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Abstract

Due to the great variety of preprocessing tools in two-channel expression microarray data analysis it is diffi-
cult to choose the most appropriate one for a given experimental setup. In our study, two independent two-
channel inhouse microarray experiments as well as a publicly available dataset were used to investigate the in-
fluence of the selection of preprocessing methods (background correction, normalization, and duplicate spots
correlation calculation) on the discovery of differentially expressed genes. Here we are showing that both the
list of differentially expressed genes and the expression values of selected genes depend significantly on the
preprocessing approach applied. The choice of normalization method to be used had the highest impact on the
results. We propose a simple but efficient approach to increase the reliability of obtained results, where two
normalization methods which are theoretically distinct from one another are used on the same dataset. Then
the intersection of results, that is, the lists of differentially expressed genes, is used in order to get a more ac-
curate estimation of the genes that were de facto differentially expressed.
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Introduction

MICROARRAYS WERE INTRODUCED in the mid-1990s (Schena
et al., 1995), and today are widely used for analyzing

the expression of thousands of genes simultaneously. How-
ever, as the number of genes on a microarray is usually sev-
eral orders of magnitude higher than the number of repli-
cates or conditions analyzed, new statistical and data mining
approaches are being proposed to overcome this drawback.
Furthermore, there are many sources of variation influenc-
ing a microarray experiment, ranging from differences in bi-
ological samples, array quality, dye bias, etc. Data prepro-
cessing of microarray datasets is necessary to make the
accross-array comparison possible. In the presented work we
focused on the impact of preprocessing on data obtained
from commercially available and custom-designed two-
channel microarrays.

Basically there are three microarray data analysis steps.
The first one consists of data preprocessing, including back-
ground correction and normalization. It is user-dependent
and can include, for example, filtering out spots with a sig-
nal-to-noise ratio below a predefined threshold value. The
filtered out spots are usually given a weight of 0 and the rest

are weighted with 1. Following this, a background correc-
tion is usually made. Background estimation serves as a mea-
sure of noise (e.g., nonspecific hybridization), and there are
several methods for its determination. The choice of using a
background correction or not is dependent on the presence
of (high) local noise density. One can decide not to correct for
background noise at all, because it imposes data transforma-
tions that can disturb the already fragile reproducibility of the
signal between biological replicates. If a background correc-
tion is used, however, the most straightforward method to use
is background subtraction (here named subtract)

ss � sf � sb (1)

where background noise sb is subtracted from foreground in-
tensity sf. However, this can yield negative values of back-
ground subtracted intensities ss. To deal with this problem
one option is to reset all negative and very low values after
background subtraction to a common value, for example, 0.5.
This option (named half) is implemented in one of the Bio-
conductor packages, limma (Smyth, 2005), as is also the op-
tion subtract. More computationally intensive background
corrections such as normexp are available in the same pack-
age. In the latter method, a convolution of normal and ex-
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ponential distributions is fitted using the maximum likeli-
hood estimation to the signal intensities � and background
intensities �: normal(�,�2) � exp(�). Only positive back-
ground-corrected intensities are returned by this method.

There are various normalization methods available: quan-
tile, cyclic loess, invariantset, and others are used with single-
channel microarray datasets (Bolstad et al., 2005). On the
other hand, median or loess normalization are used, among
others, for two-channel microarrays (Yang and Paquet, 2005).
Their purpose is to standardize the expression levels within
or between microarray slides. Loess (locally weighted poly-
nomial regression) normalization is often used in microar-
ray experiments. Here the fitted value at xk in a scatterplot
(xi,yi) is the value of a polynomial fit at each point in the data
using weighted least squares fit (Cleveland, 1979). More
weight is given to the points that are closer to the point
whose response is being estimated. The process is iterative
in order to achieve a robust smooth function (Cleveland,
1979).

Variance stabilizing normalization (vsn) was primarily in-
troduced due to heteroscedasticity of log-transformed data
that has been noted in microarray experiments after loess or
other types of normalization. After a series of transforma-
tions of the measured intensities, the variance becomes ap-
proximately independent of the mean (Huber et al., 2002).
This normalization has become widely used, especially for
single-channel arrays, but can be also applied to two-chan-
nel arrays as was the case in our dataset.

