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Flavonoid pigments are known to accumulate in red grains and coleoptiles of wheat and are synthesized through the flavonoid
biosynthetic pathway. Flavanone 3-hydroxylase (F3H) is a key enzyme at a diverging point of the flavonoid pathway leading to
production of different pigments: phlobaphene, proanthocyanidin, and anthocyanin. We isolated three F3H genes from wheat
and examined a relationship between their expression and tissue pigmentation. Three F3Hs are located on the telomeric region of
the long arm of chromosomes 2A, 2B, and 2D, respectively, designated as F3H-A1, F3H-B1, and F3H-D1. The telomeric regions
of the long arms of the chromosomes of homoeologous group 2 of wheat showed a syntenic relationship to the telomeric region
of the long arm of rice chromosome 4, on which rice F3H gene was also located. All three genes were highly activated in the red
grains and coleoptiles and appeared to be controlled by flavonoid regulators in each tissue.

1. Introduction

Flavonoid pigments are well known to play an important
role in pigmentation of tissues such as flowers, fruits, and
grains. These pigments not only render the tissues as more
conspicuous but also add physiological function to tissues,
such as protection against UV damage [1] and increased level
of grain dormancy [2].

In wheat, red pigmentation was observed in many
tissues including grain coats, coleoptiles, anthers, culms, and
pericarps. Several genes affecting anthocyanin pigmentation
(i.e., R-1 (R in former notation) for red grain, Rc for red
coleoptile, Pan for purple anthers, Ra for red auricles, Pc for
purple culms, and Pp for purple pericarp) have been reported
[3]. Red-grained wheat has been reported to contain red
flavonoid pigments, phlobaphene or proanthocyanidin (con-
densed tannin), in grain coat tissues [4]. In contrast, pig-
ments of red coleoptiles were anthocyanin [5]. Phlobaphene,
proanthocyanidin, and anthocyanin are synthesized through
the common flavonoid biosynthetic pathway [6] (Figure 1).
Phlobaphenes are compounds produced by polymerization
of flavan-4-ols, which are synthesized by three enzymes:
chalcone synthase (CHS), chalcone isomerase (CHI), and

dihydroflavonol 4-reductase (DFR) in the early steps of the
flavonoid pathway. On the other hand, proanthocyanidin
and anthocyanin are produced via 3,4-deoxy flavonoids,
which are synthesized by four enzymes: CHS, CHI, F3H, and
DFR. A step of F3H is a diverging point in the flavonoid
pathway leading to the production of either phlobaphene or
proanthocyanidin.

Activation of flavonoid biosynthetic genes is required
for pigmentation of plant tissue. Transcription factors
involved in expression of flavonoid genes have been studied
extensively and identified in several plant species, including
Arabidopsis and maize. The transcription factors, which
activate flavonoid genes, are mainly classified into two gene
families: one with an MYB domain and the other with a basic
helix-loop-helix (bHLH) domain [7]. In maize, C1 (MYB-
type) and R (bHLH-type) factors work together leading to
the production of anthocyanin. The P (MYB-type) factor of
maize alone is responsible for the synthesis of phlobaphene
[7]. The TT2 (MYB-type) factor of Arabidopsis is required for
proanthocyanidin production in the seed coat [8]. Recently,
our group showed that R-1 gene which regulates grain color
in wheat was considered to be an MYB-type transcription
factor [9].
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Figure 1: Flavonoid biosynthetic pathway. The F3H gene is indicated in bold letters. ANS, FS, and FLS, which belong to 2OG-Fe(II)
oxygenase superfamily, are shown in italic. Enzyme names are abbreviated as follows: ANS: anthocyanidin synthase, CHI: chalcone
isomerase, CHS: chalcone synthase, DFR: dihydroflavonol 4-reductase, F3H: flavanone 3-hydroxylase, FS: and flavone synthase.

