptional rate of miRNA, σ, the system can be classified into three regimes:
the repressed regime (αm ≪ σ), the crossover regime (αm ≈ σ) and the expressing regime (αm
≫ σ). While in the repressed regime, mRNA synthesis is strongly repressed by miRNA,
keeping overall TF levels very low. This threshold ensures that only strong enough signals,
which can drive the αm value to the expressing regime can trigger the synthesis of gene
products.

Increasing the strength of the negative feedback, κ, leads to a sharper crossover between the
repressed regime and the expressing regime until it reaches a saturating value as shown in
Figure 3. Beyond the threshold (α ≈ σ), i.e., in the expressing regime, there is a linear
relationship between the number of mRNA (m), TFs (p) and αm and the slope of the 〈m〉-αm
curve represents the sensitivity of the system in response to external signals. Both m and p
are proportional to . The linearized relationship between < p >

and αm is plotted as black line in Figure 3, denoted by . While the mRNA
and protein abundance show a threshold-linear behavior, the miRNA levels within this
feedback circuit exhibit a non-monotonic behavior (Figure 2B): at low mRNA synthesis
rate, there is very little synthesis of the TF and consequently, the synthesis of the miRNA is
low. At high synthesis rates, most of the miRNAs stoichiometrically combine with mRNAs
and accumulate in the translationally inactive pool. Since the mRNA is in excess, all the
miRNAs are consumed, leaving a large number of translationally competent mRNAs that
can engage in synthesis of the TF protein. Moreover, since this pool does not feel the effect
of miRNA based repression, the effective degradation rate of this excess pool of mRNAs is
the native degradation rate of the mRNA, γm. We note that the non-monotonicity of mean
miRNA number and the threshold linear behavior of the mean protein levels are observed
for a wide variety of parameter combinations.

2.1.2 miRNA based negative feedback amplifies noise in the sequestration
model—A conventional interpretation of negative feedback motifs in genetic circuits is that
they generally serve to decrease expression noise, suppressing fluctuations while
maintaining near constant mean levels of the components. However, depending on the
timescales of the various component process (RNA polymerase binding, repressor
multimerization and binding etc.), noise levels can moderately increase relative to
unregulated systems with increasing negative feedback strength [37, 38, 39, 40, 41]. These
insights have been derived from examining the behavior of genetic circuits that involve
genes that code for repressor proteins that block their own transcription by binding to
promoter (or promoter-proximal) regions of their own genes. In order to assess the impact of
miRNA based negative feedback, we next examined the intrinsic noise properties of our
network using the Fano factor as a measure of the fluctuations. The Fano factor [42] is
typically independent of system volume and measures how much the size of internal
fluctuations deviates from what is expected from Poisson statistics, for which the Fano
factor equals one.

We first consider how noise properties depend on environmental control signals that are
encoded in the parameter αm, the synthesis rate of the target mRNA. The mean field model
states that steady state mRNA number should reach a Poisson distribution with Fano factor,
(the ratio of the mRNA number variance and mean) . The Fano factor of the TF can be
readily calculated to be
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(3)

As expected, the Fano factor for protein numbers is larger than 1, because each mRNA leads
to the synthesis of a burst of proteins before degradation, with a ”burst” size of

 [38]. In the mean-field model, the effect of the miRNA is to increase the
degradation rate of mRNA, leading to a smaller burst size and lower variability. In order to
validate our assumptions, we used the Gillespie algorithm to perform stochastic simulations
of the full model. We find that the mRNA and miRNA levels are strongly anti-correlated
(Figure 4), with periods of high mRNA levels corresponding to low miRNA levels and vice
versa, as has been widely noted in experiment [43]. This can be understood as follows:
increases in mRNA levels lead to the synthesis of the TF, which then leads to the
transcription of the miRNA. These miRNA molecules can now bind to the mRNA, and
move them to the translationally inactive pool, resulting in a net loss of both mRNA and
miRNA. However, if the mRNA levels are high to begin with, most of the miRNA
molecules are saturated, with only an excess of mRNA levels remaining. On the other hand,
a large fluctuation in miRNA levels reduces mRNA numbers stoichiometrically, leaving
excess miRNA free. These observations imply that our assumption that the nonlinear term
can be factorized is invalid and that the effective degradation rate  must include the effects
of this correlation between mRNA and miRNA levels. Moreover, since the correlation is
negative, we would expect that the effective degradation rate be smaller than when there is
no miRNA-based translational repression. Consequently, we should see an increase in the
effective burst size, and hence a larger Fano factor for protein fluctuations than without
miRNA-mediated repression.

To verify our intuitive observations, we conducted large scale simulations to study the noise
properties of the network as a function of key control parameters. Surprisingly, the Fano
factors of all three components showed non-monotonic behavior as αm was increased, with
peak Fano factors well in excess of what is predicted by the mean field model as well as the
case of the unregulated gene (Figure 5). Furthermore, the non-monotonicity is obtained over
a wide range of values for the negative feedback strength κ, peak miRNA transcription rate,
σ and protein synthesis rates kp (data not shown). Moreover, we find that the mean field
model is only applicable in certain limiting regimes. If the mRNA synthesis rate, αm is much
smaller or much larger than σ, the mean field model can capture the noise properties of the
system. In the case where αm is low and m ≪ μ, the mRNA is strongly repressed by miRNA.
Because of the excess miRNA, 〈μ〉, the denominator is large in Eq. 3 is large and thus the
Fano factors of mRNA and TF are small. On the other hand, when m ≫ μ, the miRNA
number is strongly repressed due to the binding of mRNA and miRNA, leaving the excess
mRNA translationally active. Thus, the effect of miRNA regulation diminishes and can be
neglected. In this case, the Fano factor of both mRNA and protein number asymptotically
tends to the value where there is effectively no miRNA-mediated repression, i.e.,