Several microarrays are designed to include spots in du-
plicates. One can then simply average the intensity values or
ratios in duplicate spots within a microarray. However, this
can result in artificially higher or lower values if one of the
spots was affected by mechanical damage of the microarray
or other similar artifacts that might not have been detected
in the preprocessing step. Furthermore, by simply averaging
duplicate spots, important information about the gene’s ex-
pression variability is lost (Smyth et al., 2005). Another ap-
proach is to use the correlation between duplicated spots to
estimate the common correlation between all spots on a mi-
croarray and from there estimate the variance �2

g of a gene
in a microarray keeping the average estimator of log ex-
pression ŷgij unchanged. More details about the method are
given in Smyth et al. (2005).

Because several preprocessing methods are available, it is
sometimes difficult to choose one over another.

The second step in microarray analysis is the data analy-
sis. Because the focus of this paper was to show the impact
of preprocessing, we used linear models to find differentially
expressed genes. The linear model could be expressed in the
form

yg � X�g � �g (2) 

where yg is the expression of a gene g in a microarray, X is
the design matrix, �g is the matrix of linear coefficients and
�g is the error. The null hypothesis that is stated in microar-
ray experiments is H0 : yg � 0.

The choice of significance level � for the rejection of the
null hypothesis (using a t-test or other statistical tests), de-
termines the number of differentially expressed genes under
given experimental conditions. Depending on the chosen ex-
perimental design, the significance of contrasts of interest is
tested for each gene. The last step of microarray data analy-

sis is the data visualization and the biological interpretation
of the results. Various visualization tools that help the data
analysts and biologists are available today, from GenMapp,
Pathway Processor, and GeneXpress (reviewed in Cavalieri
and De Filippo, 2005) to MapMan (Thimm et al., 2004) where
large datasets are projected onto diagrams of metabolic path-
ways.

Studies involving influence and comparison of applying
various preprocessing methods have been carried out pre-
viously for Affymetrix (i.e., single-channel) arrays (Bolstad
et al., 2003; Choe et al., 2005; Cope et al., 2003; Lim et al.,
2007). Furthermore, similar work has been done focusing on
selection of appropriate statistical tests for determining dif-
ferentially expressed genes (e.g., Vardhanabhuti et al., 2006),
or even the appropriate false discovery method for deter-
mining differentially expressed proteins (Fodor et al., 2005).
A study involving the influence of preprocessing for two-
channel microarray data was recently published (Kerr et al.,
2007), but not so extensively due to a different study goal.

In our study we investigated the effects of combinations
of data preprocessing methods on the outcome of statistical
data analysis. We focused on the presence of genes among
differentially expressed genes and not on the mere number
of genes on the list. In this way we tried to establish certain
guidelines for analysis of two-channel microarray data by
reducing false discovery rate. Two inhouse experiments
were used, both studying the impact of biotic stress on gene
expression. The system was built on the experiment study-
ing potato–PVY interaction and further tested on experi-
ments studying grapevine–phytoplasma interaction. A third
data set (Bacac et al., 2006), dealing with mice stromal re-
sponse to tumor growth, publicly available at GEO (Gene
Expression Omnibus) was also used as a control of the pro-
posed data analysis methodology. Experiments differ in type
of microarrays used (cDNA vs. oligo) and experimental
setup (direct comparison versus reference design).

Materials and Methods

Biological experiment and quality control

Two independent inhouse biological experiments, both
dealing with plant biotic interactions, were used to test the
effect of preprocessing methods.

In the case of potato microarray, a simple comparisons de-
sign was conducted using a potato cultivar, sensitive to
potato virus Y (PVYNTN). We tried to find the genes that were
differentially expressed 12 h following virus inoculation in
treated (virus-inoculated) compared to control (mock-inoc-
ulated) plants. Four biological replicates of the experiment
were performed. Total RNA was isolated from inoculated
leaves of six to eight treated or control plants and transcribed
to cDNA. It was then hybridized to TIGR potato 10k mi-
croarrays (http://www.tigr.org/tdb/potato/microarray desc.
shtml), versions 2 and 3, for the first two and second two 
biological replicates, respectively. There are 15,264 potato
clones, spotted in duplicates on the microarray. Each mi-
croarray was hybridized with a virus-inoculated sample and
mock-inoculated sample from the same biological replicate.

