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Abstract: We present a method to make phantoms of coronary arteries for 
intravascular optical coherence tomography (IV-OCT). The phantoms 
provide a calibrated OCT response similar to the layered structure of 
arteries. The optical properties of each layer are achieved with specific 
concentrations of alumina and carbon black in a silicone matrix. This 
composition insures high durability and also approximates the elastic 
properties of arteries. The phantoms are fabricated in a tubular shape by the 
successive deposition and curing of liquid silicone mixtures on a lathe setup. 
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1. Introduction 

Now that intravascular optical coherence tomography (IV-OCT) is accepted for clinical use in 
the United States, Europe and Japan, it is quickly evolving toward widespread utilization and 
commercialization. Further progression of the technology would be facilitated by its 
standardization and validation [1]. In that standardization and validation process, phantoms 
would play an important role. 

The characteristics of phantoms needed in the standardization and validation of a 
technology are often more complex than those needed at earlier stages of development. Initial 
testing of an optical system such as an OCT system can be performed on simple scattering 
slabs. However, the validation of a clinical system requires phantoms that closely mimic 
actual tissues [2]. The optical properties of the phantoms must be predictable and adjustable to 
represent different states of tissue. The standardization also requires phantoms that are 
durable, so they can serve as a reference to compare systems over time. 

In addition to standardization and validation, durable phantoms that closely mimic tissues 
can find uses as targets for training new users, for demonstrations, and for the development of 
new hardware or new applications. 

Various types of phantoms have previously been presented [3]. For OCT, phantoms have 
been developed to perform image analysis [4], to test magnetomotive [5] and elastographic [6] 
contrasts, to characterize the resolution of systems [7,8], and to mimic tissue optical properties 
with biological contrast agents [9]. A fabrication technique has also recently been presented to 
mimic complex structures in flat tissues [10]. 

However, IV-OCT is used to image arteries. Arteries have a tubular geometry and a 
multilayer composition. To our knowledge, no fabrication technique has been reported to 
fabricate such phantoms. Furthermore, no phantom designed for OCT has, to our knowledge, 
mimicked the optical properties of specific tissues. 

In this paper, we introduce a method to fabricate multilayer phantoms in a tubular 
geometry. The method is used to fabricate phantoms of healthy coronary arteries. The 
phantoms give an OCT signal calibrated to mimic that of porcine coronary arteries. They are 
durable and also have elastic properties similar to arteries. 

First, we describe the design of our phantoms and the method developed for their 
fabrication. Second, we describe and demonstrate how we determine the phantom 
composition to mimic the optical properties of coronary arteries. Third, we validate our choice 
of components by demonstrating the durability and homogeneity of the phantoms, which are 
very important properties for utilization of phantoms in a validation and standardization 
process. Finally, we illustrate the use of our fabrication technique by presenting an OCT 
image of a phantom mimicking the OCT response of a specific artery. Elements of discussion 
are presented throughout the paper, as the results highlight the advantages and the limitations 
of our method. 

2. Design and fabrication method 

In this section, we describe both the design and the fabrication of artery phantoms. First, the 
design subsection presents the general strategy underlying our proposed fabrication method. 
Then, the fabrication subsection describes the different constituents used and how they are put 
together to fabricate artery phantoms. 

2.1. Design 

Healthy coronary arteries are composed of three tissue layers: the intima, the media, and the 
adventitia. The innermost layer is the intima, a very thin layer of endothelial cells; the middle 
layer is the media, a thicker layer composed primarily of smooth muscle cells; the outer layer 
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is the adventitia, a layer mostly composed of collagen and connective tissue. Figure 1 shows 
an OCT image of a porcine coronary artery acquired in a beating heart model [11]. All three 
layers are distinctively observed because of their characteristic OCT signal: the intima shows 
as a fine band of high signal near the lumen; the media shows as a thick band of low signal; 
and the adventitia shows as another band of high signal. 

 

Fig. 1. OCT image of a healthy porcine coronary artery acquired in a beating heart model. 