, which is plotted as the asymptotic line in Figure 5. This is also in
accordance with Eq. 3 while κμ → 0. Interestingly, when am ≃ σ, i.e., the synthesis rates of
mRNA and miRNA are comparable, the Fano factors of mRNA and TF numbers are much
larger than the mean field prediction as can be seen in Figure 5. This amplification is due to
the anti-correlation between the mRNA and miRNA. Noise in stoichiometrically coupled
systems such as miRNA-based gene regulation has been studied earlier [44, 45, 46, 47].
These studies suggest the existence of a crossover regime characterized by enhanced
stochastic fluctuations. This near-critical behavior is reminiscent of the critical fluctuations
near phase transitions [48]. Accordingly, we find that the TF number distribution shows a
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long tail (Figure 5D), which suggests that while negative feedback by miRNA keeps the
mean TF number low, there can be large temporal or population variation. This variation
naturally arises because the effect of miRNA is to reduce the overall number of mRNA.
Thus any surviving mRNA has to rapidly engage in a burst of translation before it is
consumed either by mRNA decay or binding to a miRNA-loaded RISC complex. We will
examine the effect of this variation in a gene cascade in a later section. Moreover, we note
that such large fluctuations in the protein levels can be obtained even without transcriptional
bursting, i.e. for promoters that are continuously active.

We next examined the noise properties as a function of the strength of negative feedback, in
this case represented by the bimolecular association rate, κ. We focused on the region where
the noise properties of the network are amplified relative to no miRNA based feedback.
Thus, we fixed α = 1.2, a value around which the Fano factor of TF levels peaks (Figure
5C), to see how the Fano factor varies with the strength of negative feedback. While κ = 0,
there is no negative feedback, the noise in the system is at a minimum as shown in Figure 6,
which is close to that of an unregulated system. As κ increases, the interaction between
mRNA and miRNA is strengthened and the noise in TF numbers become larger. Then
finally, when κ is very large, the Fano factor saturates to an asymptotic value, much larger
than that for an unregulated gene. The limiting values of the Fano factor with increasing
feedback strength are distinct from the case of negative feedback mediated by a protein
repressor, where increasing the strength of negative feedback (i.e. the affinity of the
repressor to the gene promoter) for a fixed transcription rate increases the Fano factor over
what would be expected for an unrepressed gene while tending to a lower value for weak
and intermediate feedback strengths [37, 39, 40, 41]

However, we note that the origins of the increased fluctuations are similar. For protein-based
repression with a given transcriptional rate, the high affinity of the repressor implies that
most of the time, the gene is inactive with few mRNAs being transcribed. Upon brief
dissociations of the repressor from the gene, transcription can commence and result in bursts
of synthesis of both mRNA and the repressor protein. Thus, the effective timescale of these
bursts is determined by the dissociation rate of the repressor. For repressors with weak
affinity to the promoter, this additional noise source vanishes as the repressor-gene
interaction approaches steady-state and the Fano factor tends to an asymptotic value

, the burst size, b = kp/(γm+γp) is the average burst size and η = γp/γm. On
the other hand, in miRNA mediated feedback repression, increasing the miRNA/mRNA
association rate lowers the overall mRNA levels, leading to rare bursts of synthesis, while
reducing it approximates a situation with no feedback regulation. In summary, in the
sequestration model, miRNA-based negative feedback in physiologically relevant regimes
actually amplifies the noise relative to what would be expected either in case of a protein-
repressor mediated feedback [38] or the case where there is no feedback.

2.2 Kinetic suppression model
Given the abundance of miRNA and the diversity of targets for a single miRNA, under some
conditions, translational regulation by miRNA can be considered to act catalytically, i.e.,
miRNAs bind to mRNA at the regulating sites and repress translation initiation or elongation
with the number of miRNA itself being unchanged. This scenario is valid under conditions
of relatively weak miRNA/mRNA binding and large miRNA concentrations. We represent
this catalytic mode of action by assuming that the miRNAs act in a Michaelis-Menten
fashion to repress translation (see Supplementary Information). The transcription of mRNA
and miRNA as well as the degradation of mRNA, miRNA and TF protein have the same
form as in the previous (sequestration) model. We model the translational repression by
taking translation rates to be decreasing Hill functions of the number of miRNA regulatory
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molecules. i.e., . In the circuit analyzed here, we denote β as the strength of
negative feedback representing the effect of the control of TF synthesis by the miRNA.
Given the abundance of the components, we model the post-transcriptional regulation
through miRNAs using mass action equations with three molecular species: the number of
miRNA molecules μ, the number of target mRNA molecules m, and the number of regulated
TF molecules, p [36, 46, 47, 49, 50, 51].

The effect of intrinsic noise is included by Langevin terms, ηm, ημ and ηp denoting the
intrinsic fluctuations of the mRNA, miRNA and protein respectively, that describe the
statistical fluctuations in the underlying biochemical reactions [52]. The dynamics of these
processes can then be described by the following Langevin equations:

(4)

The Langevin terms ηi model intrinsic noise by treating the birth and death of the different
species as independent Poisson processes, representing the stochastic creation and
destruction of mRNA, miRNA and TF. We have dropped the cross-term ηm,μ since we
assume that miRNAs act catalytically, where these two levels are uncorrelated.

