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Symbols
r real-space vector coordinates.
s Fourier-space vector coordinates.
R = |s| radius in Fourier space.
dR grid spacing used in digital Fourier space image representation.
N Number of measured images.
x(i) (r) i’th image.
m(r) noise-free particle image.

 i’th specific instance of “particle” noise (i.e. signal fluctuations from the sample itself, such as embedding medium or
support film); this is modulated by the CTF.

 i’th specific instance of “image” noise (from the measurement process); not CTF-modulated.

n(i) (r) effective noise contributed from both  as well as .
n1 (r) , n2 (r) summed noise from images 1…N/2 and N/2+1…N, respectively.

X(i) (s),M(i) (s), , , N(i) (s), N1 (s) , N1 (s) refer to Fourier-space equivalents of the corresponding
uncapitalized symbols.
CTF(i) (s) contrast transfer function for the i’th image.

 Wiener filter estimate derived from a series of N noisy images.

 real-space and Fourier-space representations of the Wiener filter weighting function.
env(r) real-space binary envelope function.
envsmooth (r) envelope function obtained by applying a low-pass filter to env(r).
ENV(s) Fourier-space equivalent of env(r).
FRCmask (r) FRC obtained when the compared images are both multiplied by envsmooth (r)
SNR Overall signal-to-noise ratio of an image.
SSNRno CTF (R) Ratio of signal power (prior to CTF modulation) to noise power in raw data images.
SSNRmerged (R) Spectral signal-to-noise ratio in the final, averaged image.

 Single-particle Wiener filter estimate derived from a series of N noisy images.

, real-space and Fourier-space representations of the modified filter weighting function for the single-particle
Wiener filter.

 the fraction of a boxed image with non-zero signal corresponding to m(r) .

 the fraction of the image within envsmooth (r).

 “single-particle” SSNR corrected for the fractional area containing signal from the particle.

 signal variance at Fourier radius R.

 noise variance at Fourier radius R.

 estimator of the signal variance  (biased).

 estimator of the noise variance  (unbiased).
nR number of Fourier pixels within a given resolution zone (R).
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An adaptation of the Wiener filter suitable for analyzing images
of isolated single particles

Charles V. Sindelar1 and Nikolaus Grigorieff
Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical
Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA

Abstract
The Wiener filter is a standard means of optimizing the signal in sums of aligned, noisy images
obtained by electron cryo-microscopy (cryo-EM). However, estimation of the resolution-
dependent (“spectral”) signal-to-noise ratio (SSNR) from the input data has remained problematic,
and error reduction due to specific application of the SSNR term within a Wiener filter has not
been reported. Here we describe an adjustment to the Wiener filter for optimal summation of
images of isolated particles surrounded by large regions of featureless background, as is typically
the case in single-particle cryo-EM applications. We show that the density within the particle area
can be optimized, in the least-squares sense, by scaling the SSNR term found in the conventional
Wiener filter by a factor that reflects the fraction of the image field occupied by the particle. We
also give related expressions that allow the SSNR to be computed for application in this new filter,
by incorporating a masking step into a Fourier Ring Correlation (FRC), a standard resolution
measure. Furthermore, we show that this masked FRC estimation scheme substantially improves
on the accuracy of conventional SSNR estimation methods. We demonstrate the validity of our
new approach in numeric tests with simulated data corresponding to realistic cryo-EM imaging
conditions. This variation of the Wiener filter and accompanying derivation should prove useful
for a variety of single-particle cryo-EM applications, including 3D reconstruction.

Keywords
Electron microscopy; Wiener filter; Single particle; Protein structure; SNR; Spectral signal-to-
noise ratio.

Introduction
Single-particle cryo-EM is increasingly used to produce high-resolution 2D and 3D maps of
biological macromolecules. The raw data obtained by cryo-EM pose numerous technical
challenges for the image processing done to obtain useful descriptions of the target
molecules. Individual particle images exhibit extremely high levels of noise, owing to the
extreme radiation sensitivity of biological specimens which in turn requires minimizing
electron exposure in order to limit radiolysis. In addition, the image signal is itself
scrambled by the microscope optics, as characterized by the Contrast Transfer Function
(CTF) of the microscope, leading to partial or complete loss of the particle signal at regular
intervals throughout Fourier space. Numerous techniques have been developed to address
these challenges, but nevertheless the processing of cryo-EM images remains a topic of
considerable research interest.

One of the early advances in single-particle cryo-EM was the application of digital signal
processing theory, in order to improve estimates of the reconstructed particle density as well
as to assess the quality of the reconstructions themselves (Frank, 2006). Frank and Ali
described a connection between image correlation and signal-to-noise ratio (Frank and Al-
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Ali, 1975) that was subsequently extended to yield various resolution assessment techniques,
including the Fourier Ring Correlation (FRC) for 2D projection averages, and the analogous
Fourier Shell Correlation for 3D reconstructions (van Heel, 1987). Numerous approaches
have been used to compensate for CTF effects and high noise levels, including phase-
flipping and iterative reconstruction.

One of the methods more commonly applied in reconstruction algorithms is the Wiener filter
(Wiener, 1949; Kolmogorov, 1941), which is designed to produce estimates of signal
measurements having the least possible mean-squared error, given some level of prior
knowledge about the system such as the signal-to-noise ratio (SNR) of the images. The
benefits of the Wiener filter are widely acknowledged, and numerous applications to various
single-particle applications have been described in earlier work (Tang et al., 2007; Zhang et
al., 2008). However, somewhat surprisingly, the benefits of the Wiener filter are rarely if
ever quantified in comparison to other image restoration techniques, leaving it an open
question how beneficial this filter is in practice. Perhaps related to this issue, it is commonly
considered impractical to extract useful spectral SNR (SSNR) characteristics from data sets
of aligned images alone (Downing and Glaeser, 2008); instead, earlier work has suggested
that additional experimental information (X-ray scattering factors, for example) is necessary
to obtain useful SSNR estimates for the purpose of applying a Wiener filter (Tang et al.,
2007). In the absence of accurate SSNR estimates, an arbitrary constant term is commonly
substituted for the SSNR expression within the Wiener filter (Grigorieff, 2007; Zeng et al.,
2007; Frank, 2006), with the result that the filter no longer minimizes the mean-squared
error of the particle estimate.

Here, we present a quantitative evaluation of the Wiener filter for combining pre-aligned
cryo-EM images to produce estimates of the projected density. Our results demonstrate that
for images of isolated single particles, the conventionally-defined Wiener filter fails to
optimize the estimate of the particle density itself, owing to the presence of a substantial
signal-free solvent region in the raw data images. We address this problem by developing a
modified version of the filter, which we call the single-particle Wiener filter, which is
designed to optimize the density estimate within a defined mask region when the SSNR
characteristics of the raw images is available. We also present a straightforward method for
obtaining accurate estimates of the average SSNR characteristics from the images
themselves, with no need for additional experimental information, via a masked FRC
calculation. Our new treatment of the Wiener filter thus establishes a self-contained method
for defining a least-squares estimate of a single-particle density map from aligned image
data sets.

