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Abstract
The collection and analysis of genomic data has the potential to reveal novel druggable targets by
providing insight into the genetic basis of disease. However, the number of drugs, targeting new
molecular entities, approved by the US Food and Drug Administration (FDA) has not increased in
the years since the collection of genomic data has become commonplace. The paucity of
translatable results can be partly attributed to conventional analysis methods that test one gene at a
time in an effort to identify disease-associated factors as candidate drug targets. By disengaging
genetic factors from their position within the genetic regulatory system, much of the information
stored within the genomic data set is lost. Here we discuss how genomic data is used to identify
disease-associated genes or genomic regions, how disease-associated regions are validated as
functional targets, and the role network analysis can play in bridging the gap between data
generation and effective drug target identification.

The role of human genomics in drug target discovery
The current paradigm of target-based drug design is limited, not by the synthesis of new
chemical compounds, but by the identification of novel biological targets. All biological
macromolecules (i.e., DNA, RNA, proteins, carbohydrates and lipids) are potential drug
targets, although the vast majority of drugs target proteins [1, 2]. With an estimated 10,000
potentially druggable targets in humans, there are fewer than 400 distinct molecular targets
of drugs approved by the US Food and Drug Administration (FDA)[1, 2, 3]. Over the past
50 years, the number of drugs sharing the same mechanism of action or target has averaged
4.1, ranging from 2–14 drugs per target [4]. There is potential to reveal new and better
druggable targets by taking advantage of the recent trend in genomic research to
comprehensively map the genetic basis of human disease [5]. Acquisition of such a map can
provide a new perspective on disease etiology by revealing druggable targets that address
the cause of disease as opposed to those that are palliative.

The landscape of human genomics research has undergone a profound transformation over
the course of the last decade, but the fundamental goal of understanding the mapping
relationship between a genotype and a phenotype has remained constant. The Human
Genome Project (HGP) was completed in 2003, releasing, for the first time, a
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comprehensive map of the three billion nucleotides that make up the human genome [6].
This impressive feat was touted as the discovery of the `book of life,' carrying with it the
promise to saturate the research community with disease-causing genes and novel drug
targets. The expectation was that a simple mapping relationship would emerge in which
each disease had one causal gene, and hence, one effective druggable target. Instead, it
became apparent that the genome is more complex than predicted and that the DNA
sequence alone has limited value for understanding the dynamic nature of gene expression.
To date, the translatable results stemming from the HGP have been few, but perhaps more
importantly, the HGP has served as a scaffold for the unbiased collection of data on the
genomic scale.

Genomic data is collected for studies of evolution, population variation, gene function, and
disease association. In the last ten years, billions of nucleotide bases have been sequenced,
millions of functional elements have been identified, and thousands of chromosomal regions
have been associated with disease contributing valuable insight into the genotype to
phenotype mapping relationship. With the staggering volume of data being routinely
collected, the utility of these genome-wide measures largely depends on the computational
interventions used to transform the data into an interpretable form. For the purpose of
identifying novel drug targets, it is essential to choose computational methods that can take
into account the role that disease-associated genetic factors play within the broader context
of the entire genetic regulatory system [7]. Here we discuss how genomic data is used to
identify and interpret disease-associated genes or genomic regions and the role network
analysis can play in bridging the gap between data generation and effective drug target
discovery.

Genome-wide association studies (GWAS): mapping the genetic basis of
disease

A byproduct of the Human Genome Project was the systematic identification of single
nucleotide polymorphisms (SNPs). SNPs are individual base pair changes commonly found
in the DNA sequence that can capture genetic variation between individuals [8, 9]. A
database cataloging not only common SNPs but also the correlation structure between these
SNPs has been assembled through the HapMap Project [10]. This correlation between SNPs,
called linkage disequilibrium (LD), occurs because recombination rarely happens between
sites of DNA that are in close proximity to one another, meaning that neighboring SNPs
tend to be inherited together more often than would be expected if they were segregating
independently. These neighborhoods are known as haplotype blocks, and due to LD, the
entire neighborhood can be reconstructed by identifying only a few of its SNPs [11]. Based
on this knowledge, it is feasible to measure genome-wide variation by sampling only a
subset of all known SNPs. Together, the sequencing of the human genome, the generation of
the HapMap, and high-throughput genotyping arrays have laid the foundation for
population-based genome-wide association studies (GWAS) [6, 10, 12].