Dendrimere Cy3 and Cy5 labeling was used and dye
swaps were performed between the biological replicates.
Quality control of the hybridization was performed in Ar-
ray Pro (Media Cybernetics, Silver Spring, MD) and low-
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quality spots: (1) nonuniform spots [mean (signal)/SD (sig-
nal) � 1], (2) spots with low signal/background ratio [mean
(signal)/mean (background) � 1.5]) or (3) spots with low sig-
nal-to-noise ratio (SNR) � 3, and (4) empty or nonvalidated
spots, were downweighted. Additionally, nonvalidated
spots were downweighted.

In the case of grapevine a common reference design was
used. Total RNA was isolated from the central midribs of field-
grown healthy and phytoplasma-infected plants. RNA from
three plants of the same disease status was pooled to pepare
the sample RNA, and a part of RNA from all samples was
pooled to create the reference RNA. Pooled total RNA was
then transcribed to cDNA and amplified to cRNA. The am-
plification step included the labeling: incorporation of
Cy5–UTP nucleotides (sample RNA) and Cy3–UTP nucleo-
tides (reference RNA). Sample and reference cRNA were co-
hybridized on microarrays. In this way, four microarrays (bi-
ological replicates) were prepared for healthy plants, and four
microarrays were prepared for infected plants. Oligonucleo-
tide microarrays were used (Vitis vinifera AROS 1.0, 14,562
oligoset, Operon, Alameda, CA, printed by INRA Montpel-
lier). Each oligonucleotide was printed only once per array,

with the exeption of a few genes that were used as controls.
Quality control was performed manually in GenePix Pro soft-
ware (Axon Instruments, Foster City, CA): (1) ununiform
spots (e.g., doughnut-shaped), (2) spots that had diameter
smaller than 50% of the normal spot size, and (3) spots with
saturated pixels (including dust particles) were down-
weighted. Gene expression data is available at GEO, accession
number GSE10903 (potato) and GSE10906 (grapevine).

For the publicly available dataset on mouse tumor (Bacac
et al., 2006; GEO accesision number GSE5945), changes in
gene expression were monitored between invasive cancer
stroma and prostate intraepithelial neoplasia (PIN). Samples
from 10 mice, 6 with invasive cancer and 4 with PIN, were
used. A common reference design with the reference being
pooled RNA from the four PIN samples was done. Refer-
ence RNA was always labeled with Cy3–dCTP, while test
RNA was labeled with Cy5–dCTP. NIA 17k microarrays
were used (www.unil.ch/dafl) containing around 17,000
spotted cDNA clones. More details about the microarray ex-
periment are given in Bacac et al., (2006).

Initially we wanted to include more different datasets, deal-
ing also with, for example, bacterial samples, but have found
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FIG. 1. Schematic representation of data analysis conducted. Bold letters denote the method used for background correc-
tion/normalization/spot duplication used. The combination of all methods yielded in eight different data matrices for both ex-
periments that were modeled using linear models. The data analysis scheme for the mouse data is analogous to the grape one.



that not all the criteria to include the datasets were fulfilled:
(1) the results from the GEO datasets needed to be published
somewhere in order for the comparison of the results to be pos-
sible; (2) in the published article or supplemental material a
list of all differentially expressed genes (DEG) was considered
necessary. We have found that not so many articles provide
the readers with full lists of DEG, and we considered partial
lists of DEG, not sufficient for our work. (3) We needed data
from experiments on cDNA microarrays and not Affymetrix
microarrays, which are more ubiquitous; (4) many studies, al-
though fulfilling the above mentioned criteria, are time-course
designs or were analyzed using various clustering methods.
Because we did not use these methodologies, the available
datasets were not suitable. (5) GAL files where gene annota-
tion is visible is sometimes missing for the datasets. (6) Some-
times the Cy5/Cy3 ratio only was available, but we needed
raw data for our work. (7) On several occasions the descrip-
tions of the datasets in the database were incomplete; there-
fore, setup of statistical analysis was not possible.