In a homogeneous scattering medium, the amplitude of the OCT signal is related to the 
backscattering of the medium, and decays in depth with its total attenuation coefficient (µtot) 
[12]. We choose to make phantoms specifically for OCT by only replicating this subset of the 
optical properties of tissues. Throughout this paper, the term optical properties will then relate 
to this subset: the backscattering and the total attenuation of tissues. Replicating the 
backscattering and the total attenuation of specific tissues is achieved by mixing scattering 
particles and an absorbent in a transparent medium. To make phantoms of arteries, each artery 
layer is approximated as a homogeneous scattering medium, and a mixture is prepared with 
different concentrations of the scattering and absorbing ingredients. The concentrations in 
each mixture are determined through a calibration process, which includes two steps. The first 
step is the characterization of the optical properties of the phantoms with the concentration of 
each constituent. The second step is the determination of target values for each layer through 
measurements of arteries. Once the concentrations needed to mimic each layer are known, the 
phantoms are constructed in the form of a multilayer tube, with layer thicknesses varying 
between 20 to 300 µm. 

Coronary arteries are also elastic soft tissues. Mimicking their mechanical behavior in 
addition to their optical properties widens the range of applications for the phantoms. 
Examples of applications like monitoring angioplasty procedures, OCT elastography, etc. 
would not be possible with hard phantoms. In our method, elastic phantoms are obtained 
through the choice of an elastic transparent medium to mix the particles in. In this paper, we 
approximate that all three artery layers have the same behavior and choose a material that 
mimics the elasticity of the whole artery. Nevertheless, our proposed method can be used to 
fabricate more complex phantoms with different mechanical properties for each layer. 

2.2. Fabrication 

The support material of our phantoms is a mixture of a commercially available silicone 
(Sylgard 184, Dow Corning) with pure poly(dimethyl siloxane) (PDMS) (Fluid 200, 50 cst, 
Dow Corning). Sylgard 184 is sold as a two part kit (resin:reactive) to be mixed in a 10:1 
proportion. It cures in 48 hours at room temperature. Increasing the resin:reactive ratio of 
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Sylgard 184 softens the resulting silicone to some extent [13]. Adding PDMS further softens 
the silicone [5], but these formulations would require weeks to cure if not heated. Different 
formulations of silicone were characterized by tensile tests to compare their elasticity with 
that of a porcine coronary artery. The results are presented in Fig. 2. Each curve is identified 
by the PDMS:resin:reactive ratio of the sample. The formulation that better matches the 
elasticity of the artery for low deformations has a 22.5:15:1 ratio. However, the resulting 
silicone remains sticky. Typically, we use a ratio of 15:15:1. This formulation is much less 
sticky, but still approximates the elasticity of arteries much better than the standard 
formulation of Sylgard 184. The 15:15:1 formulation cures in about 1 hour at 50°C, or faster 
at higher temperatures. 

 
Fig. 2. Results of tensile tests for different silicone formulations and for a porcine coronary 
artery. Curves are identified by the PDMS:resin:reactive ratio. (L length, L0 length before 
stretch, F force, A0 cross section area before stretch). 

Alumina powder (Al2O3) provides the main contribution to the backscattering in the 
phantoms. A sample of 1 µm (nominal) deagglomerated alpha alumina polishing powder was 
kindly provided by Struers (Ballerup, Denmark). The specific gravity of alumina is 3.89 g/cm3 
and its refractive index is approximately 1.73. The powder was observed under scanning 
electron microscopy (SEM) to assess the shape and size of the particles. The particles have a 
somewhat spherical shape and a diameter of approximately 300 nm. Due to scattering, the 
alumina also causes significant attenuation. 

Further attenuation, when needed, is provided by carbon black. A free sample of Monarch 
700 was kindly provided by Cabot (Boston, Massachusetts). Its specific gravity is 1.7–1.9 
g/cm3. SEM imaging showed approximately spherical particles that are 50 nm in diameter. 

Mixtures are prepared by weighing the particles and adding the PDMS and Sylgard resin, 
without the reactive. The mixtures are sonicated for at least 5 hours to obtain uniform 
dispersions with a minimum of aggregates, before adding the reactive. 

Once the concentrations needed to mimic the optical properties of the three artery layers 
are obtained through a calibration process described in Section 3, the artery phantoms are 
constructed with a method specifically developed to fabricate multilayer tubes. The method 
consists in the successive deposition and curing of the layers on a lathe setup. Figure 3 
presents a schematic of the lathe setup. The setup is built around a rotating shaft. Close to the 
shaft is a blade mounted on precision rotation and translation stages. The distance and angle 
of the blade relative to the shaft determine the layer thickness on the full length of the 
phantom. The liquid mixture of a layer is deposited with a syringe while the shaft rotates. A 
heating element is located close to the setup to heat the mixture for polymerization. Once a 
layer is cured, the blade is retracted to the desired thickness for the next layer, and a different 
mixture is applied. The process is repeated until the required number of layers is obtained. 
Finally, the phantom is removed from the shaft very carefully, to avoid tearing. 
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Fig. 3. Lathe setup for artery phantom fabrication. (RS rotating shaft, LM layer mixture, DS 
deposition syringe, (B) blade, RTS rotation and translation stage, HE heating element, t 
thickness) 