GWASs for the identification of disease-associated variants detect correlations between SNP
alleles and the presence or absence of a disease. These studies are conducted by selecting
one subset of the population to represent cases (i.e., individuals with disease), and another to
represent matched controls (i.e., individuals without disease). High-throughput genotyping is
done by hybridizing purified DNA samples from each individual in the study to high-density
microarrays that contains allelle-specific oligonucleotide probes [13]. The probes are chosen
as representatives of haplotype blocks uniformly distributed across the genome. DNA-probe
pairs are detected by afluorescent signal that can be used to infer SNP genotypes.
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Traditional statistical analysis (e.g., χ2 test of independence, logistic regression) and more
recent data mining approaches (e.g., random forests, multifactor dimensionality reduction
(MDR)) are used to establish significant differences between the SNP genotype profiles of
cases and controls [14, 15]. If a SNP allele is detected more often in the presence of a
disease, then that SNP allele is said to be associated with that disease and becomes a
candidate for a replication study to validate the association [16]. An associated SNP is not
necessarily responsible for conferring disease. Due to LD, the disease-associated SNP may
instead be a proxy for a nearby causal variant [17].

Perhaps the best example of novel target discovery by a GWAS comes from research on
age-related macular degeneration (AMD), the leading cause of severe vision loss in elderly
populations. A SNP allele in the complement factor H (CFH) gene was found to have a
statistically significant association with AMD [18]. The association between CFH and AMD
was unexpected, yet it has been repeatedly observed [19, 20, 21]. Currently, new therapeutic
strategies targeting the complement factor pathway are under development, including a
recombinant CFH protein carrying the protective allele [22]. This example illustrates the
impact GWASs can have on drug development by novel target discovery. However, AMD
has been the exception rather than the rule.

GWASs have identified over 1200 genomic regions associated with common phenotypic
traits and diseases [23]. However, unlike the case of AMD in which the CFH variant is
associated with a multi-fold increase in risk (4.6–7.4 fold), the vast majority of GWASs
have not revealed obvious disease mechanisms or drug targets [18]. In general, individual
SNPs confer only incremental changes in relative risk (1.1–1.5 fold) and account for only a
small proportion of heritability (<5%) in common diseases [24, 25]. Ongoing studies
continue to search for this missing heritability. Some of the most common explanations
include roles for unmeasured low-frequency and rare alleles, many variants each conferring
small effects, and gene-gene and gene-environment interactions [26, 27, 28]. Furthermore,
the functional role of the vast majority of variants is unknown, highlighted by the fact that
over 80% of disease-associated SNPs are found in non-coding regions of the genome [25].
Readers are referred to existing literature for more information on GWASs and methods to
resolve the missing heritability [13, 29, 30].

It is important to acknowledge that GWASs are designed to identify disease-associated
variants based on statistical correlations without regard for prior biological knowledge.
Amassing sets of disease-associated genetic variants does not directly translate into an
understanding of the genetic basis of disease. Rather, disease-associated variants provide a
foothold for generating testable hypotheses within the context of known biology.

From disease-associated genomic regions to functional targets
Biological functions arise from context-dependent interactions among cellular
macromolecules [31]. To understand the genetic mechanisms that underlie common diseases
it is necessary to validate the functional consequences of genetic variation within a relevant
biological context. It is this functional insight into the dynamic nature of gene regulation and
expression that can offer unparalleled resolution of biological processes, and by extension,
disease processes that can be directly targeted.

Functional genetics
The paradigm of target-based drug discovery was founded on the principles of functional
genetics. Functional assays driven by molecular biology enable the isolation and
characterization of disease-associated genes and gene-products which can be molecularly
targeted by specific drugs [32]. One of the earliest successes in this area was the discovery
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of imatinib for the treatment of chronic myelogenous leukemia (CML). Chromosomal
staining and microscopy studies revealed a consistent reciprocal translocation between
portions of chromosomes 9 and 22 in cells collected from CML patients [33, 34, 35]. This
translocation results in a gene fusion to create the BCR-ABL oncogene [36].