Background corrections and normalizations

A schematic representation of the analysis can be seen
in Figure 1. Data analysis was done in R computing envi-
ronment (http://www.R-project.org). The R scripts for all
data analysis are available from the corresponding author
upon request. Background was measured locally. For both
channels signal (trimmed mean of the whole variable spot
area) and background (trimmed mean of the spot’s local
corners) intensities were calculated. Background variance
was calculated for each channel and array. This, along
with boxplots of background variability (Fig. 2), served us
to determine the type of background correction to be used,
if any. After background correction and normalization,
MA plots were drawn. An MA plot depicts the relation
between M values, which denote the ratio of gene inten-
sities and are a measure of fold change in gene expression,
and A values, which denote the average gene intensity
(red and green channel) for a spot.
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FIG. 2. Boxplots for red and green background. Background values are plotted in log scale. Background variance is de-
noted at the bottom of each boxplot.



Differential expression

After normalization, duplicate spots within the potato
microarrays were (1) simply averaged using the default
correlation value of 0.75 or (2) averaged with the inclu-
sion of common correlation information as described in
Introduction section. In the case of the grapevine and
mouse experiment, oligos/clones were printed only once
per microarray, and therefore averaging or correlation be-
tween duplicated spots could not be taken into account.
Eight combinations of different data preprocessing ap-
proaches (Fig. 1) were analyzed using the linear model.
To assess how many genes within the top 100 differen-
tially expressed genes (ranked first according to their p-
values and, in a second instance also according to their M
values) in one analysis were also present; in another, the
lists of genes were compared in a pairwise manner. The

analysis was repeated to compare the top 500 and top 20
differentially expressed gene lists. The choice of first 100
genes in the list was made because not all the data pre-
processing combinations yielded in the same number of
differentially expressed genes and, to make the compar-
isons equal, we chose a cutoff point.

Results

Background correction and normalization

Boxplots of background variability for all spots in the
potato experiment can be seen in Figure 2. All further plots
shown in this article were drawn from potato array 2, as this
array showed the highest background variance. The back-
ground variance (data not shown) in grapevine experiments
was lower than in the potato ones in all cases.
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FIG. 3. Scatterplots of M values in the potato experiment using different normalization and background correction meth-
ods. Plots depict M values obtained after loess normalization without background correction compared with the M values
obtained for the same spots after loess normalization with the background correction method half (A) or vsn normalization
without background correction (B). M values after vsn normalization with background correction half are shown in rela-
tion to M values after vsn normalization with no background correction (plot C) and loess normalization with background
correction half (plot D). Spots that were flagged after preprocessing are shown in gray. The gray line shows linear depen-
dence between M values. Correlations between all spots that were weighted with 1 (and thus kept for further analysis) were
in all cases �0.96.



Correlations of M values within a microarray using dif-
ferent data analysis approaches were visually inspected
(Fig. 3). From Figure 3 it can be seen that M values from
spots that were weighted with 1, thus representing spots
of higher quality are close to linear relation regardless of
normalization or background correction method applied.
In fact, the correlation between spots that were weighted
with 1 was in all cases �0.96. This shows that various pre-
processing methods combinations do not drastically affect
the outcome, in this case the calculated M values. But the
minor changes that arise between the calculated M values
lead to different differentially expressed gene lists, and
therefore confirm our emphasis on the fact that much at-
tention is needed when selecting the appropriate data pre-
processing. Because the influence of various preprocess-
ing methods on spots of lower quality is much higher than
on spots of good quality (seen in black on Fig. 3), it is a
proof that quality control of spots is necessary. If filtering
would not have been used, these spots would go to cal-
culation of differentially expressed genes, which would in-
troduce bias to the actual results. The linear relation is
most apparent in Figure 3B), and can be ascribed to the
fact that no background correction was used; therefore,
the M values after normalization were not so extremely
spread out.

Differential expression

Pairwise intersections from all analysis approaches in the
top 100 differentially expressed genes (ranked by their re-
spective p-values) were inspected. All p-values were �0.05,
and in the range between 3.16 � 10�6 and 3.93 � 10�3 for
potato; between 3.15 � 10�10 and 6.43 � 10�5 for grapevine;
and between 1.25 � 10�7 and 7.43 � 10�4 for the mouse ex-
periment. The pairwise comparison results are shown in
Table 1. It can be seen that regardless of the preprocessing
method used, there are �50 genes for potato, �65 genes for
grapevine, and �63 genes for mouse that overlap in the list
of the 100 most differentially expressed genes.

The intersection of the top 100 differentially expressed
gene lists of all preprocessing combinations was also in-
spected. One hundred ninety-seven different genes in the
potato experiment, 155 different genes in the grapevine ex-
periment, and 183 genes in the mouse experiment were
found in the top 100 differentially expressed gene lists of all
eight data analysis combinations.