The Langevin terms are characterized within the linear noise approximation [52] by two-
point time correlation functions:

(5)

The linear-noise approximation is a good approximation even for nonlinear systems with
small fluctuations. This is confirmed by the simulation results which use the exact Gillespie
algorithm (see Figure 7 and Supplementary Figure 13). In order to obtain expressions for the
noise properties of the different species, we find the steady state solution of the model and
then linearize around this to compute the response of the variables m, μ and p to the
Langevin forcing terms ηm, ημ and ηp. In the linear approximation, the steady state is also
the mean value. So m =< m > +δm, μ =< μ > +δμ and p =< p > +δp. Linearizing the Langevin
equations around their steady states, we obtain:

(6)

We now transform these linearized equations into Fourier space, with δ̂i(ω) and η ̂i(ω)
corresponding to the temporal variables δi(t) and ηi(t) where i equals to m,μ or p in the
spectral domain. Thus,

(7)
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where

(8)

Using the Wiener-Khinchin theorem, the spectral density

, we can get:

(9)

Based on these expressions, we can obtain  and  using Eq. 7. Next,

using the relation  to inverse transform back to the time domain,
we can get the exact solution of the variance 〈δm2〉, 〈δμ2〉 and 〈δp2〉. (see Supplementary
Information) These expressions are somewhat lengthy and we have omitted them for
brevity.

2.2.1 Negative feedback represses noise in kinetic suppression model—We
now analyze the properties of the number fluctuations of different species in the network.
Because in the kinetic suppression model, miRNAs act catalytically to repress the translation
of TF, mRNAs are always Poisson distributed. We now focus on the fluctuations in the
number of TFs which can be quite different depending on the negative feedback and
promoter strengths (Figure 7). When the negative feedback strength β, equals zero, the Fano

factor of TF numbers equals . With sufficient production of mRNA (αm not too
small), the Fano factor slightly increases from the zero-feedback value for small values of β,
i.e. weak feedback strengths. For increasing β, the Fano factor decreases very rapidly to a
small value over a long range of β. Note the correspondence between the expressions
derived from the linear noise approximation and the full model using stochastic simulations.
For very large values of β, denoting large negative feedback, the analytic approximation
breaks down since the mean TF levels are small and the relative fluctuations are high. In this
case the Fano factor asymptotes to a value above what would be expected for the no
repression case.

We next study the effect of varying the strength of negative feedback on the TF number
fluctuations as a function of the promoter strength αm (Figure 8). We find that for weak
promoters, the effect of negative feedback is to continuously decrease the variability. This is
in part due to the fact that weak mRNA production implies an even weaker synthesis of the
miRNA itself. However, as the promoter strength is increased, we find the emergence of a
peak in the protein number fluctuations at very weak feedback strength, subsequent
suppression and then increasing fluctuations for very strong feedback. This latter increase is
due to the fact that the fluctuations are large and the small noise approximation breaks
down. A substantial amount of experimental evidence suggests that miRNA based
translational repression usually serves to reduce mean target protein levels in a modest
fashion (2–4 fold reduction) [53]. Thus, we anticipate that the large negative feedback
regime considered here is more for the sake of completeness and not meant to represent any
physiological situation in general.
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We next compare the noise properties of the feedback network depending on the mode of
action of the miRNA. In sequestration model, where miRNA and mRNA pair
stoichiometrically and are rendered translationally incompetent, the relevant parameter that
determines the extent of negative feedback is the affinity of the bimolecular interaction, κ.
On the other hand, in the kinetic suppression model, the strength of mRNA translation is
modulated by the parameter, β. In order to compare the noise properties of these two cases,
we set all the other parameters the same for these two models and then chose the feedback
strength β and κ so that they result in similar mean value of TF but different noise terms
(Figure 9A). As shown in Figure 9, the two genetic circuits produce almost the same mean
value of the TF, but the population distributions of the TF in the two cases are quite
different. In the kinetic model, TF numbers are tightly restricted near the mean value, but
distribution of TF in the sequestration model is more broad and is characterized by long tail
which indicates that there can be large bursts in the number of TF.

2.3 The impact of transcription factor fluctuations in gene networks
Considering that the miRNA-regulated protein is a TF, the qualitatively different
distributions of TF obtained under different modes of feedback regulation by miRNA can
affect the transcription of genes that are also regulated by the same TF. Concretely, we
envision the genes downstream of the transcription factor pitx3, would exhibit different
patterns of gene expression depending on population levels of pitx3. Here, we examine how
qualitatively different modes of miRNA based negative feedback affect the transcription of
such downstream genes using a simple regulatory cascade as shown in (Figure 10). We
assume the transcription rate of downstream genes is a generic Hill function:  as
shown in Figure 11A. In this study, we choose n = 10 because with large Hill coefficient, the
promoter essentially acts like a switch. qualitatively similar results obtain for smaller n. We
assume that the downstream protein (p2) is synthesized at a rate kp2 and degraded at a rate
γp2, its mRNA is degraded at a rate γm2. We assume that three representative target genes
with different dissociation constants, that denote varying promoter strengths, to see how the
variability of the TF levels affect the downstream protein distribution (Figure 11A).