The functional consequence of the BCR-ABL gene fusion is the production of the BCR-
ABL protein product, which has elevated tyrosine kinase activity [37, 38]. Evidence for a
causal relationship between BCR-ABL and leukemia was demonstrated in mouse models in
which the introduction of the BCR-ABL transgene resulted in the onset of a leukemia-like
disease [39, 40]. A chemical screen for the inhibition of BCR-ABL activity produced a lead
compound that was used as the structural basis for the synthesis of imatinib [41].

Imatinib selectively inhibits the proliferation of BCR-ABL -expressing cells without
affecting the growth of normal cells [42]. Imatinib has been FDA-approved for use in BCR-
ABL -positive CML patients since 2001. This example embodies the integral role of
functional genetics in elucidating the causal genetic component of a disease and using that
knowledge to identify or design rational drug therapies.

Functional genomics
Many functional assays now draw on established DNA sequence information and advances
in technology to collect functional data on the genomic scale. These assays have given rise
to new fields of study including transcriptomics (i.e., gene expression profiling),
epigenomics (i.e., DNA methylation and chromatin remodeling), cistromics (i.e.,
transcription factor binding profiling), and proteomics (i.e., protein expression profiling).
Functional assays, in addition to validating the association between genes or DNA sequence
variations and disease, are also used in unbiased screens to compare genetic variability
between controls and disease cells or tissues to provide clues regarding disease mechanisms.

Functional genomics have played a crucial role in elucidating the molecular basis of cancers
[43,44, 45]. For example, the distinct subtypes of breast cancer (i.e., basal-like, luminal A,
luminal B, ERBB2+, and Claudin-low), in addition to normal breast-like tumors, are defined
by unique patterns of gene expression which were discovered by transcriptional profiling
with gene expression microarrays [46, 47]. These gene signatures can be used to predict
patient relapse, overall survival, and treatment response to stratify patients for tailored
therapies [48]. This use of functional genomics has significantly advanced our
understanding of cancer by demonstrating that cancers, once thought to be single diseases,
can have very different genetic mechanisms which explain variable treatment responses.

Functional genomics have also been used to identify druggable targets in cancer cell lines
through the use of high-throughput RNA interference (RNAi) screening technologies [49].
This approach enables the silencing of genes in a sequence-dependent manner through the
use of established short-interfering RNA (siRNA) libraries. Eligible targets are identified
when gene silencing results in a loss of cell viability. Effective targets will be cell line-
specific, as genes are differentially regulated under various biological conditions. This is just
one example of the utility of functional genomics assays in druggable target identification.
For a complete review of the role of functional genomics throughout the drug discovery
process see Kramer et al. [50].

Bridging the gap with network analysis
There has been a decline in the approval rates of new drugs following the widespread
adoption of genomic technologies in the drug development process [51]. The absence of
translatable results can be partly attributed to the way in which genomic data are

Penrod et al. Page 4

Trends Pharmacol Sci. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conventionally analyzed. Genomic data sets capture the global state of a biological system at
a given moment in time. Through serial sampling and integration, genomic data has the
potential to reveal systems level behavior. Paradoxically, this context-specific data is most
often analyzed from a reductionist perspective with the intention of isolating independent
disease-associated genetic factors as potential drug targets. However, even when
functionally validated, the aberrant activity of a disease-associated gene or gene product
alone does not necessarily make it the best target. Rather, the effectiveness of a potential
target is determined by establishing its position within the hierarchy of the regulatory control
mechanisms within the cell [7]. By disengaging disease-associated genetic factors from their
position within the genetic regulatory system, much of the information stored within the
genomic data set is lost. This paradox can be resolved by analyzing genomic data with new
computational strategies that move away from the one gene or one variant at a time
approach toward a more holistic approach that recognizes the complexity of the underlying
genetic basis of a disease [30].

Network biology
Biological macromolecules that serve as drug targets are also the basic building blocks, or
component parts, of biological systems. The interactions between these component parts
give rise to biological functions [31]. Accordingly, biological systems can be modeled by
networks to capture the global web of interactions that connect the individual component
parts [52]. In this context, the network is used as an abstract representation of genomic data
in which nodes represent one or more genomic entities (e.g., mRNA, gene, protein) and
edges indicate an interaction or relationship such as co-expression, transcriptional
regulation, or physical interaction between the pairs of nodes that they connect. This
abstraction allows for versatility enabling network analysis to be applied to many types of
empirical data. It is the high-throughput, genome-wide measurements of the cellular state at
a given time that enable the assembly and analysis of genomic networks.