3. Optical calibration 

The calibration process consists in the determination of the concentrations of alumina and 
carbon black required to mimic the optical properties of each artery layer. It involves the 
characterization of the backscattered amplitude and the total attenuation coefficient for 
various concentrations of both alumina and carbon black. It also involves the characterization 
of typical values from coronary arteries. In both cases, values are obtained from OCT 
measurements. In this section, we describe the method used to extract values of the 
backscattered amplitude and the total attenuation coefficient from OCT measurements. Then, 
we present the results obtained from the characterization of phantoms with various 
concentrations; and finally, we present the values obtained from the characterization of 
coronary arteries. 

3.1. Determination of optical properties through OCT measurements 

The OCT measurements are performed with a custom-built time domain OCT (TD-OCT) 
system built around an optical delay line based on rotating rhombic prisms [14] 
commercialized by Novacam Technologies (Pointe-Claire, Canada). The light source is a 
superluminescent light-emitting diode (Denselight, Singapore) centered at 1.3 µm with a 
bandwidth of 70 nm to provide a theoretical OCT resolution of about 11 µm. The beam in the 
sample arm of the interferometer is focused to a 42 µm diameter spot with a 2.1 mm depth of 
field measured in air. This long depth of field minimizes the influence of the focusing optics 
on the extraction of the optical properties. 

To insure repeatable measurements of the amplitude of the OCT signal, a reference setup 
was created. The reference setup consists in a sample window, a reference window, and an 
attenuator mounted together. The sample window is used to fix the sample position relative to 
the focal point of the incident beam. Its bottom surface is placed at the focal position of the 
beam and samples are slightly pressed against this surface. The window has an anti-reflective 
coating and a 2° inclination perpendicular to the incident beam to avoid saturation of its 
reflection. The reference window is placed in the vicinity of the sample window. Its upper 
surface is at focus and is perpendicular to the beam to insure a reflection with stable 
amplitude. An attenuator of optical density 3.0 (OD) is located above the reference window 
with a 3° inclination to avoid saturation of reflections from both the reference window and the 
attenuator. Each measurement of a sample is followed by a measurement of the reference 
window, and the signal is normalized by dividing its values by the peak value of the reference 
reflection. This setup accounts for variations of the system parameters like source power, 
gain, polarization, etc. 
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Values for the backscattered amplitude and total attenuation coefficient are obtained from 
OCT images by first selecting regions of interest (ROIs). The selection criteria are discussed 
later, since they differ when calibration samples or arteries are measured. Second, the ROIs 
are averaged along the lateral direction to smooth speckle, giving the average OCT profile. 
Third, the average OCT profiles are normalized to the amplitude of the reference reflection. 
Fourth, the noise level is subtracted and the result is corrected for amplitude variations of the 
axial point spread function due to beam propagation. That correction has little effect 
considering the depth of field of the beam used. Fifth, the normalized profiles are converted 
into their logarithm form. Finally, they are fitted with a linear model based on single 
scattering: 

 [ ] 0log log ,OCT tot
z z

S A
n

µ
−

  ∝ −    (1) 

where OCTS  is the averaged OCT profile, A is the backscattered amplitude of signal, µtot is 
the total attenuation coefficient of the sample, z is the optical depth in the image, z0 is the 
position of the surface or the beginning of a layer in the sample, and n is the refractive index 
of the phantom or artery. We follow the usual convention of defining µtot for the intensity. 
Therefore, the factor 2 that takes into account the roundtrip passage in an interferometer is 
cancelled by the fact that the OCT signal is proportional to the electric field backscattered by 
the sample. Calculations and fits are performed with Mathematica 7.0 (Wolfram Research, 
Champaign, USA). 

3.2. Properties of phantoms 

The backscattered amplitude (A) and the total attenuation coefficient (µtot) are expected to 
vary differently with the concentration of particles in the phantoms. Considering one kind of 
particles, the mathematical derivation presented in Appendix 1 shows that the backscattered 
amplitude is proportional to the square root of their concentration [4]. This relation is obtained 
by considering speckle statistics. For the total attenuation coefficient, a relation proportional 
to the concentration of particles can be derived based on single scattering and Mie theory [15]. 