For a highly-sensitive downstream gene, (small disassociation constant), the mean TF
number is in the saturation regime. Thus, TFs that are either stoichiometrically or
catalytically suppressed are equally effective in driving the expression of the downstream
gene (Figure 12A) with similar mean values. However, owing to the switch-like behavior of
p2 promoter, the population distribution of p2 is broader when driven by the
stoichiometrically suppressed TF as compared to the catalytically suppressed one. In
particular, we note the presence of a long tail of low p2 expressors. On the other hand, for a
downstream gene with a weaker promoter, i.e. dissociation constant such that the mean TF
levels lies in the linear regime of αm2(T F) (the dashed curve in Figure 11A), expression of
p2 is reduced. However, the p2 distribution is broad and skewed towards high expressors for
the case when the TF is stoichiometrically regulated (Figure 12B). For the extreme case
where the dissociation constant of the downstream gene promoter is much higher than the
mean TF levels, TFs that are stoichiometrically regulated by miRNA are able to drive
considerable expression (Figure 12C) while TFs that are catalytically regulated cannot.

3 Discussion
The post-transcriptional control of protein expression in animal cells by micro-RNAs plays
an important role in almost every cellular process and changes in their expression may
underlie developmental disorders and diseases such as cancer. miRNAs base-pair with seed
sequences in the 3′ UTRs of their target mRNA and block steps in the initiation of
transcription, sequestering mRNAs into sites of repression or by accelerating mRNA decay
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[18]. As a result, miRNAs reduce mRNA and protein abundance, often modestly and
sometimes sharply [53, 54]. Genome-wide studies have shown that miRNAs target many
transcription factors, which in some cases regulate their own transcription. Given the
importance of miRNAs in cellular function an analysis of the impact of miRNA-mediated
regulation on the mean levels and fluctuations of genetic circuits is vital. Here, we have
shown that depending on the mode of miRNA action, negative feedback by miRNA can
have differential impact on the noise levels of protein expression. In particular, if miRNAs
act in a stoichiometric fashion, whereby both the target mRNA and miRNA are removed
from the population into an inactive pool (Figure 1), then negative feedback regulation by
miRNA largely amplifies the intrinsic noise in the system, leading to long-tailed
distributions of transcriptional factor numbers. Our simulations show that this enhancement
of protein number fluctuations is sensitive to environmental factors as seen in Figures 5 and
Figure 6. However, if miRNAs act catalytically to repress protein synthesis, the net effect is
to reduce variability in protein levels, as would be conventionally expected for a negative
feedback circuits.

A number of experimental observations justify the distinction of the modes of miRNA
action made in our models. Early studies of miRNA effects seemed to reveal that mRNA
degradation was minimal but protein expression was reduced consistent with a catalytic
mode of regulation [54]. This could result from imperfect seed sequence complementarity
between the miRNA and mRNA, the presence of multiple miRNA targets, weak and
reversible association of the target mRNA with the RISC machinery, rapid accumulation of
the RISC/mRNA complex into P-bodies or accumulation in stress granules accompanied by
the release of the miRNA. More recent studies have shown that mRNA degradation is
significant [54]. These could arise from a higher degree of complementarity of miRNA seed
sequence in the mRNA 3′ UTR, multiple pairing locations, post-translational modifications
of the RISC machinery that enhance binding of miRNA/mRNA and subsequent translational
repression and P-body accumulation. These latter effects are best represented
mathematically by a sequestration model where both miRNA and mRNA are
stoichiometrically degraded. In order to keep the models relatively simple and to gain
intuition, we have abstracted many of the intermediate steps, modeling component processes
as first and second-order reactions. Such coarse-grained representations have been quite
successful in elucidating many aspects of deterministic and stochastic gene networks [38,
55, 56, 57]. We have neglected additional aspects of miRNA biogenesis and function, such
as multiple miRNA seed sequences on the same target mRNA, delays in processing mature
miRNA from precursor transcripts etc. However, we expect that consideration of these steps
would not qualitatively change our results.

Our studies expand the repertoire of miRNA action in gene circuits that govern cell fate
specification and commitment during development, processes where miRNA function was
first highlighted. The commitment of cells to specific lineages derives from the coordinated
expression of different patterns of genes within a relatively uniform population of cells.
These expression patterns are then crystallized by downstream gene networks to result in
stable expression of lineage specific genes that is maintained throughout the individual’s
life. Cell fate choices are often under the control of restricted subsets of upstream
transcription factors. How population diversity is achieved from cells that possess identical
genomes is a fundamental question of developmental biology. It is well known that genetic
circuits with extensive feedback loops, both negative and positive, play an important role in
cell fate choices. In particular, feedback imparts a network with multiple steady states,
which can denote the multiple cell fates controlled by the network. Moreover, the steady
states of feedback circuits are well separated, preventing spontaneous transitions, imparting
robustness to the gene circuits controlling cell fates. The role of miRNAs in animal
development has been examined in these contexts. Most studies to date have focused on the
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impact of miRNA-mediated control of the mean protein levels on developmental and cell
fate specification circuits [11, 13, 14, 15, 16].

However, miRNAs translational repression also shapes the intrinsic variability within
developmental gene networks. Noisy gene expression in developmental circuits has the
potential to be harmful leading either to arrested development, aberrant positional
expression of tissue specific genes or over-representation of specific cell types. miRNAs are
thought to tune the fluctuations of protein expression within developmental networks,
buffering them against environmental fluctuations. The imposition of an expression
threshold by miRNAs renders the network insensitive to small sub-threshold variations,
preventing stochastic transitions between steady states. This has been directly demonstrated
in Drosophila, where the miRNA, miR-7, is required to maintain normal gene expression
and sensory organ fate determination under fluctuating temperature conditions [15] by
buffering the levels of its downstream target, the transcriptional repressor, yan.