Genome-wide regulatory networks (GWRN): from disease-associated
variants to disease-associated genes

Network analysis provides a way to model the complex interactions within and between the
multiple levels of genomic information that direct biological function. For example,
genome-wide regulatory networks (GWRN) have recently been proposed as a framework for
integrating prior biological knowledge with empirically gathered GWAS data into a single
multidimensional network [53]. The nodes of a GWRN regulatory network can be genes,
enhancers, promoters, insulators, and DNA sequence variants. The edges are based on
linkage disequilibrium as reported by the HapMap, long-range physical interactions, or
transcription factor binding sites. As illustrated in Figure 1, a GWRN is built from a defined
starting point, an associated variant identified by a GWAS. The network is developed by
adding edges based on empirical evidence gathered at the genome-wide level either
independently or from publicly available databases. By following the edges between the
various classes of nodes, regulatory mechanisms can be traced between genomic elements.
This process guides the generation of novel mechanistic hypotheses and potentially leads to
the assignment of functional causality to disease-associated variants.

Our knowledge of genome-wide regulation is still in its infancy. What we do know however,
is that the regulatory architecture of the cell is highly distributed and interconnected. The
human genome does not behave like a rigid segment but folds and interacts with itself within
the nucleus. These interactions involve both physical loops of chromatin and the diffusion of
transcription factors (TFs) to enhancers. Based solely on loops, each Transcriptional Start
Site (TSS) for a gene interacts on average with five distal regulatory elements. Conversely,
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each distal regulatory element interacts on average with eighteen TSSs (Job Dekker,
personal communication). Given the pervasiveness of distal enhancers and chromatin loops,
regulatory elements and their target genes are unlikely to be contiguous on the genomic
segment. Thus, disease-associated variants need not be close to the genes they affect; they
can even be on different chromosomes.

The assembly of GWRNs has only recently become feasible. First, the chromatin signatures
of pivotal regulatory elements have now been discovered [54, 55]. With the advent of
chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq), regulatory
elements can now be mapped at the genome-wide level. Second, through ChIP-Seq, the
binding sites for a given TF can be assessed genome-wide for a given cell-type. Third, the
chromatin conformation capture family of techniques has allowed the genome-wide
mapping of chromatin loops (see [56]). Through these technologies, the regulatory nodes
and edges formed through TF diffusion and chromatin architecture are now being mapped
extensively. The ENCODE project (ENCyclopedia Of DNA Elements) acts as a hub for
such data sets and is growing rapidly [57].

The detailed mechanistic information provided by GWRNs, once experimentally validated,
can greatly contribute to our understanding of the genetic basis of disease. It is this
understanding of the regulatory control mechanisms that underlie a disease, within the
broader context of the entire system, that can reveal the Achilles' heel of that disease as a
potential target itself or as a marker to look for more appropriate upstream or downstream
targets. Furthermore, given our current knowledge of genomic architecture, each disease-
associated variant will likely yield dozens of disease-associated genes from which to select
functional targets.

Network pharmacology: from disease-associated genes to functional
targets

Network analysis also provides a way to model the complex interactions that occur between
single levels of genomic information, (e.g., through protein-protein interaction networks or
gene-gene co-expression networks). The nodes of these networks represent a single genomic
entity. The edges are usually based on known physical interactions or statistical correlations.
These types of networks are analyzed for their structural and dynamical properties which
can be manipulated in silico to study the internal organization of the system [52]. For
example, the connectivity of a network is a structural characteristic that describes the
arrangement of edges connecting the various nodes within the graph. Comparative analysis
between healthy and disease networks can identify changes in network connectivity
provoked by the disease state that may reveal gains in function or vulnerabilities such as the
loss of biological redundancy, loss of feedback regulation, or changes in the regulation of
druggable targets [58]. Accordingly, target identification through network analysis involves
prioritizing those nodes in the disease network that, when selectively targeted, will modify
the network connectivity to reorganize the aberrant interactions reverting the network back
to the healthy state or, when appropriate, leading to cell death (e.g., cancer). Effective target
nodes can also be systematically identified by studying two network properties that are
closely related to connectivity, information flow through networks and robustness (i.e.,
resilience to perturbations) of networks.