Theory
Wiener filter expression

We begin with the derivation of the Wiener filter expression (Saxton, 1978). We consider a
series of aligned images, whose signal and noise is modeled as follows:

(1)

where “*” represents the convolution operator, and other terms are defined as follows. For
the i’th image: x(i) (r) is the recorded image; m(r) is the corresponding noise-free particle

image;  and  are specific instances of “particle” noise (i.e. signal
fluctuations from the sample itself, such as embedding medium or support film) and
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“image” noise (from the measurement process), respectively; and CTF(i) (s) the contrast
transfer function of the microscope. The symbols r and sdenote vector coordinates in real

space and Fourier space, respectively. Capitalized symbols X(i) (s), M(i) (s), ,

 refer to Fourier-space equivalents of the corresponding uncapitalized symbol. Note
that the CTF term here is implicitly assumed to include all transfer-function-related effects
related to the imaging process, including signal attenuation due to envelope function
(Glaeser, 2007).

To facilitate analysis, we will treat the noise contribution as a single term, n(i) (r). This
approximation is justified by at least two aspects of cryo-EM data: (1) when a large number
of images having varying CTF functions are treated, CTF modulations of the particle noise
Fourier transform will effectively disappear in the summed particle estimate, resulting in a
“net particle noise” in the particle estimate whose contribution can be grouped together with
the image noise contribution to yield a “net noise”; (2) the image noise is on the order of 10x
larger than the particle noise in cryo-EM applications (Baxter et al., 2009).

In what follows, we will allow the Fourier equivalent of the expectation value of the noise

terms  to vary as a function of resolution (thus, N(i) (s) may be described as
“colored noise”), although we will assume that, consistent with the expected behavior of
cryo-EM images, the summed noise component n(i) (r) follows an identical random
distribution at every point within the real-space image. We then write an expression for the
i’th image in a series of noisy image measurements:

(2)

The Wiener filter is designed to give a least-squares estimate of the signal, M, from the

series of N such measurements, assuming a solution of the form .
The formal statement of the optimization problem is to minimize the expression:

(3)

where  are the filter coefficients to be determined.

The solution to the least-squares problem in Equation (3) is (Saxton, 1978):

(4)

where X* denotes the complex conjugate of X. Thus, given an estimate of the SSNR, the
Wiener filter produces an optimal least-squares estimate of the entire, noise-free image field.
To emphasize that “signal” in the “SSNR” term here refers to signal power prior to CTF
modulation, we specifically denote this term SSNRno CTF. We further note that the noise
term in SSNRno CTF refers to the noise power found in the raw image data, as opposed to the
SSNR seen in the final, reconstructed particle (to minimize confusion, we will refer to the
latter quantity as SSNRmerged).
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The specific case of isolated single particles
In the case of cryo-EM images of single particles surrounded by large, featureless regions of
bulk solvent, the above incarnation of the Wiener filter encounters a problem: the choice of
image size in single-particle applications is essentially arbitrary, causing the overall SNR of
the image to be indeterminate. Thus, for given particle size, large image sizes will contain
proportionately more noise energy in the surrounding solvent region as compared to the
signal energy, which remains constant regardless of image size, resulting in lower SNR
estimates. Consequently, the SNR determined from the whole image field depends on the
image size, and so when the Wiener filter is applied to solvent-rich particle images, the
result is excessive filtering of the image and sub-optimal estimates of the particle density
(see Fig. 1 below).

In order to address this issue, we now recast the optimization problem using the envelope
shape of the particle, which we will assume to be known (this envelope can be estimated, for
example, from the previous image estimate in a refinement cycle for the image alignment
parameters). We write the envelope function as env(r), defined to be 1 at locations r where
particle signal is present and 0 otherwise. Then, to avoid the problem related to image size
just described, we seek a new filter that optimizes the mean-squared error of the estimated
density within the particle envelope only.

Modifying the Wiener filter definition above, we obtain new expressions for the error of the
masked particle density (note that for compactness, below we will generally omit the vector
coordinates when referring to various function symbols):

(5)

Here we have used the fact that real-space multiplication of the noise-free particle signal m
by the envelope function leaves the signal unchanged. In order to apply these error
expressions within the standard Wiener filter formalism, we now seek to eliminate the
envelope function from the expression. This can be accomplished as follows. Expanding the
above error expressions, we obtain:

(6)

Now we consider the two terms in .

First term: summation of restored, noise-free structure measurements

The first term, , represents a composite sum of noise-free
measurements, first modulated by the CTF, subsequently restored by the Wiener filter

operator , then finally multiplied (in real space) by the particle envelope. If we assume
that a sufficiently large number of measurements have been collected for the Wiener filter to
efficiently re-localize the particle signal (this condition is satisfied when a sufficient number
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of images having variable defoci are collected, see Results), the first two operations

 will yield a relatively accurate representation of the particle, because no
noise terms are present (we note, however, that the high-resolution components of M may be
attenuated owing to the filter, see Results). If this correction of the delocalization is
sufficiently complete, then convolving the result by the envelope Fourier transform,
equivalent to multiplying the real-space object by the envelope function, will have almost no
effect, and we may write:

(7)

Thus, in cases where a number of images are available and there is substantial defocus
variation in the images (see Fig. 4), the first term in  is effectively unaltered by the
convolution with the particle envelope function ENV.

Second term: noise attenuated by the particle envelope

The second term in our expression for ,
may be reduced by the following reasoning. The convolution of a given noise term in this

summation expression results in a new random noise distribution, ,
in which the original noise term is first filtered by the Wiener term and subsequently “spread
out” in Fourier space by the convolution. The convolution introduces a correlation between
neighboring points in Fourier space, and thus has the effect of smoothing out the resolution

dependence of the filtered noise term . However, if the particle radius is non-
negligible relative to the image dimension (a condition which is almost always satisfied in
cryo-EM applications), the Fourier transform of the envelope function ENV will have a
relatively restricted extent in Fourier space, thus limiting the smoothing effect over two or
three Fourier pixels. Moreover, we note that the original noise term N(i) is expected to
depend on spatial frequency under experimental conditions (“colored noise”), but that this
dependence is relatively small in the case of cryo-EM (see Discussion). Thus, we may
conclude that the spectral behavior of N(i)’ will remain similar to N(i) so long as the

expectation value of the filtered noise term  does not vary too rapidly as a function
of resolution. In the results section we present numerical simulations demonstrating that this
assumption is appropriate for cryo-EM applications.