Around 40% of the genes (79 out of 197 and 73 out of 183)
for potato and mouse, respectively, and around 30% of the
genes (45 out of 155) in grapevine were found as the top 100
were differentially expressed in only one or two methods
used (Fig. 4). Interestingly, Figure 4 shows that the percent-
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TABLE 1. PAIRWISE COMPARISONS

POTATO NLA NLC NVA NVC HLA HLC HVA HVC

NLA 100 69 74 65 77 67 63 55
NLC 100 61 69 63 84 52 62
NVA 100 77 66 60 79 66
NVC 100 58 67 67 82
HLA 100 71 70 60
HLC 100 58 74
HVA 100 72
HVC 100

GRAPEVINE NL NV HL HV SL SV NeL NeV

NL 100 67 67 67 67 66 70 66
NV 100 79 89 78 89 88 89
HL 100 83 95 83 86 83
HV 100 82 92 89 92
SL 100 82 84 82
SV 100 91 100
NeL 100 91
NeV 100

MOUSE NL NV HL HV SL SV NeL NeV

NL 100 80 65 73 69 74 83 71
NV 100 63 83 70 84 64 79
HL 100 66 83 68 66 69
HV 100 75 92 64 87
SL 100 75 67 78
SV 100 68 85
NeL 100
NeV 100

Pairwise comparisons of the number of genes, present in the top 100 genes list that showed evidence for differential expression under
different data analysis conditions. Combinations of all background correction (N—none, H—half and for grapevine, also S—subtract and 
Ne—normexp), normalization (L—loess, V—vsn) and spot averaging for potato (A—average, C—duplicate correlation) that was done are shown.



FIG. 4. Barplot for genes that were found at least once in the top 100 differentially expressed genes for the (a) potato, (b)
grapevine, and (c) mouse experiment. Numbers below lines denote the number of times gene g was found to be differen-
tially expressed in any of eight data analysis combinations used.

FIG. 5. Scatterplots of M values in the potato experiment for all genes using different normalization and background cor-
rection methods. Black spots denote genes showing evidence for differential expression in two different background cor-
rection and normalization method combinations: loess normalization without background correction versus loess normal-
ization with background correction half (A) or vsn normalization without background correction (B). M values after vsn
normalization with background correction half are shown in relation with M values after vsn normalization with no back-
ground correction—(C) and loess normalization with background correction half—(D). All other genes are plotted in gray.
The gray line shows linear dependance between M values.



age of common genes resulting as differentially expressed is
again increased when comparing all eight data analysis
methods: 21% for the potato experiment, 27% for the mouse,
and 35% for the grapevine. These genes are most probably
genuinely differentially expressed, and this is why they are
seen as high ranking in all data analysis methods used. The
difference between barplots (Fig. 4) is that for the potato
dataset, which of the lowest quality out of the three, there is
a high number of genes found as differentially expressed in
four out of the eight preprocessing methods combinations
(Fig. 4a). As four of the preprocessing methods correspond
to loess normalization and the other four to vsn normaliza-
tion, it is to be expected that there are some of the genes
found as differentially expressed only after applying one
normalization. When the data is of lower quality, this can
blur the final result (higher number of differentially ex-
pressed genes) and introduce false positives in to the final
result. Another point of interest in Table 1 is that the data
analysis combination NL (no background correction with
loess normalization) stands out when compared to other data
analysis combinations for the grapevine experiment. It had
the lowest number of common differentially expressed genes
when compared to other analysis methods. The results were
better for the method NV (no background correction with
vsn normalization). This leads to the conclusion that it is not
the lack of background correction per se that leads to dif-
ferent results in this case but also the choice of normaliza-
tion method. Loess normalizes within a microarray, whereas
vsn normalization is used to normalize each channel sepa-
rately across all the microarays. Generally it is believed that
if something is, in fact, differentially expressed it should be
found as such regardless of the data analysis method used.
Because the NL analysis combination deviated from the rest,
this preprocessing method would not be recommended for
this particular experimental dataset.