Our modeling studies suggest a new role for miRNA-based feedback regulation, namely, by
modulating the levels of TFs at the level of translational repression, miRNAs can drive large
fluctuations in TF levels across the population. In turn, these fluctuations can drive the
expression of different constellations of genes across the population, thereby allowing the
expression of multiple cellular phenotypes in a uniform precursor population. Given the
extensive complexity of the component processes, cells may be able to tune the manner of
miRNA-based feedback, from stoichiometric repression to catalytic repression to tune the
level of protein number fluctuations in gene circuits and consequently drive stochastic cell
fate choices. A number of recent studies suggest that such tuning may be operant in cells.
RISC protein phosphorylation can control the loading of miRNAs [58]. Alternately, the seed
site for miRNA binding on the target mRNA may be made more accessible [59]. Thus, cells
may control expression noise in miRNA-based negative feedback circuits to determine cell
fates in different contexts. In general, cell fate decisions during developmental are robust, in
order to generate reproducible body plans. However, in certain cases, cell fate decisions are
made at random, generating cell fate diversity. Diversified cell fates in a homogeneous
progenitor population increases the spectrum of responses to environmental stimuli. One
example is the choice of Rhodopsin type during photoreceptor differentiation in the
Drosophila eye [60]. Thus, miRNA based translational repression may serve as an important
mechanism that controls fluctuations of protein number promoting cell fate diversity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Xiaohua Xu for a critical reading of the manuscript. The work was supported by grants NSF-064200,
NIH-DA027807 and NIH-EY019303 to SR.

References
1. Bartel, David P. Micrornas: genomics, biogenesis, mechanism, and function. Cell. Jan; 2004 116(2):

281–297. [PubMed: 14744438]
2. Lewis, Benjamin P.; Burge, Christopher B.; Bartel, David P. Conserved seed pairing, often flanked

by adenosines, indicates that thousands of human genes are microrna targets. Cell. Jan; 2005
120(1):15–20. [PubMed: 15652477]

3. Tsang, John; Zhu, Jun; van Oudenaarden, Alexander. Microrna-mediated feedback and feedforward
loops are recurrent network motifs in mammals. Mol Cell. Jun; 2007 26(5):753–767. [PubMed:
17560377]

Wang and Raghavachari Page 12

Phys Biol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Kim, Jongpil; Inoue, Keiichi; Ishii, Jennifer; Vanti, William B.; Voronov, Sergey V.; Murchison,
Elizabeth; Hannon, Gregory; Abeliovich, Asa. A microrna feedback circuit in midbrain dopamine
neurons. Science. Aug; 2007 317(5842):1220–1224. [PubMed: 17761882]

5. Cohen, Stephen M.; Brennecke, Julius; Stark, Alexander. Denoising feedback loops by
thresholding–a new role for micrornas. Genes Dev. Oct; 2006 20(20):2769–2772. [PubMed:
17043305]

6. Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong. A feedback regulatory loop
involving microrna-9 and nuclear receptor tlx in neural stem cell fate determination. Nat Struct Mol
Biol. Apr; 2009 16(4):365–371. [PubMed: 19330006]

7. Carrington, James C.; Ambros, Victor. Role of micrornas in plant and animal development. Science.
Jul; 2003 301(5631):336–338. [PubMed: 12869753]

8. Brennecke, Julius; Hipfner, David R.; Stark, Alexander; Russell, Robert B.; Cohen, Stephen M.
bantam encodes a developmentally regulated microrna that controls cell proliferation and regulates
the proapoptotic gene hid in drosophila. Cell. Apr; 2003 113(1):25–36. [PubMed: 12679032]

9. Xu, Peizhang; Vernooy, Stephanie Y.; Guo, Ming; Hay, Bruce A. The drosophila microrna mir-14
suppresses cell death and is required for normal fat metabolism. Curr Biol. Apr; 2003 13(9):790–
795. [PubMed: 12725740]

10. Johnston, Robert J.; Chang, Sarah; Etchberger, John F.; Ortiz, Christopher O.; Hobert, Oliver.
Micrornas acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc
Natl Acad Sci U S A. Aug; 2005 102(35):12449–12454. [PubMed: 16099833]

11. Li, Yan; Wang, Fay; Jin-A. Lee, and Fen-Biao Gao. Microrna-9a ensures the precise specification
of sensory organ precursors in drosophila. Genes Dev. Oct; 2006 20(20):2793–2805. [PubMed:
17015424]

12. Gao, Fen-Biao. Posttranscriptional control of neuronal development by microrna networks. Trends
Neurosci. Jan; 2008 31(1):20–26. [PubMed: 18054394]

13. Lu, Jun; Guo, Shangqin; Ebert, Benjamin L.; Zhang, Hao; Peng, Xiao; Bosco, Jocelyn; Pretz,
Jennifer; Schlanger, Rita; Wang, Judy Y.; Mak, Raymond H.; Dombkowski, David M.; Preffer,
Frederic I.; Scadden, David T.; Golub, Todd R. Microrna-mediated control of cell fate in
megakaryocyte-erythrocyte progenitors. Dev Cell. Jun; 2008 14(6):843–853. [PubMed: 18539114]

14. Li, Ji; Greenwald, Iva. Lin-14 inhibition of lin-12 contributes to precision and timing of c. elegans
vulval fate patterning. Curr Biol. Oct; 2010 20(20):1875–1879. [PubMed: 20951046]

15. Li, Xin; Cassidy, Justin J.; Reinke, Catherine A.; Fischboeck, Stephen; Carthew, Richard W. A
microrna imparts robustness against environmental fluctuation during development. Cell. Apr;
2009 137(2):273–282. [PubMed: 19379693]