When mixing several kinds of particles with different scattering properties, Appendix 1 
shows that the total backscattered amplitude takes the form: 

 2 ,i i
i

A a C= ∑   (2) 

where Ci is the concentration of a specific kind of particles, and ai is a parameter defining the 
contribution of these particles to the backscattered amplitude. For the total attenuation 
coefficient, the relation remains linear: 

 ,tot i i
i

b Cµ =∑   (3) 

where bi is a parameter defining the contribution of these particles to the total attenuation. 
The concentration dependencies specific to the addition of alumina and carbon black in 

silicone are measured from calibration phantoms. Calibration phantoms are made from 
mixtures prepared with the same process described in Section 2.2 using the 15:15:1 silicone 
formulation. However, instead of using the lathe setup, the mixtures are cast in flat moulds 
and cured in a laboratory oven at 50°C during one hour. 

In total, 64 slab shaped calibration samples were fabricated with concentration ranging 
from 0 to 60 mg/ml of alumina, and 0 to 1.6 mg/ml of carbon black in various combinations. 
The specimens were divided into 7 batches where the concentration of one additive was 
varied, while the other was kept constant. All specimens were measured from their top and 
bottom surfaces using TD-OCT with the reference setup described in Section 3.1. ROI were 
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selected where there is good contact between the sample and the window it was pressed 
against. The signal was averaged and the fit was performed over the portion contained 
between 125 µm and 500 µm in depth. Figure 4 illustrates the fit process from two 
calibrations phantoms both with 0.3 mg/ml of carbon black and with 12 and 36 mg/ml of 
alumina. 

 
Fig. 4. Examples of averaged OCT profiles and their fits. Samples have 0.3 mg/ml of carbon 
black. Alumina concentrations are 12 and 36 mg/ml. Only data between the vertical lines is 
considered in the fit. 

The data deeper than 500 µm deviates from the single scattering model. For the high 
concentration sample, this deviation is a known effect resulting from multiple scattering. For 
the low concentration sample, the cause of the deviation needs further investigation. However, 
since artery layers are typically thin (20–300 µm), their average OCT profiles should not be 
affected by these deviations. Therefore, we choose to drop the data deeper than 500 µm. 

Just after the surface reflection at depth zero, another deviation from the single scattering 
model appears. Measurements performed from the top, the bottom and the middle of cut cross 
sections of calibration samples all showed the same effect. Therefore, the hypothesis of non-
uniformity in concentration at the surface of samples was ruled out. A similar deviation has 
previously been noted in Monte Carlo simulations by Wang et al. [16]. In their paper, they 
classify the photons detected by OCT in two categories: the least scattered photons (LSP), and 
the multiple scattered photons (MSP). The LSP include photons that undergo single 
backscattering events, but also photons that undergo a few very small-angle forward scattering 
events before being backscattered. This last portion of the LSP causes an increase of signal 
right after the surface, because a small depth is necessary for the forward scattering events to 
occur before they are backscattered and contribute to the OCT signal. Nevertheless, Wang et 
al. show that after that deviation, the signal from the all the LSP has the form of an 
exponential decay like the single scattering model. Therefore, in our paper, we chose to 
neglect this effect and start the fit at 125 µm deep, dropping this deviation. The value of the 
backscattered amplitude, however, is still the value of the fit extrapolated to depth zero. The 
impact of this extrapolation on the values extracted is not significant, since the calibration 
process is a comparison of values between calibration samples and arteries. Therefore, the 
backscattered amplitudes can still be compared, as long as the same extrapolation is 
performed on fits from arteries as well. 

After fitting all samples, the concentration dependencies are obtained by plotting the 
resulting optical properties with respect to the varying concentrations in each batch of 
phantoms. Then another fit is performed on these curves with the models of Eq. (2) for the 
backscattered amplitude and Eq. (3) for the total attenuation coefficients. This process is 
illustrated in Fig. 5 for a batch of 8 calibration samples having concentrations from 0 to 42 
mg/ml of alumina and a fixed concentration of 0.3 mg/ml of carbon black. Values of the 
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optical properties are presented for measurements performed from both the top (blue circles) 
and the bottom (green squares) surfaces of samples, along with the fitted concentration 
dependencies (red line). The agreement between the optical properties measured from the top 
and the bottom of the calibration samples also indicates a very good homogeneity. 