Transcription factor binding elements have also been
studied in promoters of flavonoid biosynthetic genes. Hart-
mann et al. [10] identified light regulatory units (LRUs) in
promoters of CHS, CHI, F3H, and flavonol synthase (FLS).
The LRU consists of two elements: an MYB-recognition
element (MRE) and an ACGT-containing element (ACE).
Himi and Noda [11] also found a unit of MRE and ACE that
was repeated in promoters of wheat DFRs.

This paper describes three full sequences of F3H genes
(F3H-A1, F3H-B1, and F3H-D1), along with their promot-
ers, isolated from hexaploid wheat. These genes were located
on the telomeric regions of the long arm of the chromosomes
of homoeologous group 2. We also studied a relationship
between F3H expression and tissue pigmentation of lines
with red grain and red coleoptile (R/Rc), red grain and white
coleoptile (R/rc), white grain and red coleoptile (r/Rc), and
white grain and white coleoptile (r/rc). Expressions of F3H-
A1, F3H-B,1 and F3H-D1 were associated with pigmentation
and appeared to be enzymes that are required for pigment
synthesis.

2. Materials and Methods

2.1. Plant Materials. Triticum aestivum cvs. Norin 61, Norin
17, Novosibirskaya 67 (NS67), ANK-1C, Chinese Spring
(CS), three deletion and three ditelosomic lines of CS
were grown under a semitransparent plastic roof in a
field (Table 1). The CS spikes were tagged at anthesis and
harvested at 5-days postanthesis (DPA). Grains at 5 DPA

Table 1: Wheat lines used in the experiments.

Lines Grain color Coleoptile color

Norin 61 Red White

Norin 17 White White

Chinese Spring (CS) Red White

Deletion lines of CS

2AL-2 Red White

2BL-6 Red White

2DL-6 Red White

Ditelosomic lines of CS

ditelo 2AS Red White

ditelo 2BS Red White

ditelo 2DS Red White

Novosibirskaya 67 (NS67) White Red

ANK-1C Red Red

and the mature stage (water content 15%) were collected
from primary and secondary florets of the central spikelets
of spikes.

2.2. DNA and RNA Extraction. Seedlings were grown at 20◦C
under darkness for a week and used for DNA preparation.
The DNA and RNA were isolated using methods of Himi and
Noda [11]. Total RNA was extracted from grains and 3-day-
old coleoptiles grown at 20◦C under 12 h of UV light (about
100 moL m−2 s−1, UV lamp) by the sodium dodecyl sulfate-
phenol method [11]. Poly(A)+ RNA was isolated from 10 mg
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Figure 2: Alignment of the genomic nucleotide sequences of wheat F3H-A1, F3H-B1, and F3H-D1. Uppercase letters in gray boxes indicate
exons: 5′ and 3′ untranslated region and introns are in lowercase letters. Putative translation initiation codon (ATG) is shown in italic and
A of ATG is labeled as +1, and stop codons (TGA and TAG) are shown as underlined. Primer sequences are written in bold with the primer
name and arrow (right arrow: sense primer; left arrow: antisense primer).
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of the total RNA using an mRNA isolation kit according to
the supplier’s instructions (Roche Diagnostic Systems Inc.,
Tokyo, Japan).

2.3. Primers Designed for Isolation of Wheat F3H Genes.
Primers used in this study were listed in Table 2. Two
primers, F3H3LP and F3H2RP, were designed based on the
cDNA sequences of barley F3H (Accession no. X58138 [12])
and a wheat EST clone, whe24e20 (Accession no. BJ237068)
in wheat EST database (http://www.shigen.nig.ac.jp/wheat/
komugi/ests/tissueBrowse.jsp), which is similar in nucleotide
sequence to barley F3H. Partial sequences of wheat F3H
were amplified using the above primers. New primers
were designed in the amplified F3H sequences for further
amplifications of F3H by 3′ RACE, inverse PCR, and RT-
PCR.