16. Herranz, Hctor; Cohen, Stephen M. Micrornas and gene regulatory networks: managing the impact
of noise in biological systems. Genes Dev. Jul; 2010 24(13):1339–1344. [PubMed: 20595229]

17. Srivastava, Deepak. Making or breaking the heart: from lineage determination to morphogenesis.
Cell. Sep; 2006 126(6):1037–1048. [PubMed: 16990131]

18. Filipowicz, Witold; Bhattacharyya, Suvendra N.; Sonenberg, Nahum. Mechanisms of post-
transcriptional regulation by micrornas: are the answers in sight? Nat Rev Genet. Feb; 2008 9(2):
102–114. [PubMed: 18197166]

19. Pillai, Ramesh S. Microrna function: multiple mechanisms for a tiny rna? RNA. Dec; 2005 11(12):
1753–1761. [PubMed: 16314451]

20. Hutvgner, Gyrgy; Zamore, Phillip D. A microrna in a multiple-turnover rnai enzyme complex.
Science. Sep; 2002 297(5589):2056–2060. [PubMed: 12154197]

21. Tomari, Yukihide; Zamore, Phillip D. Perspective: machines for rnai. Genes Dev. Mar; 2005
19(5):517–529. [PubMed: 15741316]

22. Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 2004;
304(5678):1811–1814. [PubMed: 15166317]

23. Raj, Arjun; Peskin, Charles S.; Tranchina, Daniel; Vargas, Diana Y.; Tyagi, Sanjay. Stochastic
mrna synthesis in mammalian cells. PLoS Biol. Oct.2006 4(10):e309. [PubMed: 17048983]

24. Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T,
Shav-Tal Y, Bertrand E, Singer RH, Spec-tor DL. From silencing to gene expression: Real-time
analysis in single cells. Cell. 2004; 116(5):683–698. [PubMed: 15006351]

Wang and Raghavachari Page 13

Phys Biol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science.
2002; 297(5584):1183–1186. [PubMed: 12183631]

26. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the
expression of a single gene. Nat Genet. 2002; 31(1):69–73. [PubMed: 11967532]

27. Blake WJ, Kaern M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. nature. 2003;
422(6932):633–637. [PubMed: 12687005]

28. Rosenfeld, Nitzan; Young, Jonathan W.; Alon, Uri; Swain, Peter S.; Elowitz, Michael B. Gene
regulation at the single-cell level. Science. Mar; 2005 307(5717):1962–1965. [PubMed:
15790856]

29. Golding, Ido; Paulsson, Johan; Zawilski, Scott M.; Cox, Edward C. Real-time kinetics of gene
activity in individual bacteria. Cell. Dec; 2005 123(6):1025–1036. [PubMed: 16360033]

30. Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene.
Current Biology. 2006; 16(10):1018–1025. [PubMed: 16713960]

31. Gregor, Thomas; Tank, David W.; Wieschaus, Eric F.; Bialek, William. Probing the limits to
positional information. Cell. Jul; 2007 130(1):153–164. [PubMed: 17632062]

32. Eden, Eran; Geva-Zatorsky, Naama; Issaeva, Irina; Cohen, Ariel; Dekel, Erez; Danon, Tamar;
Cohen, Lydia; Mayo, Avi; Alon, Uri. Proteome half-life dynamics in living human cells. Science.
Feb; 2011 331(6018):764–768. [PubMed: 21233346]

33. Grigull, Jrg; Mnaimneh, Sanie; Pootoolal, Jeffrey; Robinson, Mark D.; Hughes, Timothy R.
Genome-wide analysis of mrna stability using transcription inhibitors and microarrays reveals
posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol. Jun; 2004 24(12):5534–
5547. [PubMed: 15169913]

34. Siwiak, Marlena; Zielenkiewicz, Piotr. A comprehensive, quantitative, and genome-wide model of
translation. PLoS Comput Biol. 2010; 6(7):e1000865. [PubMed: 20686685]

35. Miller, Christian; Schwalb, Bjrn; Maier, Kerstin; Schulz, Daniel; Dmcke, Sebastian; Zacher,
Benedikt; Mayer, Andreas; Sydow, Jasmin; Marcinowski, Lisa; Dlken, Lars; Martin, Dietmar E.;
Tresch, Achim; Cramer, Patrick. Dynamic transcriptome analysis measures rates of mrna synthesis
and decay in yeast. Mol Syst Biol. Jan.2011 7:458. [PubMed: 21206491]

36. Levine E, Zhang Z, Kuhlman T, Hwa T. Quantitative characteristics of gene regulation by small
rna. Plos Biology. 2007; 5(9):1998–2010.

37. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. nature. 2000;
405(6786):590–593. [PubMed: 10850721]

38. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U
S A. Jul; 2001 98(15):8614–8619. [PubMed: 11438714]

39. Hornung, Gil; Barkai, Naama. Noise propagation and signaling sensitivity in biological networks:
a role for positive feedback. PLoS Comput Biol. Jan.2008 4(1):e8. [PubMed: 18179281]

40. Dublanche, Yann; Michalodimitrakis, Konstantinos; Kmmerer, Nico; Foglierini, Mathilde;
Serrano, Luis. Noise in transcription negative feedback loops: simulation and experimental
analysis. Mol Syst Biol. 2006; 2:41. [PubMed: 16883354]

41. Marquez-Lago, Tatiana T.; Stelling, Jrg. Counter-intuitive stochastic behavior of simple gene
circuits with negative feedback. Biophys J. May; 2010 98(9):1742–1750. [PubMed: 20441737]