Figure 5 shows pairwise comparisons of M values between
sets of genes that were differentially expressed using differ-
ent combinations of background corrections (none and half)
and normalizations (loess and vsn). From it we conclude that
(1) genes that were not differentially expressed were the ones
that were the most affected by the background correction-
normalization combinations; (2) generally there is good
agreement between expression values obtained after differ-
ent data preprocessing combinations, although substantial
differences in calculated M values can be seen in some cases
(e.g., loess–half combination yields expression values that are
more scattered than the other combinations).

The heatmap for the 197 potato genes is shown in Figure
6a. After hierarchical clustering for the data preprocessing
combinations used, it can be seen (Figure 6a) that the upper
two clusters are formed depending on the type of normal-
ization applied (loess or vsn). Clusters are further divided
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FIG. 6. Heatmaps for genes that were found in the top 100
differentially expressed genes at least for one data analysis
method used. Heatmap (a) shows potato genes, while
heatmaps (b) and (c) depict grapevine and mouse genes, re-
spectively. Heatmaps show presence of top 100 differential
expression gene list (in black). Genes that were not differ-
entially expressed after applying other data analysis meth-
ods are shown in gray.



based on whether simple averaging or correlation informa-
tion was used. Background correction has the least influence
on the separation of clusters. If M values are plotted instead
of depicting only presence or absence of genes in the top 100
differentially expressed genes, all genes identified as differ-
entially expressed have �M� � 0.5 (data not shown).

The heatmap for all the 155 grapevine genes is shown in
Figure 6b. Except for the normexp bakcground correction the
respective vsn and loess normalized data group together. Un-
like the potato example, it seems that the dataset that was
loess-normalized without background correction yields quite
different results than the other data. M values for differen-
tially expressed genes found using various preprocessing ap-
proaches show a clear preference for �M� � 1 (data not
shown). The heatmap for all 183 mouse genes is shown on
Figure 6c. Again, the clusters are well separated according
to the type of normalization that was used. For the vsn-nor-
malized data, no background correction stands out com-
pared to the other background corrections. This is somehow
to be expected, as the function gives an estimate of the over-
all background that is subtracted within each array. Because
this was the case in the mouse example, no background cor-
rection would have been advised.

In addition, the same data analysis was performed two
more times, using the top 20 or top 500 differentially ex-
pressed genes ranked by their respective t-test p-values. For
potato, p-values ranged from 3.16 � 10�6 to 0.001 for the top
20 differentially expressed genes and 0.02 for the top 500 dif-
ferentially expressed genes. Using the “top 20 cutoff,” 65%
of the genes were found in all eight data analysis approaches.
With a “top 500” cutoff, this figure was 47%.

For grapevine, p-values ranged from 3.15 � 10�10 to
2.53 � 10�6 for the top 20 differentially expressed genes and
to 1.71 � 10�3 for the top 500 differentially expressed genes.

Using the “top 20 cutoff,” 35% of the genes were found in
all eight data analysis approaches. With a “top 500” cutoff,
this figure was 63%. 

For the mouse, p-values ranged from 1.25 � 10�7 to 1.35 �
10�4 for the top 20 differentially expressed genes and to
6.29 � 10�3 for the top 500 differentially expressed genes.

Using the “top 20 cutoff,” 55% of the genes were found in
all eight data analysis approaches. With a “top 500” cutoff, this
figure was 59%, indicating that the choice of p-value cutoff does
not improve the reliability of the results by themselves.

Besides taking the first 20, 100, or 500 genes ranked by
their respective p-values, we have also ranked the genes
based on their �M� values. This was done primarily because,
sometimes, p-values in a differentially expressed gene list
can be similar or the same, and thus ranking is unstable. The
results after ranking according to the �M� values were virtu-
ally the same as ranking according to the p-values.

Biological interpretation

To check the biological relevance of the results obtained,
findings were assessed in view of potential gene function.
Although this was not the primary purpose of this study, we
thought it might serve as a general check point for the ex-
perimental results because we hypothesized that the genes
that will be affected by the experimental conditions are some-
how connected to the plant defense pathway. Forty-one
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TABLE 2. VALIDATION OF THE PROPOSED METHODOLOGY