 

Fig. 5. Plots of backscattered amplitude (A) and total attenuation coefficient (B) for a batch of 
8 calibration samples having concentrations from 0 to 42 mg/ml of alumina and a fixed 
concentration of 0.3 mg/ml of carbon black. Each plot shows values obtained from OCT 
measurements performed on the top (blue circles) and the bottom (green squares) of calibration 
phantoms; and the fitted concentration dependencies (red lines) (CAlu: concentration of 
alumina; CCB: concentration of carbon black; A. U.: Arbitrary units) 

In both Fig. 5A and Fig. 5B, the agreement between the expected concentration 
dependencies (Eq. (2) and Eq. (3)) and the data is quite good, but there are slight 
discrepancies. In Fig. 5B, the linear relation is well matched for the low concentrations; but at 
higher concentrations, the attenuation measured is less than expected. It is likely that the 
higher concentrations are affected by multiple scattering, which decreases the attenuation 
expected from the single scattering model. Because of the slight discrepancies, experimental 
calibration curves are considered more accurate than the fitted concentration dependencies to 
choose the concentrations required to mimic specific tissues. We illustrate the use of the 
calibration curves for the choice of concentrations in Section 3.4. Nevertheless, the fits with 
Eq. (2) and Eq. (3) still provide a good approximation, and they give insight on the overall 
behavior of the optical properties with the variation of composition of the phantoms. 

The fitted concentration dependencies obtained for the 7 batches of calibration are 
summarized in Table 1. These concentration dependencies provide the fitted parameters ai, 
from Eq. (2), and bi, from Eq. (3), for each batch. Ideally, the values should be the same for all 
batches. They represent the contribution of particles i to the OCT signal, and that contribution 
is expected to be independent of other particles. For the alumina, the aAlu values range 
between 0.48 and 0.69, and the bAlu values range between 0.16 and 0.22. These ranges are 
quite small, considering that the data already shows some discrepancies with the expected 
forms of Eq. (2) and Eq. (3). This indicates good predictability of the optical properties with 
respect to the concentration of alumina. In the case of carbon black, aCB values range from 
0.41 to 2.58. This variation is very large, but since the contribution of carbon black to the 
backscattered amplitude is negligible compared to the contribution of alumina, the aCB values 
are very imprecise. For the total attenuation coefficient, bCB values range mainly from 4.30 to 
5.90 except for one case, with a value of 2.92. A larger variation for carbon black than for 
alumina is to be expected because very small quantities of carbon black were weighted in the 
mixture preparation of these samples. Those quantities range from 10 to 50 mg and even 
though the balance used has a precision down to 0.1 mg, a precision of approximately 10 mg 
is more realistic due to the challenges of weighing nanopowders. Making larger batches could 
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improve this control. Overall, Table 1 gives a good overview of how well the optical 
properties of the phantoms can be predicted with our method. 

Table 1. Fitted calibration relations for 7 batches of calibration samples 

Samples 
Concentration of 
alumina (mg/ml) 

Concentration of 
carbon black 

(mg/ml) 
Fitted concentration dependencies 

for backscattered amplitude. 

Fitted concentration 
dependencies for 
total attenuation 

01 to 16 1.0 to 60.0 0 0.63 AlC  0.20 AlC  

17 to 24 0 to 41.9 0.3 2 20.63 0.41Al CBC C+  0.20 4.30Al CBC C+  

25 to 32 0 to 42.5 0.6 2 20.69 0.46Al CBC C+  0.22 2.92Al CBC C+  

33 to 40 0 0.2 to 1.6 0.90 CBC  5.12 CBC  

41 to 48 10.3 0 to 0.8 2 20.48 1.21Al CBC C+  0.17 5.61Al CBC C+  

49 to 56 20.3 0 to 0.8 2 20.58 1.84Al CBC C+  0.17 4.50Al CBC C+  

57 to 64 30.2 0 to 0.8 2 20.63 2.58Al CBC C+  0.16 5.90Al CBC C+  

3.3. Properties of arteries 

Target values of the backscattered amplitude and the total attenuation coefficient for artery 
layers are also needed. To validate our fabrication process, we choose to use optical properties 
from porcine coronary arteries, since they are easily available. However, porcine arteries 
usually do not show atherosclerosis, and their intima is a very thin single layer of cells 
(approx. 10 µm). The signal from the intima layer is often undistinguishable from the 
reflection of the window upon which the sample is pressed (see description of reference setup 
in Section 3.1). Therefore, target optical properties are only measured for the media and the 
adventitia. 