In contrast to the spectral behavior of N(i)’, the net signal energy of N(i)’ is strongly affected
by the presence of the envelope function term. To derive this effect, we begin with the

observation that the real-space equivalent of N(i)’, , is simply a uniform
noise field truncated by the particle envelope; thus, the total signal energy for the summed

expression = , is reduced by a factor of ,
which may be thought of as the ratio of particle area to total image area (although this
identity is only strictly true for the case of a binary mask). By Parseval’s theorem, the same
result holds for the signal energy of the corresponding Fourier space noise term,

.
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Combining the above observations, we conclude that the noise term 
in the presence of an envelope is expected to have similar spectral behavior as in the case

where an envelope is absent , except that the total noise amplitude will be

attenuated by a factor of . Therefore,

(8)

Effective Wiener filter for the case of isolated single particles: the PSSNR
Assembling the results of the last two sections, we arrive at the following minimization
condition for the new single-particle filter:

(9)

The above error expression is thus identical to the Wiener filter error expression for the

envelope-free case, except that the noise term N(i) is attenuated to .
Thus, the form of our new single-particle filter follows the form of the conventional Wiener
filter, after substituting the new noise power

:

(10)

The variance ratio in the denominator of the above expression is thus the inverse of the
conventional, or whole-image SSNR (as found in the original Wiener filter expression), but
attenuated by fparticle.

Thus, we define the “particle” SSNR, or PSSNR, as:

(11)

so that we may express the particle estimate as:

(12)
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Equations (10) – (12) are a key finding of the present work, and define what we call a
“single-particle” Wiener filter. The novel aspect of this filter can be understood intuitively,
as follows. If one has a priori knowledge that a significant portion of the image field is free
of signal (as is the case for single particles), then the performance of the Wiener filter can be
improved by a simple modification in the denominator, namely by scaling the SSNR term by
fparticle. In contrast to the conventional Wiener filter, the single-particle Wiener filter is
expected to be largely independent of image size, because the fparticle term compensates for
changes in the SSNR that result from varying amounts of signal-devoid space surrounding
the particle. As we will show, this property leads to substantial gains in the performance of
the new filter.

Estimating the SSNR and PSSNR via statistical analysis of the images
One strategy to obtain the SSNR from a set of raw image data is to compute the variance
and other statistical quantities for each voxel in Fourier space as individual measurements
are tallied during the averaging process. This approach was used by Unser et al. (1987), who
derived an expression for SSNRmerged for the case of sums of aligned 2D images. We have
extended this approach to account for the presence of CTF modulation during image
formation (Appendix A); the result is a sequence of computations that delivers an unbiased
estimate of SSNRmerged for a collection of Fourier pixels found in a given resolution shell,
assuming that both the particle structure factors as well as the noise terms follow normal
signal distributions within a given resolution shell. Using the above relation, this estimate
can then be converted to an estimate of the PSSNR.

For convenience, we have assumed in the following computations that the average signal
and noise power (Var {M(s)} and Var {N(s)}, respectively) are circularly symmetric in

Fourier space, which will give a solution of the form , where R = |s|, the vector
magnitude of s. This assumption is justified for particles that do not exhibit prominent
periodic features that could give rise to significantly stronger signal in certain parts of the
Fourier transform. In the case of strongly anisotropic signal distribution, the radially
symmetric filter coefficients will not be optimal and a more specialized case may need to be
considered. However, the formalism described here will still lead to an improvement over
the conventional Wiener filter we seek to replace.

These computations can be summarized as follows:
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(13)

Key differences between the above formulas and the results of Unser et al. (1987) include:
(A) Our derivation estimates the quantity SSNRno CTF which characterizes the raw data
images, whereas the Unser derivation was for SSNRmerged of the final, averaged image; (B)
CTF terms are included in our expressions for the signal estimates; (C) the bias correction

for our SSNR expression, , is increased in magnitude compared to the
Unser bias correction (1/N if Unser’s result is adapted to compute SSNRno CTF), owing to
the CTF terms having magnitudes less than one.

Obtaining the PSSNR from masked FRC calculations
The above PSSNR expression suffers from at least two serious shortcomings: (1) an implicit
assumption is that all signal and noise components follow normal Gaussian distributions
within a single resolution shell - a condition not always met in practice; (2) the expression
suffers from a relatively high statistical error at higher resolution, where accurate estimation
of the PSSNR is most critical for optimal Wiener filtering (see Discussion). We therefore
explored an alternative route for obtaining the PSSNR: deriving this quantity using cross-
correlation comparisons of masked, half-data-set reconstructions.

We begin by modifying the FRC, a standard measure of particle resolution when two
estimates are available, to include a masking step using the particle envelope function ENV
defined above. The expectation value of the masked FRC is:
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(14)

where N1 and N2 represent the summed noise terms from the independent half-data sets used
for the two estimates to be compared and the expectation value of the N1 and N2 are
assumed to be the same.

We note here that in practice it is necessary to replace the binary real-space envelope
function env with a smoothed envelope function, envsmooth, in order to avoid artifactual
high-resolution features at the boundary of the particle estimate (which could lead to inflated
resolution estimates when comparing identically masked half-data set reconstructions, for
example). To avoid strong artifacts, the cutoff spatial frequency for the smoothing filter for
ENVsmooth should be chosen to be less than the conservative lower limit of the reconstructed
particle resolution.

We now approximate the envelope-noise convolution term in the denominator of the above
expression, using the same argument developed above in our derivation of the PSSNR:

(15)

where  This results in the following expression for the masked FRC:

(16)

Comparing this expression to the relation between the conventional FRC and the SSNR,

(17)

we see that masking causes the SSNRmerged (R) term in the FRC expression to be replaced
by SSNR merged(R)/ fparticle, if a tight binary mask is used, or by SSNR merged(R)/ fsmooth if a

smoothed mask is used (where , the mean squared envelope function
computed over the image area. Thus, the whole-image SSNR for the final particle estimate
is:
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(18)

To obtain an estimate for SSNRno CTF or the PSSNR, one final step is necessary. The
expected noise variance in the final estimate is reduced relative to the noise variance in the
raw data, proportional to the averaged sum of squared CTF values (see Appendix A,
Equation (A.4)). This yields the relation:

where we have used the symbol  to denote the number of Fourier pixels within the
resolution zone R ± dR.

Thus:

(19)

Equation (19) thus defines a close relationship between the masked FRC calculation, the
SSNR, and the single-particle Wiener filter. This expression also indicates that, in typical
cryo-EM applications, the PSSNR will differ substantially from conventionally obtained
SSNR values, due to the fparticle term, which will be considerably less than one in practice
(see Results/Discussion). As demonstrated in the Results, the Wiener filter is sensitive to
differences of this magnitude in the SNR term; thus, choosing the correct SNR variant in the
filter is critical for full optimization of 2D and 3D reconstruction.

