Table 2.
Model | B | SE | Wald | p | TN | FN | TP | FP | Hit Rate | Sensitivity | Specificity | AUC | SE | CI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | ||||||||||||||
AWP | –0.337 | 0.080 | 17.593 | .000 | 47 | 3 | 21 | 51 | 55.7 | 87.5 | 48.0 | .834 | .043 | .751–.918 |
Constant | 0.777 | 0.476 | 2.658 | .103 | ||||||||||
Model 2 | ||||||||||||||
AWP | –0.265 | 0.084 | 9.979 | .002 | 69 | 3 | 21 | 29 | 73.8 | 87.5 | 70.4 | .860 | .041 | .780–.940 |
DA | –0.195 | 0.081 | 5.743 | .017 | ||||||||||
Constant | 1.971 | 0.721 | 7.435 | .006 |
Note: N = 122. TN = true negatives; FN = false negatives; TP = true positives; FP = false positives; hit rate = (TP + TN)/N; sensitivity = TP/(TP + FN); specificity = TN/(TN + FP); ROC = receiver operating curve; AUC = area under the curve; AWP = Algorithmic Word Problems; DA = dynamic assessment of algebraic learning. Hit rate, sensitivity, and specificity are expressed as percentages.