Porcine hearts were acquired from a slaughterhouse and kept at −80°C until 2 to 3 days 
before measurement. They were thawed in a refrigerator at 8°C. The left anterior descending 
artery (LAD) and the right coronary artery (RCA) were extracted, and cut open into segments. 
The segments were imaged using TD-OCT with the reference setup. To obtain a flat interface, 
the artery segments were slightly pressed against the sample window. In the images acquired, 
we selected regions of interest (ROI) where there was good contact between the intima and 
the sample window, and where the media-adventitia interface was parallel to the window-
intima interface. In total, 248 ROI of width ranging from 0.8 to 5.5 mm were obtained from 7 
arteries of 4 different hearts. The averaged OCT profile of each ROI was computed. It was 
normalized with the reference reflection and corrected for noise and PSF variations, before it 
was fitted with Eq. (1), as described in Section 3.1. Values of A and µt were obtained for both 
the media and the adventitia. For the adventitia, A was corrected for the attenuation through 
the media. Figure 6 shows an example of fit of an artery average OCT profile. Many profiles 
measured in arteries showed a deviation from the single scattering model right after the 
reflection from the interface. This kind of deviation was previously observed in the calibration 
phantoms (Fig. 4). Observing this deviation in tissues further supports the hypothesis that the 
deviation observed in Fig. 4 is due to an optical effect, and not to inhomogeneities in the 
phantoms. Like for the profiles of calibration samples, the deviation was not used in the fit of 
artery profiles. Histogram representations of the backscattered amplitude and the total 
attenuation coefficient measured for both layers in all the profiles are presented in Fig. 7. The 
results of Fig. 7 show a lot of variability in both properties of both layers. With such 
variability, there is a wide range of target values that can be used to obtain representative 
phantoms. 
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Fig. 6. Example of the fit of an averaged OCT profile measured on a porcine coronary artery. 

 
Fig. 7. Statistical distributions of optical properties of porcine coronary arteries measured by 
OCT. A. Backscattering amplitude of media, B. Attenuation of media. C. Backscattering 
amplitude of adventitia. D. Attenuation of adventitia. Average (Av) and standard deviation 
(STD) of each distribution are indicated on the graphs. 

3.4. Optical validation 

We illustrate the calibration process and demonstrate the adjustability of the optical properties 
by mimicking the averaged OCT profile from a specific artery image acquired for the 
characterization of Section 3.3. The optical properties extracted from that particular profile are 
given in Table 2. The four values are less than one standard deviation away from the average 
of the distributions presented in Fig. 7. 

From the calibration curves, we find the concentrations required to mimic the optical 
properties of that artery. We note again that experimental results directly from the calibration 
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samples are considered over the fitted concentration dependencies of Table 1. The data of 
samples 1 to 16 of Table 1 (various alumina concentrations, no carbon black), is used at first 
to find preliminary concentrations of alumina that provide the required backscattered 
amplitudes for each layer. The data also gives the total attenuation corresponding to these 
concentrations. If additional attenuation is required, preliminary concentrations of carbon 
black are obtained from the data of samples 17 to 24 (various carbon black concentrations, no 
alumina). The preliminary concentrations are adjusted, if necessary, based on the data 
obtained from samples 25 to 64 where samples combining similar concentrations of both 
alumina and carbon black have been characterized. Following that process, we obtain 
concentrations of 14 mg/ml of alumina and 0.5 mg/ml of carbon black for the media layer; 
and 50 mg/ml of alumina, no carbon black, for the adventitia. 

With mixtures prepared with these concentrations, we cast two single-layer phantoms, flat-
shaped like calibration phantom. The two mixtures were also successively cast and cured to 
make a flat two-layer phantom (phantom 1), using predefined volumes to adjust layer 
thickness. These samples were measured with TD-OCT using the reference setup and their 
optical properties were extracted with the same process as for calibration phantoms or for 
artery segments. Figure 8A shows the averaged OCT profile of phantom 1 plotted over the 
artery profile. The agreement between both profiles is very good. 

The optical properties measured for phantom 1 and the single-layer phantoms 
corresponding to its media and its adventitia layers are also presented in Table 2. The values 
obtained for the single-layer phantoms correspond very well with the target values of the 
artery. It confirms that despite some uncertainties in the measurements and some deviations 
from the models, the calibration curves are very efficient in predicting the concentrations 
needed to mimic specific optical properties. The measured properties of the adventitia layer of 
phantom 1, however, slightly differ from the properties measured from the corresponding 
single-layer phantom, most likely due to the passage through the media layer of phantom 1. 
The effect of that difference on the agreement between the profiles in Fig. 8A is very small. 