Summary of the new, adapted Wiener filter
In the first step, the raw images are divided into two half-data-sets and two least-squares
particle estimates are generated in the absence of SNR information. Second, the particle
envelope is identified, smoothed, and used to compute a masked FRC comparison of the two
initial estimates; this FRC function is subsequently converted to an estimate of SSNRno CTF
for the raw data images (Equation (13)). Finally, the resulting SSNR function is divided by
the scalar factor fparticle (Equation (19)). The resulting scaled function, the PSSNR, is then
substituted in place of the standard SSNR term in a modified Wiener filter which is applied
to the full image data set.

Materials and Methods
For numerical testing purposes, we created several synthetic data sets that incorporated
various combinations of key elements of the cryo-EM imaging process. The imaged particle
in each data set was an identical view of a representative protein molecule (kinesin, PDB ID
1MKJ), rendered as projection image of the scattering potential as modeled by the SPIDER
image processing program (Frank et al., 1996). Noisy images of known SSNR characteristic
were generated by adding white noise to the perfect reference image, after an optional CTF
modulation step was applied to the reference image. The modeled CTF’s were generated by
the “TF C” command of SPIDER, without an envelope function, and with randomly
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generated defocus values uniformly distributed between 1 and 2 μm. The SSNR
characteristic of the noisy images was then computed as the ratio of the rotationally
averaged, squared Fourier amplitude to the white noise variance. The magnitude of the white
noise variance was chosen such that a net SNR in the real-space image of 0.003 was
produced in the resulting raw data images, for the image of size 256 × 256 pixels (1Å pixel
size). Note, as discussed below, that cropping these images to smaller sizes substantially
increases the SNR values.

Results
FRC calculations are highly sensitive to image size

We constructed several sets of noisy synthetic images (SNR = 0.003 for the “standard”
image size of 256×256, see Methods), modeling various aspects of image formation in cryo-
EM on a test particle generated from PDB coordinates 1MKJ. Fig. 1A shows a noise-free
projection image simulating the projected Coulomb potential of the test molecule, and Fig.
1B shows the same image after adding white noise to the specified SNR level. These
synthetic images were used to test various predictions of the theory developed above.

The results of Fourier Ring Correlation (FRC) analysis applied to the synthetic data sets are
shown in Fig. 1. A data set of 100 raw data images was divided into two sets of 50 images
and averaged separately, and the FRC was calculated between the two resulting particle
estimates (this procedure was repeated for several different box sizes). For simplicity, the
effects of CTF modulation were not included in the tests shown in Fig. 1, although when
these tests were repeated in the presence of CTF modulation, very similar results were
obtained (not shown). As shown in Fig. 1C, the SSNR of the raw synthetic images depends
strongly on the dimensions of the bounding box used for analysis (three sizes were tested, as
indicated by dashed boxes in Fig. 1B), owing to the inclusion of excess noise signal energy
at the box boundaries as the box size increases while the total particle signal energy stays the
same. Fig. 1D demonstrates that the FRC calculated between the half-data-set averages also
strongly depends on the bounding box size, yielding values at an arbitrary threshold of 0.5 of
~12Å (128×128 pixel windowed image averages), ~23Å (256×256), or ~39Å (512×512).
These results are consistent with the prediction of Equation (16) that as the featureless
solvent region increases in size with respect to the particle region, the FRC resolution
estimate correspondingly decreases owing to increased noise signal energy relative to
particle signal energy.

Wiener filter behavior is highly sensitive to image size
The behavior of the conventional Wiener filter, when applied to the same set of images (no
CTF applied), is shown in Fig. 2. We tested the optimality of this filter, as predicted by the
theory, by comparing the filter output to a series of modified filters where the SSNR term
was scaled up or down by a linear coefficient. As seen in Fig. 2A, the best agreement (as
reported by the cross-correlation coefficient, or CCC) between the filtered image and the
noise-free reference was achieved by a scale factor of unity, yielding a CCC of 0.853, and
either increasing or decreasing the scale factor increased the mean-squared error of the
image estimates. Thus, these calculations are consistent with the predicted optimality of the
conventional Wiener filter.

The behavior of the conventional Wiener filter, however, depended strongly on the
bounding box size. As shown in Fig. 2C and Fig. 2E, the estimate for the largest box is
noticeably more blurred compared to the smaller box sizes. This feature of the filter comes
directly from the fact that increasing the bounding box size rapidly diminishes the
magnitude of the SSNR of the raw data images (Fig. 1C); this decrease in SSNR in turn

Sindelar and Grigorieff Page 12

J Struct Biol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



generates a much stronger high-frequency attenuation by the Wiener filter, when applied to
the larger boxes. For each box size tested, we repeated the scaling test of Fig. 2A and
confirmed that the CCC agreement of the filtered images was maximal with respect to
scaled versions of the filter (results not shown).

However, when we zeroed the solvent region of the image using a binary mask (Fig. 2B), we
observed a very different behavior of the CCC. As indicated in Fig. 2C and Fig. 2E,
correlation of the masked particle region to the noise-free reference drops rapidly as the box
size of the filter increases, from a value of CCCmask-ref = 0.881 for the smallest box size
tested (128×128) to a value of CCCmask-ref = 0.737 for a 512×512 pixel box. These masked
CCC values were not optimal with respect to our Wiener filter scale tests; rather, we found
that with appropriate scaling of the SSNR term, the conventional Wiener filter could be
“tweaked” to yield a maximal value of 0.929 for the masked CCC (equivalent to the single-
particle Wiener filter result, see below). Thus, these numeric experiments conclusively
demonstrate that when the conventional Wiener filter is applied to images of isolated single
particles, the filter neither (1) yields consistent results as the box size is varied, nor does it
(2) optimize the masked CCC for the particle estimate, even for relatively small box sizes.

Validating the ‘re-localization’ assumption within the single-particle Wiener filter derivation
In the Theory section, we presented an adapted, “single-particle” Wiener filter to address the
above two deficiencies of the conventional Wiener filter. One of the primary assumptions
made in this adaptation of the Wiener filter is that the signal energy in the resulting filtered
estimate be mostly localized within the particle envelope. Whether this re-localization
condition can be satisfied depends on the nature and number of raw data images collected.
For example, full re-localization is trivially satisfied in the absence of CTF modulation in
the raw data images (Fig. 1 and Fig. 2); however, currently available electron microscopes
generate CTF-modulated images that require CTF correction. We therefore sought to test the
re-localization properties of the single-particle Wiener filter using more realistic test images.

Fig. 3 shows the noise-free signal component of a CTF-modulated particle as the data
processing proceeds through various filtering and estimation steps. Note that because the
Wiener filter is a linear operator, and the noise is additively combined with the signal, it is
possible to consider the signal component independently of the noise. We therefore omit the
noise component of the images in Fig. 3, while noting that the filters used therein are
specific to the case of our 256×256 pixel, SNR = 0.003 test images. As shown in Fig. 3A,
the CTF-modulated signal found in a raw data image is highly delocalized, such that more
than half of the image contrast (defined as the signal magnitude squared, integrated over the
total image area) lies outside the particle boundary. As shown in Fig. 3B, if this single image
is corrected by phase-flipping, much of the delocalized signal energy is restored to within
the particle boundary but nearly 25% of the energy remains outside the particle boundary.
These observations provided a baseline for comparison with delocalization behavior of the
Wiener filter.