PCR conditions were as follows: 5 min denaturation
at 94◦C followed by 30 cycles of 1 min at 94◦C, 1 min
at 58◦C, and 1 min at 72◦C, except the RT-PCR and
PCR for chromosomal location analysis of F3H, in which
annealing temperatures used were mentioned later. PCR
products were cloned into the pGEM-T vector (Promega
Corp., Madison, USA). DNA sequences were determined
using the ABI 3100 sequencer (PerkinElmer Inc.) and
were analyzed using two software programs: GENETYX
(Version 7.0; Software Development, Tokyo, Japan) and
CLUSTALW (Bioinformatic Center, Institute for Chemical
Research, Kyoto University, available from the web site at
http://www.genome.jp/tools/clustalw/).

2.4. 3′ RACE and Inverse PCR. The 3′ regions of F3H were
amplified in mRNA of grains at 5 DPA of Norin 61 using
the 3′ RACE method with F3HLP and F3H2LP primers and
an oligo (dT) primer with an adaptor sequence (Table 2,
Figure 2).

For inverse PCR, genomic DNA (1.5 μg) of CS was
digested with 15 U of one of the following enzymes, BspT104I
(for F3H-A1), BspT104I (for F3H-B1), or Sac I (for F3H-
D1) (Figure 2). The DNA was ligated using a ligation
high solution (Toyobo Co. Ltd., Japan); the DNA was
subsequently used as a template for PCR. The 5′ upstream
regions of F3H were amplified using inverse PCR method
in 20 μL of reaction solution with 30 ng of ligated DNA and
0.5 μM of the primers for inverse PCR listed in Tables 2 and
3. Inverse PCR was carried out first with the first primers
and then with the nested primers (2nd and 3rd primers).
The transcription factor binding site in the amplified 5′

region was sought using the MOTIF program (Bioinformatic
Center, Institute for Chemical Research, Kyoto University,
available from the web site at http://motif.genome.ad.jp/).

2.5. RT-PCR (Reverse Transcription-PCR). The first-strand
cDNA synthesis and subsequent quantitative RT-PCR assay
were carried out according to the method of Himi and
Noda [11]. Concentration of cDNA was standardized after
evaluating the amount of actin mRNA in samples by
PCR with the actin primers (Table 2). The F3H-A1 was
amplified with F3H5LP and F3HARP primers at annealing

M CS

6.6

4.4

2.3

2

(kbp)

23.1

9.4

Figure 3: Southern blot of F3H gene in genomic DNA of CS
digested with an enzyme Bgl II. Wheat F3H fragment (580-bp) used
as a probe was amplified with a pair of F3HLP and F3H2RP primers.

temperature of 55◦C, F3H-B1 with F3H5LP and F3HBRP
primers at annealing temperature of 60◦C, and F3H-D1 with
F3H5LP and F3HDRP primers at annealing temperature of
62◦C (Table 3).

2.6. Southern Blot Analysis. Genomic DNA of Norin 61
and CS was digested with one of the following restriction
enzymes: Bgl II, EcoR I, Xba I, and Xho I. Then it was
separated on 0.7% (w/v) agarose gel and transferred onto
a nylon membrane (Hybond-N+; Amersham Pharmacia
Biotech Co. Ltd., Japan). The membranes were prehybridized
in a solution of 50% formamide, 5 × SSC (0.75 M NaCl,
75 mM trisodium citrate dihydrate; pH 7.5), 0.1% (w/v)
N-lauroylsarcosine, 0.02% SDS, and 2% blocking reagent
(Roche Diagnostic Systems Inc.) at 42◦C and hybridized
for 16 h with a solution containing DIG-labeled probe. The
probe was labeled using a PCR DIG Labeling Mix (Roche
Diagnostic Systems Inc.) with a pair of primers: F3HLP and
F3H2RP (Table 2). The membranes were washed at 65◦C
with a solution of 0.5 × SSC and 0.1% SDS.