ACTUAL

P N �

P	
256 331 587TP FP

N	
140 16937 17077FN TN

� 396 17268 17664

Validation of the proposed methodology. Actual values are taken
from list of differentially expressed gene as in Bacac et al. (2006).
Predicted values are taken from list of differentially expressed genes
as from our proposed methodology. P, positive; N, negative; TP, true
positive; FP, false positive; FN, false negative; TN, true negative.
17664 represents the overall number of spots on the 17k microarray.
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FIG. 7. Proposed analysis scheme. The analysis should
start with checking the background variability and if that is
low and no spatial artifacts are present on the microarray
image, no background correction is advised. Otherwise, a
background correction is applied. After using two normal-
ization methods of choice (in our case loess and vsn) and ap-
plying a statistical model, the intersection of two differen-
tially expressed gene lists (each coming from one of the
normalizations) is used to obtain more robust differentially
expressed gene lists.



genes out of 100 were present in all eight lists of the top 100
differentially expressed genes in the potato experiment (Fig.
4a). Functional categories were ascribed to those 41 genes,
and their biological relevance was explored. The genes can
be largely assigned to five functional categories: photosyn-
thesis, signaling, regulation of transcription, protein synthe-
sis or degradation, and genes with unknown ontology or
function. Genes belonging to a certain category or subcate-
gory were in all cases uniformly either upregulated or down-
regulated. As for grapevine (Fig. 4b), 55 genes were present
in all of the data analysis combinations performed. These
genes can be grouped into 10 functional categories with
transport, stress, miscellaneous enzyme functions, and
grapevine-specific transcripts being affected most by the ex-
perimental conditions. Both results are in line with expected
changes in the biological examples studied. As for the mouse
experiment, 30 out of the 35 differentially expressed genes
that were selected for biological interpretation and/or bio-
logical validation using real-time PCR, were found using our
methodology also. This shows high reproducibility of our
methodology in comparison with previously analyzed, ver-
ified, and published data. Forty-nine genes out of the first
100 were present in the list of differentially expressed genes
in all of the data analysis preprocessing combinations ap-
plied (Fig. 4c).

Validation of the proposed methodology

The results of the mouse study, that is, the list of differ-
entially expressed genes (Bacac et al., 2006) served as a con-
trol for our methodology. The validation results are shown
in Table 2. Although, realistically, false positives are to be
expected in the previously analyzed mouse data set, we dis-
regarded that possibilty. Here the published results were
considered as 100% correct, and served as basis for data val-
idation. For calculation of list of differentially expressed
genes, the intersection of vsn normalized and loess normal-
ized data was taken as the final result (p � 0.01). We can see
that the true positive rate (TPR) is 65% (256/396), the false
positive rate (FPR) is 2% (331/17268), the false negative rate
(FNR) is 0.35 (140/396). 

Discussion

The impact of selected preprocessing methods on the iden-
tification of differential expressed genes was assessed. The
preprocessing methods and their combinations used for ei-
ther of the experiments can be seen from Figure 1.

The general consensus on the choice of the preprocessing
method to be used is that any method used should change
the raw data as little as possible. Checking the background
variance for each channel is advisable to double check the
set spot quality control parameters (e.g., SNR �3). Gener-
ally, it is advised that no background correction should be
used in order not to disrupt the original data. This is rec-
ommended when vsn normalization is used (as in Ritchie et
al., 2007). Because we are dealing with an estimate of the true
background, it is worth remembering that using a bad esti-
mate is worse than using no estimate at all (Lee, 2004). In
our case, with the potato experiment, as seen in Figure 2, a
background correction was needed as the background vari-
ance from array 2 is very high and differs from the other
three arrays. Figure 2 also implies the existence of two groups

with different background: group one (arrays 1 and 2) with
higer median background and background variance and
group two (arrays 3 and 4) with lower median background
and background variance. In fact, two microarray versions
(version 2 for arrays 1 and 2 and version 3 for arrays 3 and
4) were used. Different array quality is a factor that can con-
found the results, so information concerning array version
was incorporated into the statistical model to control for this.
Because, when using background correction subtract, there
is a risk of obtaining negative values of subtracted intensi-
ties, the use of half or normexp background correction is rec-
ommended. Only positive background corrected intensities
are returned after applying either of the two methods, and,
especially method half is intuitive and straightforward.