Next we analyzed the performance of a single-particle Wiener filter generated specifically
for the case of a low-SNR synthetic image data set (SNR = 0.003, 256×256 images, as in
Fig. 1 and Fig. 2 except with CTF modulation added). Each instance of such a Wiener filter,
as defined in Equation (12), depends on the specific SSNR characteristic of the imaged
particle as well as the number of images collected and their defocus characteristics. The
resulting filter functions are shown in Fig. 3F for specific test data set instances containing
1, 10, and 100 images. Operating on a single image, the SP Wiener filter reduces the
delocalized signal energy seen with phase-flipping correction by a factor of nearly 3, to 9%
(Fig. 3C). Increasing the image data set to include multiple images, having defoci randomly
distributed between 1 to 2 μm, progressively reduced the delocalization to much lower
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levels: to 1.7% for a 10-image data set (Fig. 3D), and to 0.12% for 100 images (Fig. 3E).
These results indicate that the amount of delocalized signal present in the filtered image can
be decreased to an arbitrarily low level by increasing the number of images in the data set,
and that as few as 10 images yield an adequately localized signal for use with the single-
particle Wiener filter.

PSSNR/Wiener filter approximates a least-squares particle density estimate
We tested the absolute performance of our single-particle adaptation of the Wiener filter on
a set of 100 noisy, CTF-modulated images. In comparison to the conventional Wiener filter,
the single-particle Wiener filter estimates eliminate a noticeable smoothing effect, and
showed greatly reduced mean-squared error when masked CCC comparisons to the noise-
free reference image were made: CCCmask-ref = 0.776 for the conventional filter vs.
CCCmask-ref = 0.893 for the single-particle filter (Fig. 4A, 4B). In contrast, the value of
CCCmask-ref was 0.589 for a sum of phase-flipped images; and CCCmask-ref was 0.798 for a
correction scheme used by the FREALIGN package (Grigorieff, 2007), which closely
resembles a Wiener filter but replaces the SSNR term with an ad hoc constant. Thus, the
single-particle Wiener filter greatly improved the masked correlation relative to other
available particle estimation schemes.

We also investigated the optimality of the single-particle Wiener filter by performing scaling
experiments, analogous to Fig. 2A, modulating the PSSNR term within the filter (Fig. 4F).
These scaling experiments demonstrated that the scaling the PSSNR function either above or
below its true value (according to our derivation) increased the error in the masked CCC
comparison to the noise-free reference image. These numerical tests thus indicated that our
filter adequately minimizes the mean-squared error with respect to the reference particle.

In contrast to the excellent performance of the single-particle Wiener filter in the masked
CCC comparison, however, the whole-image CCC to the noise-free reference yielded by this
filter (Fig. 4B, CCC = 0.778) is markedly inferior to the whole-image CCC for the
conventional Wiener filter (Fig. 4A, CCC = 0.861). Thus, the conventional Wiener filter and
the single-particle Wiener filter have reciprocal properties: the former minimizes error in the
overall image at the expense of increased error within the particle region (see Fig. 2), while
the latter minimizes error in the particle region at the expense of the solvent region.

Estimating SSNR characteristics via image statistics
The above numerical experiments utilized prior knowledge of the SSNR characteristic of the
synthetically generated raw data images, which allowed a “perfect” Wiener filter to be
constructed. Most experimental cryo-EM images, however, are obtained in the absence of
prior SSNR information. We therefore tested our above-derived relations between the
masked FRC and the “particle” SSNR, for the same synthetic data sets, to determine
whether the SSNR could be adequately estimated from the raw data alone.

Initial numeric tests following the “direct” SSNR calculation method of Unser et al. (1987)
(Equations (13)) produced accurate estimates for the SSNR in the low-resolution regime, but
rapidly became unreliable for the synthetic data sets tested here at resolutions approaching
~8Å or higher (results not shown), despite the presence of significant structure signal as
indicated by masked FRC comparisons of filtered particle estimates with the noise-free
reference (Fig. 5A). We attributed this issue to the presence of noise in the solvent region of
the particle images, which cannot be removed by any straightforward method during the
“direct” SSNR calculation scheme. We therefore tested the validity of Equation (19) in
providing more accurate estimates of the SSNR and/or PSSNR.
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An important result contained within Equation (19) is that the effects of masking on the FRC
calculation can effectively be removed by applying a scaling factor fsmooth / fparticle at the
appropriate point within the expression, where fsmooth is the average squared mask function
value evaluated over the image. The resulting estimate for PSSNR is then expected to be
independent of mask size (so long as the mask does not intrude on the particle density), but
with varying fidelity depending on the amount of solvent noise included in the FRC
calculation.

We tested the above predictions by performing FRC comparisons between a pair of noisy
particle estimates, each obtained by a straight average of 50 noisy images (no CTF applied,
with SNR = 0.003, as in Fig. 2). The result is shown as FRCmask (calculated) in Fig. 5A. We
also used Equation (16) to predict the expected value of the masked FRC (FRCmask (theory)
in Fig. 5A). To obtain the expected value of SSNRmerged for this latter computation, we
scaled the known SSNR characteristic of the raw images (SSNR no CTF) by the number N of
image measurements (50 in the present calculation). Hence, SSNR merged = N ·
SSNR no CTF. This is equivalent to the calculation presented by Unser et al. (1987) (see
Equation (7) in the Unser paper). As shown in Fig. 5A, these calculations yielded excellent
agreement between predicted and calculated values for FRCmask, as predicted by our theory.
Also consistent with our predictions, a non-masked FRC calculation gives substantially
lower values, when compared with FRCmask, and a smoothed mask also shows
systematically lower values in this comparison (Fig. 5A).

However, when Equation (19) is used to rescale the non-masked and smooth-mask FRC
functions, compensating for the different mask sizes, the resulting estimates converge on the
FRCmask function (Fig. 5B-C). These results support the validity of assumptions used here
to obtain Equation (19). We observed significantly increased random error in the rescaled
FRC functions in Fig. 5B-C, however, reflecting extra solvent noise that is included when
the mask size increases (see Discussion). The increased error was particularly pronounced in
the absence of masking (Fig. 5C). Thus, the calculations in Fig. 5 indicate that masked FRC
computations, in concert with Equation (19), provide a suitable estimate of the PSSNR for
use in the single-particle Wiener filter.