Information flow through interaction networks is based on the connectivity and position of
individual nodes. Signals propagate through connected nodes to create paths through the
graph. As information is passed from an affected node to its neighboring nodes, information
cascades ripple across the network. Network models of social, technological, and biological
data tend to have many nodes with few connections, termed peripheral nodes, and few nodes
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with many connections, termed hubs (see Figure 2) [52]. Hubs play an important anchoring
role in maintaining the integrity of a network.

In the context of a protein-protein interaction network, a study of the connectivity of known
protein targets of FDA-approved drugs revealed that the targeted proteins tend to have more
connections on average than peripheral nodes but fewer connections on average than hubs
[59]. This is a logical finding in terms of information flow because hubs are so well
connected that their modulation may lead to cascading effects that cause unexpected side-
effects or compromise the integrity of the network. Peripheral nodes, on the other hand, are
generally on the fringe of the network and the effects of their modulation may have limited
reach. This demonstrates that successful drug targets have intermediate connectivities and
suggests a strategy based on node connectivity with which to prioritize potential drug
targets.

Additional network metrics provide further nuance to this strategy. Studies in yeast have
shown that nodes positioned at critical junctures of information flow within a network also
make promising targets. Examples of these positional nodes are bridging nodes, (i.e. nodes
connecting otherwise isolated sub-networks (Figure 2)). When knocked-out in yeast,
bridging nodes have lower lethality than hubs, meaning that their modulation can alter the
connectivity of a network while maintaining its integrity [60]. In addition, bridging nodes
are independently regulated based on the biological context, meaning that the connectivity
of bridging nodes may be specific to a disease network [60]. Together, these findings
suggest that the modulation of bridging nodes can potentially abrogate aberrant interactions
without destabilizing the entire system.

Other of positional nodes are bottlenecks or nodes with high centrality (i.e., the thoroughfare
nodes of the network, see figure 2). Studies of yeast protein-protein interaction networks
show that, like bridging nodes, bottleneck nodes are independently regulated, showing
below average co-expression with their neighbors [61]. However, bottleneck nodes tend to
be essential proteins. Therefore, unlike bridging nodes, their removal causes lethality in vivo
and compromises network stability in silico [61]. This point highlights that the desired
therapeutic goal can dictate the selection of either bridging nodes or bottlenecks. Although
no single network property will universally reveal the optimal target, together the network
properties of node connectivity and position can facilitate the efficient identification and
prioritization of druggable targets in disease-specific networks.

In some occasions, however, a single functional target may not be the best solution.
Biological systems respond to exogenous perturbations, such as drug treatments, through
coordinated responses and interactions of cellular components. This type of response has
been visualized in individual cancer cells where the temporal expression levels and
localization of approximately 1000 tagged-proteins were tracked following treatment with a
chemotherapeutic agent [62]. In this study, nearly all of the proteins showed a dynamic
response. Many of these responses were cell-specific and correlated with survival outcomes,
demonstrating both biological robustness and fragility in the face of a pharmacological
perturbation. Biological systems have evolved buffering mechanisms through feedback
regulation and functional redundancy to help them endure both endogenous and exogenous
perturbations. However, the system is vulnerable when challenged with perturbations for
which these mechanisms cannot cope [63].

Network analysis provides a computational framework for performing perturbation
experiments in silico and to assess the global effects of targeted interventions [52]. These
experiments measure the stability or the resilience of a network to targeted perturbations
which simulate pharmacological inhibition. The removal of nodes or edges correspond to
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complete or partial inhibition, respectively [64]. Perturbation studies on the transcriptional
regulatory networks of yeast and bacteria show that partial inhibition of multiple targets can
have a larger effect on the structural properties of the network than the complete inhibition
of a single, well-connected node [64]. This is consistent with the notion of biological
robustness in that the partial inhibition of multiple targets can more effectively eliminate the
functional redundancies and reorganize feedback loops to abrogate disease processes. This
result has clear implications for the identification and prioritization of potential targets, and
supports the recent trend toward polypharmacology, that is, the philosophy that multiple
targeted therapies will be the most effective treatment strategies [32].