Two normalization methods that are theoretically distinct
from one another were used. The difference between loess
and vsn normalization is that loess normalizes log ratios (i.e.,
the M values) whereas vsn normalizes raw data from each
channel separately. In gene expression microarray experi-
ments we are typically interested in ratios and not in the ab-
solute intensity values of spots. So if the absolute intensity
values for technical or biological replicates of the same spot
are different by orders of magnitude but the ratio remains
unchanged, loess normalization would be advisable. How-
ever, improved technology is reducing such spot-to-spot
variation and lower variance makes separate channel nor-
malization like vsn the preferred option (Yang and Paquet,
2005).

Applying various types of background correction and data
normalization to the same data is expected to produce dif-
ferent, but nevertheless comparable results. Experiments
should not by default use the same preprocessing steps and
the same statistical model for all analysis. Additionally, as
seen from correlations on Figure 3, preprocessing affects
spots of lower quality more than it does spots of good qual-
ity. Choosing the appropriate normalization method could
also be design specific, as sometimes a normalization that
was suitable for one experiment is inappropriate for the
other.

The most common way of dealing with duplicate spots
within a microarray is averaging them. A weighted aver-
age was used, so that spots with lower quality affect the
averaged result less. Weights were assigned in image qual-
ity control step. It is advisable, though, to include as much
information about the data as possible. Calculating corre-
lations within duplicated spots and between microarrays
is a way of including information about variance that is
later used for calculating differential gene expression. That
is why, when duplicate spots were present on the mi-
croarray, the actual correlation between spots was taken
into account as one of the possible approaches in data anal-
ysis (Fig. 1).

After hierarchical clustering the resulting top table gene
lists were well separated according to the type of normal-
ization that was used (Fig. 6). Thus, it is important to un-
derline that the choice of normalization method to be used
has the highest impact on the results. Additionally, the genes
that showed evidence for differential expression in all eight
data analysis combinations had higher M values (data not
shown). This confirms that the higher the M values are, the
more likely it is for the gene to be differentially expressed.
This is seen regardless of the data analysis method combi-
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nation used. Of course, one has to bear in mind that some
theoretical knowledge has to be employed when chosing the
proper data analysis method(s).

Similar studies have been done previously for Affymetrix
(i.e., single-channel) arrays (Bolstad et al., 2003; Cope et al.,
2003; Choe et al., 2005; Lim et al., 2007). They conclude with
favoring one normalization method over another or by defin-
ing the preprocessing methods most suitable for data anal-
ysis. In contrast, here we do not favor any specific normal-
ization but are suggesting a selection of suitable methods
(depending on type of array or quality control) and then ap-
plying the intersection of results for data interpretation in
order to increase the robustness of results. It has been simi-
larily shown that the identification of a feature (differentially
expressed gene or protein) by more than one method in-
creases confidence in results obtained (Fodor et al., 2005).

As typically we cannot well assess different parameters of
experimental dataset, we do not know what kind of prepro-
cessing method (especially normalization) would be the best
for a specific experiment and, consequently, cannot deter-
mine the most appropriate combination of preprocessing
methods in advance. The best approach would be to try sev-
eral combinations as shown in this paper. That way the suit-
ability of a specific approach is directly assessed. A simpler
method is to use two preprocessing combinations as pre-
sented in a rough guideline in Figure 7. As it was shown that
normalization had the highest influence on differentially ex-
pressed gene lists, we suggest the application of two theo-
retically distinct normalization methods (in our case loess and
vsn, but other normalizations could have been used) on each
set of data. Each analysis then produces its own list of po-
tential differentially expressed genes. The intersection (over-
lap) of the results obtained by the two normalization meth-
ods would then give genes whose membership in the list is
more robust (i.e., consisting largerly of de facto differentially
expressed genes). After validation of the different analytical
approaches (our methodology compared to the one in Bacac
et al., 2006), TPR was lower than expected. This confirms the
need of biological confirmation of results, which already is
standard practice of transcriptomic analysis. FPR, also
known as � (type I error) was very low (0.02), which means
that only 2% of genes that were identified as differentially
expressed when in fact they were not and, hence, specificity
of our proposed methodology is high (1 � � � 0.98). Power
of test (1 � � � 1 � FNR � 0.65) was also high, meaning that
type II error of not identifying a truly differentially expressed
gene was low.

This analysis nicely complements a recently published dis-
cussion (Nettleton, 2006) on how microarray experimental
design and analysis methods can influence the outcome of
the experiment by showing that preprocessing step can also
have an influence on both the obtained list of differentially
expressed genes and the corresponding M values.
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