Application of the estimated SSNR values in the single-particle Wiener filter
We tested the applicability of the above PSSNR estimates in the single-particle Wiener filter
by repeating the numeric tests of Fig. 4, but substituting these estimated values in place of
the PSSNR function previously obtained from the known SSNR characteristic (Fig. 1).
These tests thus simulated a cryo-EM experiment performed on data with unknown SSNR
properties. The resulting particle estimate (Fig. 4C) closely resembled the one produced
using “perfect” SSNR information, yielding a masked correlation value, CCCmask-ref, only
slightly lower (0.882) than the value obtained for the ideal filter (0.893) and substantially
greater than the correlations obtained with other tested CTF correction schemes (Fig. 4,
panels A, D, E). These results thus demonstrate that the single-particle Wiener filter can be
successfully implemented in the absence of prior knowledge of the data SSNR, yielding
particle estimates that significantly reduce the mean-squared error relative to other schemes.

Discussion
Here we have shown that the Wiener filter must be modified to give consistent and suitable
results when treating images of single particles. The form of the modification (Equation
(10)) is straightforward, requiring only that the SSNR term in the denominator of the filter
expression be scaled by fparticle, which is effectively the fraction of the image area occupied
by the particle. In a related result, we have shown that a highly accurate estimate of the
SSNR found in the image data set can be obtained by performing a masked FRC calculation
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between two half-data-set image averages (Equation (18)). Taken together, these two
findings provide a practical and effective solution for finding a least-squares estimate of the
particle density from a set of noisy images.

Prior applications of the Wiener filter to single-particle problems have operated under the
assumption that this filter minimizes the mean-squared error of the particle. In carefully
testing this assumption, the current work has revealed that it is important to distinguish
between the error in the entire image, versus the error within the particle region itself. As the
calculations presented in Fig. 2 show, while the Wiener filter succeeds in minimizing the
overall error throughout the image, the error produced within the particle region is far from
optimal (and depends on the size of the considered image field). Closely related to this issue
is the property that the FRC (or analogous FSC for 3D reconstructions) for a given particle
data set depends on the dimensions of the total image field, and whether the particle is
masked prior to the FRC calculation. The theory presented here accounts for the effects of
image size and masking, not only in the Wiener filter but also in the FRC resolution
estimator.

The single-particle modification to the conventional Wiener filter is large and significant
We have shown that the SSNR of an imaged particle depends on the size of the image field,
relative to the particle dimension. This property in turn means that the behavior of the
Wiener filter is not unique, progressively leading to over-blurring of the particle as the
image size increases. Thus, our results demonstrate that it is not sufficient to obtain the
SSNR of such imaged particles, if one desires a best estimate of the particle density. Rather,
the SSNR of the images must be scaled by 1/ fparticle to obtain the PSSNR, permitting
application of the single-particle Wiener filter defined here.

It should be noted that our derivation of the single-particle Wiener filter relies on two
specific properties of the image data set; this aspect of our theory contrasts with the
conventional Wiener filter, which is more generally valid. First, the derivation requires that
sufficient defocus variation is present in the data in order to counteract the delocalization
effects generated by the CTF of the microscope. Our numeric tests, however, demonstrate
that the single-particle Wiener filter requires relatively few images (10-100; Fig.’s 3-4) to
meet this requirement, indicating that this restriction is not a serious one. A second
requirement is that the noise power found in the data varies slowly with spatial frequency,
compared to the Fourier transform of the particle mask function (see the discussion
preceding Equation (8)). We have not investigated this aspect of noise in our numeric
simulations. However, earlier work (for example, a study of purple membrane crystals by
Glaeser and Downing (1992)) has indicated that cryo-EM images possess a suitably low
spectral dependence for the noise, such that our theory should be generally valid. Moreover,
if a pathological case of noise variability did arise, this could easily be addressed by
applying a “noise-whitening” procedure to the image data (Sigworth, 2004). Thus, we
anticipate that the single-particle Wiener filter is broadly applicable to cryo-EM image
processing.

Many of the examples discussed here used a larger image size (256×256) than strictly
necessary given the size of our test particle in combination with the modeled delocalization
characteristics; this was done for illustrative purposes. However, it is important to note that
the signal delocalization caused by CTF modulation, in cryo-EM applications, means that a
relatively large image size must be used in order to collect all the delocalized signal
information-- and this is particularly true for the highest-resolution signal components,
which tend to be delocalized furthest from the particle center (Downing and Glaeser, 2008).
Furthermore, many particles of interest in cryo-EM have irregular or even hollow shapes,
leading to 1/ fparticle values significantly greater than 1 even when the image size is
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minimized relative to particle dimension. Suitable image sizes for high-resolution image
processing are therefore likely to give values for 1/ fparticle of 5, 10 or greater. Moreover, if
our methodology is extended to 3D reconstruction, 1/ fparticle reflects a 3D quantity rather
than a 2D quantity, and is therefore increased relative to the 2D case. These qualities suggest
that substantial error may commonly be introduced if the conventional Wiener filter is used
in place of the single-particle Wiener filter, in high-resolution cryo-EM applications.

We note that this conclusion has apparently not been reached in earlier applications of the
Wiener filter to single-particle problems. For example, Ludtke et al. (2001) applied the
conventional Wiener filter within the context of a 3D reconstruction algorithm, but did not
report over-filtering as our theory would predict. However, unlike the work presented here
the images averaged by Ludtke et al. (2001) contained alignment errors which would have
attenuated the effective SNR required for optimal Wiener filtration, relative to a perfect
alignment. In contrast, the SNR estimates used by Ludtke et al. were derived using
scattering profiles from X-ray experiments, which yielded the SNR of a perfectly-aligned
data set. As pointed out by the authors, alignment errors would diminish the effective SNR
of the data, particularly at high resolution. Thus, a Wiener filter applying the “true” SNR
would be expected to under-filter the result in this case. This under-filtering would tend to
compensate for the over-filtering effect that results from the use of a conventional Wiener
filter rather than a “single-particle” Wiener filter, in the Ludtke et al. study.

Effect of masking on the FRC
It has been noted that the FRC (and analogously, the FSC in the 3D case) can produce
unrealistically low estimates of particle resolution, and that this effect can be corrected by
masking (Stewart et al., 2000; LeBarron et al., 2008). The theory presented here
quantitatively explains this effect. As we have shown, masking not only reduces the amount
by which the true resolution of the particle is systematically underestimated, it also reduces
the amount of random error in the FRC estimate (and consequently in the resulting SSNR/
PSSNR estimates, see Fig. 5). Moreover, the results presented here (equation (19) , as well
as Fig. 5) demonstrate that non-masked FRC calculations can be adjusted to quantitatively
correct for underestimation effects, simply by converting the FRC function to an equivalent
SSNR function and subsequently multiplying by the scalar factor 1/ fparticle (defined above)
that expresses the ratio of the molecular area to total image area. From the resulting PSSNR
function, the particle resolution estimator FRC particle, which will be independent of image
size, can be obtained. Thus, our results make clear that, in the absence of this adjustment
and/or masking, FRC calculations will underestimate the resolution of a reconstruction by a
variable amount, depending on how large an image size was chosen by the user.