Nevertheless, based on the results of phantom 1, a small empirical correction in the 
composition of the adventitia layer can be made to obtain an even better agreement. 
Increasing the concentration to 60 mg/ml of alumina, a new single-layer and a new two-layer 
phantom (phantom 2) were fabricated and measured. The profile of phantom 2, also plotted 
over the artery profile, is presented in Fig. 8B. The optical properties obtained for phantom 2 
and the single-layer phantom with 60 mg/ml of alumina are given in Table 2. Only with that 
small adjustment, the agreement between the artery and phantom 2 becomes excellent for both 
the profiles and the measured optical properties of the layers. 

 
Fig. 8. Averaged OCT profiles of two-layer phantoms plotted with corresponding artery 
profile. (A) Phantom based on calibration samples (B) Improved phantom fabricated with 
further refinement of the alumina concentration in the adventitia layer. 
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Table 2. Optical properties measured on the artery and the two-layer phantoms 
presented in Fig. 8. The optical properties of single-layer phantoms made with the 

mixtures used for each layer are also presented. 

Sample 

Media  Adventitia 

Backscattered 
amplitude 

Total 
attenuation 

(mm−1)  
Backscattered 

amplitude 

Total 
attenuation 

(mm−1) 
Artery 2.2 4.2  4.6 7.3 
Media layer of phantoms 1 and 2 2.2 4.3  — — 
Adventitia layer of phantom 1 — —  4.6 7.2 
Phantom 1 2.0 3.9  3.9 6.3 
Adventitia layer of phantom 2 — —  5.8 8.2 
Phantom 2 2.2 4.4  4.7 7.1 

4. Phantom durability and homogeneity 

For many applications, and especially for a standardization and validation process, the 
durability of phantoms is a highly valued characteristic. To assess the durability of our 
phantoms, two series of OCT measurements on calibration phantoms were performed thirteen 
months apart. The second series of measurements was also designed to assess the 
homogeneity of the phantoms. 

The whole experiment was performed on a batch of calibration samples containing 10 
mg/ml of alumina, and 0 to 0.8 mg/ml of carbon black (samples 37 to 44 of Table 1). The 
measurements were performed with the TD-OCT system with the reference setup; and the 
optical properties were extracted with the method described in Section 3.1. For the two series 
of measurements, the dependencies of the backscattered amplitude and the total attenuation 
coefficient upon the carbon black concentration are presented in Fig. 9A and Fig. 9B, 
respectively. In November 2009 (green dots), single images were analyzed for each phantom. 
In December 2010 (blue dots), nine images from different locations were analyzed for each 
phantom. 

The consistency of the results is very good, with standard deviations of less than 5% 
between all the values obtained from each sample. No evolution of the properties is observed 
between the values of 2009 and the values of 2010, which demonstrates the durability of the 
phantoms over time. Although proof of durability is made for a period of one year, we believe 
that the shelf life of the phantoms is much longer. That consistency also shows that the 
reference setup is efficient in compensating for variations in the measurement system. 

 
Fig. 9. Backscattered amplitudes (A) and total attenuation (B) measured 13 months apart on a 
batch of calibration phantoms with increasing concentration of carbon black and fixed 
concentration of alumina (10 mg/ml). For the November 2009 series, measurements performed 
in a single region are shown (green dots), while for the December 2010 series, measurements 
performed in 9 different regions are shown (blue dots). 
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The very small variations observed in the values obtained from nine different locations in 
the December 2010 series also demonstrate the homogeneity of the phantoms. Homogeneity is 
another important property for phantoms to be used in a standardization and validation 
process. 

5. Artery phantom imaging 

We have demonstrated that our method allows mimicking specific optical properties and that 
the resulting phantoms are durable. We now demonstrate the fabrication of a multilayer 
tubular phantom with the method described in Section 2.2 and based on the lathe setup of Fig. 
3. 

For that demonstration, we fabricated an artery phantom to mimic the optical properties of 
the same artery as that considered in Section 3.4. The mixtures used in the fabrication of that 
phantom were 14 mg/ml of alumina and 0.5 mg/ml of carbon black for the media, and 60 
mg/ml of alumina, no carbon black, for the adventitia. Since the intima is too thin, no target 
optical properties were obtained through the characterization of porcine arteries, as mentioned 
in Section 3.3. Qualitatively, the intima provides a higher OCT signal than the media, but a 
lower OCT signal than the adventitia. Based on these characteristics, a concentration of 20 
mg/ml of alumina was chosen from our calibration curves to provide such a signature. 