42. Fano U. Note on the theory of radiation-induced lethals in drosophila. Science. Jul; 1947
106(2743):87–88. [PubMed: 17808863]

43. Stark, Alexander; Brennecke, Julius; Bushati, Natascha; Russell, Robert B.; Cohen, Stephen M.
Animal micrornas confer robustness to gene expression and have a significant impact on 3′utr
evolution. Cell. Dec; 2005 123(6):1133–1146. [PubMed: 16337999]

44. Paulsson J, Ehrenberg M. Noise in a minimal regulatory network: plasmid copy number control. Q
Rev Biophys. Feb; 2001 34(1):1–59. [PubMed: 11388089]

45. Elf J, Ehrenberg M. Fast evaluation of fluctuations in biochemical networks with the linear noise
approximation. Genome Research. 2003; 13(11):2475–2484. [PubMed: 14597656]

46. Elf, Johan; Paulsson, Johan; Berg, Otto G.; Ehrenberg, Mns. Near-critical phenomena in
intracellular metabolite pools. Biophys J. Jan; 2003 84(1):154–170. [PubMed: 12524272]

Wang and Raghavachari Page 14

Phys Biol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



47. Mehta, Pankaj; Goyal, Sidhartha; Wingreen, Ned S. A quantitative comparison of srna-based and
protein-based gene regulation. Mol Syst Biol. 2008; 4:221. [PubMed: 18854820]

48. Goldenfeld, N. Frontiers in physics. Addison-Wesley, Advanced Book Program; 1992. Lectures on
phase transitions and the renormalization group.

49. Lenz, Derrick H.; Mok, Kenny C.; Lilley, Brendan N.; Kulkarni, Rahul V.; Wingreen, Ned S.;
Bassler, Bonnie L. The small rna chaperone hfq and multiple small rnas control quorum sensing in
vibrio harveyi and vibrio cholerae. Cell. Jul; 2004 118(1):69–82. [PubMed: 15242645]

50. Mitarai, Namiko; Andersson, Anna MC.; Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim.
Efficient degradation and expression prioritization with small rnas. Phys Biol. Sep; 2007 4(3):164–
171. [PubMed: 17928655]

51. Shimoni, Yishai; Friedlander, Gilgi; Hetzroni, Guy; Niv, Gali; Altuvia, Shoshy; Biham, Ofer;
Margalit, Hanah. Regulation of gene expression by small non-coding rnas: a quantitative view.
Mol Syst Biol. 2007; 3:138. [PubMed: 17893699]

52. Van Kampen, NG. Stochastic Processes in Physics and Chemistry. North-holland publishing
company; 1981.

53. Baek, Daehyun; Villn, Judit; Shin, Chanseok; Camargo, Fernando D.; Gygi, Steven P.; Bartel,
David P. The impact of micrornas on protein output. Nature. Sep; 2008 455(7209):64–71.
[PubMed: 18668037]

54. Guo, Huili; Ingolia, Nicholas T.; Weissman, Jonathan S.; Bartel, David P. Mammalian micrornas
predominantly act to decrease target mrna levels. Nature. Aug; 2010 466(7308):835–840.
[PubMed: 20703300]

55. Kepler TB, Elston TC. Stochasticity in transcriptional regulation: Origins, consequences, and
mathematical representations. Biophysical Journal. 2001; 81(6):3116–3136. [PubMed: 11720979]

56. Maheshri, Narendra; O’Shea, Erin K. Living with noisy genes: how cells function reliably with
inherent variability in gene expression. Annu Rev Biophys Biomol Struct. 2007; 36:413–434.
[PubMed: 17477840]

57. Raj, Arjun; van Oudenaarden, Alexander. Single-molecule approaches to stochastic gene
expression. Annu Rev Biophys. 2009; 38:255–270. [PubMed: 19416069]

58. Rdel, Sabine; Wang, Yanli; Lenobel, Ren; Krner, Roman; Hsiao, He-Hsuan; Urlaub, Henning;
Patel, Dinshaw; Meister, Gunter. Phosphorylation of human argonaute proteins affects small rna
binding. Nucleic Acids Res. Nov.2010

59. Kedde, Martijn; van Kouwenhove, Marieke; Zwart, Wilbert; Oude Vrielink, Joachim AF.; Elkon,
Ran; Agami, Reuven. A pumilio-induced RNA structure switch in p27-3′ UTR controls mir-221
and mir-222 accessibility. Nat Cell Biol. Oct; 2010 12(10):1014–1020. [PubMed: 20818387]

60. Losick R, Desplan C. Stochasticity and cell fate. Science. 2008; 320(5872):65–68. [PubMed:
18388284]

61. Levine, Erel; Jacob, Eshel Ben; Levine, Herbert. Target-specific and global effectors in gene
regulation by microrna. Biophys J. Dec; 2007 93(11):L52–L54. [PubMed: 17872959]

62. Komorowski M, Miekisz J, Kierzek AM. Translational repression contributes greater noise to gene
expression than transcriptional repression. Biophys J. 2009; 96(2):372–84. [PubMed: 19167290]

Wang and Raghavachari Page 15

Phys Biol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Schematic illustration of the miRNA-mediated negative feedback loop.
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Figure 2. miRNA-based feedback introduces an expression threshold in sequestration model
The mean value of mRNA (A), miRNA (B) and protein (C) are shown as a function of αm
for four different values of the peak miRNA transcriptional rate (σ). When σ is extremely
small, m and p are proportional to αm because there is almost no miRNA synthesis. For
larger σ, the miRNA-based feedback introduces a threshold at αm ≈ σ. All the asymptotic
lines are parallel to each other. γm = γμ = 0.01, γp = 0.002, κ = 1.0, kp = 0.1 and kd = 200.0.