We note that fparticle is somewhat difficult to determine precisely. One way to estimate this
quantity is to use the molecular weight of the particle, in combination with estimates of
protein/DNA density (in the case of biological macromolecules) to form an estimate. This
approach, however, neglects the possibility that portions of the molecule may be disordered,
abnormally dense, or that an ordered solvation layer may be present. However, the theory
relations presented here suggest that fparticle could also be determined experimentally from
the image data set itself. Results presented in Fig. 4D indicate that there is one unique value
that maximizes the masked real-space CCC agreement between the particle estimate and the
true particle density map, when applied via the single-particle Wiener filter. While the true
particle density map is never known experimentally, a feasible alternative is to search for the
value of fparticle that maximizes the masked CCC between two half-data-set reconstructions.
In this approach, the mask used for CCC comparison need not extend over the entire
particle, but could be specifically designed to only include a subset of the particle region that
is known to be well ordered.
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A difficulty with basing resolution estimates on FRC calculations is that over-refinement of
the alignment parameters can lead to noise-derived artifactual signal in the particle
reconstructions, thus leading to overestimation of the resolution (Grigorieff, 2000). While
the current work does not address this issue, we note that existing approaches are capable of
minimizing or even eliminating such artifacts (Stewart and Grigorieff, 2004): for example,
by emphasizing lower-resolution information during alignment, or by performing
independent refinement of alignment parameters for half-data-set reconstructions.
Combining such approaches with the resolution estimation technique proposed here thus
may provide an avenue to more accurate, less-biased estimates of the particle resolution.

Disadvantage of the SSNR as a resolution estimator, when computed directly from image
data

Earlier investigations of the SSNR of reconstructed single particles observed that with
statistical analysis of the raw image data (via expressions similar to Equations (13)) one can
in certain circumstances obtain more accurate SSNR estimates in comparison to those
obtained from FRC calculations (Unser et al., 1987; Penczek, 2002). Our results and theory
show, however, that for single particles this advantage is more than offset by the fact that the
former method of obtaining the SSNR must necessarily include all the noise found within
the solvent region of the images, leading to a significant underestimation of the resolution of
the particle as well as substantially larger random fluctuations in the SSNR estimate itself.
This disadvantage is particularly noteworthy for the case of cryo-EM images, where it is
necessary to process images substantially larger than the particle diameter, in order to
include information delocalized due to the CTF of the microscope. Thus, “raw-data”
methods of estimating the SSNR can lead to unacceptably high noise levels, thus prevent the
SSNR from being usefully rescaled to reflect the true particle resolution.

A second disadvantage of the SSNR approach embodied in Equations (13) is that its
accuracy relies on the assumption that the Fourier pixel values of the image transform obey
normal statistics. Unfortunately, molecular transforms are not guaranteed to have this
property (particularly when symmetry in the particle concentrates signal power in certain
regions of Fourier space). For these two reasons, masked FRC calculations should be
preferred for computing SSNR characteristics of isolated single particles, under most
circumstances.

Which “SSNR” to use?
We note that there is a certain ambiguity in the literature regarding the term “SSNR”. As
originally introduced by Unser, the SSNR described the final reconstruction, thus qualifying
as a resolution estimator (Unser et al., 1987). On the other hand, the SSNRno CTF quantity
required for use with the Wiener filter describes the original data and is independent of
measurement conditions (for example, SSNRno CTF does not depend on the CTF). Thus, the
SSNR obtained by the standard relation SSNR = 2*FRC/(1-FRC) is not itself suitable for
Wiener filter application, because this describes the final reconstruction. Our Equation (19)
provides a way to back-calculate SSNRno CTF, namely by dividing the most accurate
available estimate of SSNRmerged (here obtained via masked FRC calculation) by the mean
sum-of-squared CTF values per Fourier pixel.

As mentioned before, this back-calculation scheme is closely related to the relation
presented by Unser (Equation (7) in Unser et al. (1987)), which using our terminology is
expressed as SSNR merged = N · SSNR no CTF, where N is the number of images. In the
presence of CTF modulation, which was not considered by Unser et al. (1987) the effective
number of images contributing to a given Fourier pixel is reduced from N owing to
attenuation of each image component, on average, by the CTF. Thus, averaging N images
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together (using the Wiener formula) will improve the SSNR of the final estimate (compared
with a raw image) by only a factor of N〈CTF2〉 rather than N (see Appendix A). At higher
resolution, when large numbers of images with a random defocus are gathered, the CTF falls
between −1 and 1 in a sinusoidal distribution, causing this “improvement factor” to
converge on the value N/2. This value therefore indicates that if a value SSNRmerged is
measured in a given image reconstruction, SSNRno CTF should be estimated as SSNR merged
= N · SSNR no CTF/ 2 (rather than SSNR merged = N · SSNR data for the case of no CTF). We
emphasize here that SSNR no CTF, which refers to the signal present before CTF modulation,
is the correct quantity to apply in a conventionally defined Wiener filter; in contrast, at least
one prior usage of the Wiener filter incorporated a variation on the SSNR in which the
signal power referred to the signal present after CTF modulation (Zeng et al., 2007).

Multiple image measurements allow the Wiener filter to fully re-localize the signal energy
A prior analysis of the Wiener filter (Downing and Glaeser, 2008) concluded that the
Wiener filter fails to re-localize all signal in a CTF-modulated cryo-EM image, leading to
substantial degradation in the resulting particle estimate. In that work, however, the size of
the considered data set was only a single image, in contrast to the large sets of variable-
defocus images considered here. As we have validated numerically (see Fig. 3), multiple
image measurements on a given particle allow the Wiener filter (including our single-
particle variant) to re-localize essentially all of the signal energy, resulting in a particle
estimate with minimized error with respect to the true noise-free object.

A further difference between our analysis and that of Downing and Glaeser is that we apply
a frequency-dependent SNR term in the Wiener filter. The analysis of Downing and Glaeser
followed the assumption that the SNR was a constant term independent of resolution. This
assumption is commonly made in cryo-EM applications of the Wiener filter where accurate
resolution-dependent SSNR estimates have not been obtained (Grigorieff, 2007; Zeng et al.,
2007; Frank, 2006) but is not accurate for imaged biological molecules (see Fig. 1C). The
assumption of a constant SNR drastically changes the output characteristics of the Wiener
filter, leading to over-filtering at low spatial frequencies (where the true SSNR is much
higher than the average value) and under-filtering at high spatial frequencies (where the
SSNR is much lower than the average value). The particle estimate thus produced will
therefore have higher error relative to application of the correct, resolution-dependent SSNR
term within the Wiener filter. In addition, the ability of the Wiener filter to correct CTF-
driven signal delocalization is compromised by the inappropriate use of a constant SNR
term, leading to significantly more delocalization in such an estimate particularly when
noise levels are high, in comparison to when the correct SSNR function is used (compare
Fig. 3C in Downing and Glaeser (2008) to Fig. 3C here).