The phantom was fabricated by successively depositing and curing the three mixtures on 
the lathe setup, starting with the intima. After the phantom was removed from the shaft, it was 
imaged with our proprietary IV-OCT system based on swept-source technology. This IV-OCT 
system, including a custom-built catheter probe, was described in a recent publication [11]. It 
uses a Santec source (Aichi, Japan| sweeping over 108 nm around the 1.33 µm wavelength, at 
a rate of 30 kHz. An OCT image of the phantom is presented in Fig. 10. The three layers of 
the phantom are well contrasted. Figure 10 also demonstrates that our technique allows the 
fabrication of layers as thin as 10-20 µm. Such a thin layer would be very difficult to obtain 
with a molding technique. 

 

Fig. 10. IV-OCT image of a coronary artery phantom. 

6. Conclusion 

We have presented a new method to fabricate phantoms of healthy coronary arteries. Each 
layer is made from a homogeneous mixture of alumina and carbon black in silicone. The 
silicone used in the phantom fabrication has elasticity similar to soft tissue for low 
deformations. By thoroughly characterizing the properties obtained from the various 
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combinations of constituents, we are able to mimic the OCT signal from coronary arteries 
both in amplitude and in total attenuation. The polymerized mixtures of alumina and carbon 
black in silicone proved to maintain their optical properties over several months. We are 
confident that this period could be extended to several years. 

The fabrication of the coronary artery phantoms is based on the successive deposition and 
curing of different mixtures on a lathe. Although coronary arteries are our preferred 
application, the method is well suited to other tubular tissues. There are several applications 
where OCT is used for imaging within tubular organs. In the field of endoscopic OCT, side 
imaging probes are used in the whole vascular system, the gastrointestinal tract, the breast 
duct and the urinary tract [17]. Following adequate characterization of the averaged OCT 
profile of these structures, it should be possible to make durable phantoms for these 
applications using our technique. 

The development of this method to fabricate healthy artery phantoms is also a first step 
toward the fabrication of phantoms that can mimic arteries with various conditions related to 
atherosclerosis. Such phantoms would provide enhanced tools for the standardization and 
validation of IV-OCT. 

Appendix A 

In this Appendix, we provide an approximate model for the dependency of the amplitude of 
the OCT signal upon the concentration of scatterers. 

In time-domain OCT, imaging is usually obtained from the amplitude OCTS  of the 
complex OCT signal OCTs . The complex OCT signal OCTs  results from the interference 
between the electric field from the reference arm and the electric field from the sample arm of 
the interferometer. The complex OCT signal for a given optical depth z  can be expressed in 
the simplified form 

 ( )( ) ( ) exp ,OCT n n n
n

s z a g z z jθ∝ −∑   (A1) 

where na  is a parameter related to the amplitude of backscattering provided by the nth 
scatterer located at optical depth nz , ( )ng z z−  is the amplitude of the point-spread function, 

nθ  is a phase factor, and j is used for the unitary imaginary number. For a given optical depth 
z, only the scatterers contained within the probed volume defined by the width of ( )ng z z−  
contribute to the OCT signal. For a biological tissue, a large number of scatterers are usually 
contained within this probed volume. For each scatterer, the phase factor nθ  varies rapidly 
with the location of the scatterer. Therefore, the phase factor nθ  is uniformly distributed over 
the range [ ]0,2π . As a result, the complex OCT signal at a given optical depth z is a circular 
complex variable. This translates into the speckled nature of OCT images. The amplitude 

OCTS  of the complex OCT signal OCTs  is provided by [18] 

 2 2( ) ( ) ,OCT n n
n

S z a g z z∝ −∑   (A2) 

where ...  denotes averaging. As a first approximation, the backscattering parameter na  

takes the constant value a for all scatterers. Evaluating 2( )ng z z−  results in a constant term 
and the summation in Eq. (A2) becomes proportional to the concentration C of scatterers 
providing 

 ( ) .OCTS z Ca∝   (A3) 
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Generalizing Eqs. (A2) and (A3) to a mixture of different scatterers leads to 

 2( ) ,OCT i i
i

S z C a∝ ∑   (A4) 

where the summation runs over all i types of scatterers, each type being characterized by a 
concentration iC  and a backscattering parameter ia . 

The above result was obtained for time-domain OCT but applies equally well to Fourier-
domain OCT. 
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