Concluding remarks
The paradigm of target-based drug design followed from advances in molecular biology and
functional genetics. A surge in technology ushered-in the era of genomics, changing the way
data is collected by enabling genome-wide surveys at the population and functional levels.
This has lead to unbiased screens for disease causing genes or genetic variants in genomics
and parallel unbiased screens for therapeutic targets in the drug discovery process. Limited
success in identifying effective drug targets can potentially be overcome by using analysis
strategies that embrace the complexity of biology. One such strategy is network analysis
which is able to capture global properties of the system while preserving the molecular
detail necessary for target identification. As the research community continues to be
inundated by a data deluge, the next phase of genomics will be computationally motivated
by the critical need to develop analytical methods that can reduce the total search space and
prioritize both disease-associated variants and druggable targets in the most biologically
meaningful way. The future of genomics will entail the integration of computational
methods and experimental biology to create comprehensive maps of the complex genetic
architectures underlying disease processes, thereby fulfilling the promise of systems genetics
[65]. Combining systems genetics with molecular pharmacology will enable accurate
modeling of targeted perturbations on a systems level, revolutionizing the drug target
discovery process.
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Figure 1.
A proposed computational framework to predict functional consequences of genetic
variation. The red edges track the path from a disease-associated variant to a disease-
associated gene. The blue edges track the path from the disease-associated gene to a
functional target. (a) A variant node on chromosome A (red) has been associated with a
disease. The variant may be causal or may be serving as a proxy of nearby causal variant so
the first set of edges connect to those variant nodes that are in linkage disequilibrium (LD)
with the associated variant. (b) One of the LD edges connects to the E1 enhancer node.
Because an enhancer is a functional entity that directly regulates gene transcription, the
second set of edges connect the E1 enhancer node to its long-range interacting partners. (c)
One of the long-range interactions connects the E1 enhancer node to the P1 promoter node
of the Gene1 gene node. This path reflects known empirical evidence in support of a
regulatory interaction between the E1 enhancer and Gene1 mediated by the P1 promoter.
Gene1 is a known transcription factor but has not previously been linked to the disease. (d)
The third set of edges connect the transcription factor Gene1 to all of its known binding
sites. One of these transcription factor binding site edges connects Gene1 to the E2 enhancer
node found on chromosome B. Continuing the pattern established here, a fourth set of edges
are drawn to connect the E2 enhancer node to its long-range interacting partners. (e) One of
these long-range interactions connects the E2 enhancer node to the P2 promoter node of the
Gene2 gene node. Gene2 is known to affect the disease. This final link creates a complete
path through the GWRN from the associated variant to the causal gene. Every edge along
this path is supported by empirical evidence however, this process is meant to provide the
most likely causal explanation given the available data and as such is best used to guide the
generation of novel hypotheses that can be experimentally validated.
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Figure 2.
A toy example of a biological network model. This network has undirected edges which are
generally used to display co-expression or binding relationships. The connectivities
described in the text are illustrated here. The red node is a hub, intermediate nodes are
shown in black, and peripheral nodes are shown in teal. Hubs play an important role in
maintaining network integrity and in information propagation. This makes targeting hubs
complicated. Peripheral nodes tend to have limited influence on signal transduction because
of their limited connectivity. Even if a peripheral node sends a message to a hub, that
message is tempered by all of the other signals the hub is receiving which diminishes the
chances that that message will be propagated. Intermediate nodes strike a fine balance
between hubs and peripheral nodes making promising drug targets. In addition to hubs,
intermediate, and peripheral nodes, a bridging nodes is shown in orange and a bottleneck
node is shown in blue. Bridging nodes connect subnetworks that would otherwise be
isolated. Bridging nodes have low connectivity but high centrality and they tend to be
independently regulated. As such they may characterize disease conditions making them
good drug targets. Bottleneck nodes are positioned in paths that are well-traveled. They
generally have high connectivity and high centrality. They could be classified as hubs;
however, they differ from hubs in that they are independently regulated. These properties
make bottleneck nodes promising drug targets as well.
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