We can therefore conclude that applying the Wiener filter to multiple images and utilizing a
more accurate SSNR function, as done here, leads to near perfect recovery of the delocalized
particle signal, in contrast to the single-image, constant-SNR scenario considered by
Downing and Glaeser. It is sometimes stated that if a particle image is delocalized in a noisy
image field, the particle signal is necessarily “contaminated” by extra noise due to it being
spread over a larger noisy area (Downing and Glaeser, 2008; LeBarron et al., 2008). The
current analysis shows that this problem is avoided when multiple images are combined
using a Wiener filter, because the particle signal will be effectively re-localized, and this re-
localization will occur independently of the noise component of the images (assuming linear
additivity of the noise and signal components as in standard image formation models). We
note, however, that CTF modulation nevertheless leads to a substantial loss in signal energy,
regardless what type of reconstructing filter is applied, simply due to attenuation in the
average signal amplitude; such attenuation, for example, is evident at low resolution where
the CTF value approaches a minimum value near zero. Resetting the CTF of the microscope
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to a uniform value of one, as is the goal of recently-introduced Zernike “phase plate”
correctors (Danev and Nagayama, 2010), appears to be the only feasible way of mitigating
signal loss due to this latter effect.

Conclusions
We have presented a new method based on the Wiener filter for minimizing mean-squared
error in single-particle reconstructions, together with a comprehensive theory connecting
this filter to mask operators and resolution estimation. While we have restricted the analysis
in this report to the problem of 2D images, we note that our theoretical relations may also be
extended to the problem of 3D reconstruction, where a further benefit emerges: the Wiener
filter can actually improve the Fourier-space statistics of a 3D reconstruction by dampening
poorly-sampled regions of Fourier space. In contrast, improvements in the 2D case are
limited to gains in real-space CCC statistics; in other words, the FRC is unchanged by the
Wiener filter for the case where Fourier space is uniformly sampled.
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Abbreviations

CCC cross-correlation coefficient

CTF contrast transfer function

FRC Fourier ring correlation

PSSNR single-particle SSNR

SNR signal-to-noise ratio

SSNR spectral signal-to-noise ratio
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Figure 1. FRC calculations for isolated single particles depend on image size
(A) Noise-free projection image of PDB model 1MJK (256 × 256 pixels). In this figure and
all following, pixel values are scaled for maximum visual contrast within each image; these
scale factors thus vary somewhat from image to image.
(B) Projection image from A with white noise subsequently added to achieve a whole-image
SNR of 0.003. Image is reduced in scale relative to A, and is 512 × 512 pixels in size.
Dashed rectangles indicate 256×256 and 128×128 boundary boxes.
(C) SSNRno CTF characteristic of the noisy image in B, for various image sizes.
(D) Graphs of the FRC calculated between two independent straight averages of 50 noisy
images (as in B). Three graphs indicate the results of the calculation for the three different
image sizes shown in B.
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Figure 2. Image restoration of a synthetic single-particle image using a conventional Wiener
filter
(A) Results of whole-image cross-correlation comparison between the noise-free reference
image (Fig. 1A) and a Wiener-filtered composite of 100 256×256-pixel noisy images, each
noisy image having a SNR of 0.003 but no CTF applied (as in Fig. 1B). In this figure, the
SSNR term in the Wiener filter (Equation (4) ) has been varied above and below its known
value in the image data set by multiplication with a scalar factor (“filter scale factor”), such
that each x-value represents a slightly different incarnation of the filter and x=1 corresponds
to the “true” Wiener filter. Note that in this plot the single-particle Wiener filter would
correspond to a “filter scale factor” of 1/0.0328 = 30.5, for which the masked correlation to
the perfect image was found to be 0.66 (not visible on the scale shown here). Inset in the
lower right corner shows a magnified view of the particle region; inset in lower left corner
shows the identical view of the noise-free particle, for comparison.
(B) Tight binary envelope function generated from the noise-free image in Fig. 1A. Inset is
as in A.
(C) – (E) Output of the conventional Wiener filter for sets of 100 noisy images as in Fig. 1B,
for the three different box sizes. Note that CCCmask-ref = 0.929 for the SP Wiener filter
reconstruction. Inset is as in A.
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Figure 3. re-localization of signal intensity by single-particle Wiener filtering applied to a
defocus series of images
(A) Noise-free, CTF-modulated image (defocus is 1.4μm)
(B) Signal restoration achieved by phase flipping the image in B.
(C) Signal restoration achieved by applying a single-particle Wiener filter to the image in B.
The Wiener filter is implemented for the specific case of white noise, added to produce a net
SNR of 0.003.
(D) Signal restoration achieved by applying a single-particle Wiener filter to a series of 10
randomly defocused images as in B (defocus range 1μm to 2μm), for the same SNR
condition as in D.
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(E) Signal restoration as in E but for a series of 100 images.
(F) Plotted is the ratio of the squared power spectrum to the noise-free power spectrum for a
series of single-particle Wiener noisy image restorations, as a function of resolution. These
plots give the effective transfer function (or filtering function) that is applied to the “perfect”
image signal (independent of the noise) during image restoration.
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Figure 4. Image restoration using the single-particle Wiener filter
(A) Image restoration of the CTF-corrupted 100-image series as achieved by the
conventional Wiener filter; random defocus variations between 1 and 2 microns were
applied to the image series.
(B) Similar to A but using the single-particle Wiener filter, applying the known PSSNR
function (Fig. 1C). Insets in this and subsequent panels follow the scheme of Fig. 2.
(C) Similar to A, but using the single-particle Wiener filter, and applying the estimated
PSSNR function (see Fig. 5).
(D) Similar to A, but image restoration achieved by phase-flipping.
(E) Similar to A, but image restoration achieved by dividing the noisy images by the CTF
before summation.
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(F) Masked cross-correlation agreement between the Wiener-filtered composite image D
and the noise-free image A, for a series of modified Wiener filters where the PSSNR input to
the filter was adjusted upwards or downwards by a scalar factor (x-axis). Note that in this
graph, the conventional Wiener filter would correspond to a “filter scale factor” of 0.0328
(the mean squared value of the binary mask function depicted in Fig. 2A, see text). The
conventional Wiener filter result is therefore off the scale in this graph; the masked
correlation to the perfect image for this latter condition was 0.77.
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Figure 5. Estimation of the PSSNR from masked FRC calculations
A. FRC calculations for a 100-image data set (as in Fig. 2), split into halves and averaged to
produce two noisy particle estimates. In the masked FRC calculations, we applied either a
binary mask (identical to Figure 3B) or a smoothed mask. The smoothed mask was obtained
by expanding the border of the binary mask with a cosine-edge smoothing function
(Grigorieff, 2007) such that 〈env2〉 increased by approximately 50%.
B. FRC calculations from A, but with the smoothed-mask calculation rescaled by Equation
(19).
C. FRC calculations from A, but with the non-masked calculation rescaled by Equation (19).
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