Wang and Raghavachari Page 17

Phys Biol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Increasing miRNA-mediated feedback strength sharpens the expression threshold
Mean protein numbers as a function of upstream transcription rate. The different curves
show how threshold expression depends on the strength of miRNA/mRNA association rate.
Mean protein expression shows a crossover regime from low expression to linear expression
with increasing transcription rate. As the strength of miRNA/mRNA association, κ,
increases, the threshold becomes sharper. The solid curve is a perfect threshold-linear
behavior. The parameters are set as γm = γμ = 0.01, γp = 0.002, σ = 0.5, kp = 0.1, kd = 200.0.
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Figure 4. miRNA and mRNA levels are anti-correlated
Temporal evolution of mRNA (black) and miRNA (gray) in a Monte-Carlo simulation of the
sequestration model using the Gillespie algorithm. The parameters are set as αm = 1, γm = γμ
= 0.01, γp = 0.001, κ = 1.0, σ = 1.0, kd = 200.0, kp = 0.1. The anti-correlation suggests that
assuming 〈mμ〉 = 〈m〉〈μ〉 is not valid.
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Figure 5. Negative feedback amplifies expression noise in the sequestration model
(A)–(C). Fano factor of mRNA, miRNA and protein are plotted versus αm. Solid lines
represent the simulation results and dashed lines represent the analytical calculation from the
mean field model. The mean field model cannot be used to describe the system around the
threshold, where the mRNA and miRNA levels are comparable. The solid straight line in
(C) represents the asymptote for protein Fano factor value for large αm. (D). Histogram

protein numbers at steady state for αm = 1.0: the mean values are 〈p〉 = 600, . The
protein distribution shows a long tail, which suggests that while mean values may be kept
low, protein numbers can exhibit large values across the population allowing the
transcription factor to act at promoters with widely different sensitivities.
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Figure 6. Expression variability increases with negative feedback strength
Fano factor of TF numbers is plotted versus the strength of bimolecular miRNA-mRNA
association rate, κ for sequestration model. The transcription rate, αm = 1.2, at the cross-over
point in Figure 3. Other parameters were set at γm = γμ = 0.01, γp = 0.001, σ = 1.0, kp = 0.1,
kd = 100.0. For κ =0, there is no miRNA-mediated translational repression, and Fano factor
is the lowest. The Fano factor increases with κ, until it reaches a saturating value.
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Figure 7. Negative feedback in the catalytic suppression model shows reduced expression
variability over a large range of feedback strength
The Fano factor of TF is plotted versus β for kinetic suppression model. The solid line is the
analytical solution from the linear noise approximation method, dots represent results of
Gillespie-algorithm simulation. Other parameters are set as: αm = 1.2, γm = γμ = 0.01, γp =
0.001, σ = 1.0, kp = 0.1, kd = 100.0. Although there is a temporary increase of the noise for
low feedback strengths, it decreases very rapidly over a long range. For large values of β,
linear noise approximation breaks down and single molecule effects dominate. Note that the
variability is lower than in the sequestration model.
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Figure 8. Negative feedback strength in the catalytic suppression model affects expression
variability for different promoter strength
The relationship between the Fano factor of TF and β with four different values of αm. γm =
γμ = 0.01, γp = 0.002, σ = 0.5, kp = 0.1, kd = 200.0.
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Figure 9. Expression variability depends on the mode of translational repression by miRNA
Comparison of the different effects on the noise of the two negative feedback schemes. A.
Time evolution of the mean TF values for sequestration (black curves) and kinetic
suppression model (gray). B. Histogram of the steady state TF distribution for the
sequestration model (black) and for the kinetic suppression model (gray). The parameters
are αm = 1.1, γm = γμ = 0.01, γp = 0.001, σ = 1.0, kp = 0.1, kd = 100.0, κ = 1.0, β = 0.00087. κ
and β are chosen so that their mean TF values are almost the same in both models. In the

sequestration model, < p >= 1174.6, , However, in the kinetic suppression model, <

p >= 1176.2, . Thus, in K model, both signal and noise are suppressed; while in S
model, signal is suppressed, however, noise are amplified.
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Figure 10.
Scheme of transcriptional cascade involving the feedback-regulated TF and a downstream
gene.
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Figure 11. Scheme of information propagation in downstream gene
(A). Three different model genes with similar promoter strength (Hill coefficient n = 10.)
but with different sensitivities. (B). The TF number histograms are plotted to display their
overlap with the expression regions.
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Figure 12. Mode of miRNA-mediated negative feedback can affect noise transmission to
downstream genes in transcriptional cascades
Different noise level effect on downstream gene for different dissociation constants. When
KD is small, the downstream gene of both models are triggered. The mean value of
downstream proteins in the K model is larger than in the S model. However, while KD
increases, although both mean values of downstream proteins decreases, The mean value of
downstream proteins in the K model will be smaller than in the S model while KD is over
some value because of the long tail noise of S model. (A) KD = 800, (B) KD = 1400, (C) KD
= 1700. α = 1.1, γm = γμ = 0.01, γp = 0.001, kd = 100.0, kp = 0.1, κ = 1.0, β = 0.00087, σ =
1.0, ε = 0.1, γm2 = 0.01, kp2 = 0.1, γp2 = 0.001.
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