2.7. Chromosomal Location. We examined chromosomal
locations of F3H-A1, F3H-B1, and F3H-D1 by amplifying
these genes in three ditelosomic lines and three deletion
lines of CS, which, respectively, lacked the chromosome arm
and a part of chromosome (Table 1). Specific primers for
F3H-A1 were F3H1stintAspLP and F3HABDRP. Those for
F3H-B1 were F3H1stintBspLP and F3HABDRP; those for
F3H-D1 were F3Hint2LP and F3H2RP (Table 3). Annealing
temperature of 62◦C was applied in the PCR to increase
specificity of these primers to each F3H.

http://www.shigen.nig.ac.jp/wheat/komugi/ests/tissueBrowse.jsp
http://www.shigen.nig.ac.jp/wheat/komugi/ests/tissueBrowse.jsp
http://www.genome.jp/tools/clustalw/
http://motif.genome.ad.jp/


International Journal of Plant Genomics 5

Table 2: Names and sequences of the primers used in the experiments.

Primer Sequence (5′-3′) Sequence source Accession No.

Primers for genomic DNA

F3H3LP GCGACACAAGTGGACGAT whe24e20 BJ237068

F3H2RP GAACGTCGCGATCGACAG barley F3H (Meldgaard, 1992) X58138

Primers for 3′ region

F3HLP CCTACTTCTCGTACCCGGTG barley F3H (Meldgaard, 1992) X58138

F3H2LP ATTCGTCGTCAACCTCGG barley F3H (Meldgaard, 1992) X58138

Oligo (dT) with 3′ adapter GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTT

3′ adapter GGCCACGCGTCGACTAGTAC

F3H-3UTRRP TCTGTCAGACACATGCACACA 3′ region obtained by 3′ RACE

F3Hint1LP ACTGTCTTGTAGCCGCTTCC 1st intron of F3H-A1, B1

Primers for RT-PCR

F3H5LP CAAGAAGCAGGCCAAGGAC 3rd exon of F3H-A1, B1, D1

F3HARP CCAAACTCACGATAACTCCTTATTTAC 3′ regions of F3H-A1

F3HBRP GGAGAATAATCAATCCCACCA 3′ regions of F3H-B1

F3HDRP CTGCTACACACGTACGGATACC 3′ regions of F3H-D1

Primers for inverse PCR and

chromosomal location analysis

F3H1stintAspLP TGCTAGAATGGCGGTGGGT 1st intron of F3H-A1

F3H1stintBspLP GATGATGGTGGGGAACGGT 1st intron of F3H-B1

F3Hint2LP GCCATGCCACGTAAAATGAT 1st intron of F3H-D1

F3HABDRP CTTCACCGGGTACGAGAAGT 2nd exon of F3H-A1, B1, D1

F3HBLP GCAGGTATACACGCATTCATTT 1st exon and intron of F3H-B1

F3H3RP GTGGCTGGAGACGATGAAG whe24e20 BJ237068

F3H4LP CGATACAGCGAGCGACTCAT 2nd exon of F3H-A1, B1, D1

F3H4RP AGGAACGTCTCGTTGCTCAC 1st exon of F3H-A1, B1, D1

F3H5RP TTGTGGTTTTCTGGACGTTG 5′ regions of F3H-A1, B1, D1

F3HABDLP GACAAGCTCCGGTACGACAT 1st exon of F3H-A1, B1, D1

Primers for Actin

TaActinLP GAGGGATACACGCTTCCTCA wheat actin AB181991

TaActinRP GAAAGTGCTAAGAGAGGCCAAA wheat actin AB181991

3. Results

3.1. Copy Number of the F3H Gene. Four fragments of
wheat F3H genes were detected by Southern blot method in
genomic DNA of CS digested with Bgl II (Figure 3). Identical
numbers of fragments were also observed in Norin 61 DNA
digested with Bgl II, Xba I, or Xho I (data not shown).
Hexaploid wheat appears to have 4 copies of F3H gene.

3.2. Identification of F3H-A1, F3H-B1, and F3H-D1. An
EST clone of wheat, whe24e20 (Accession no. BJ23706),
which is similar in nucleotide sequence to barley F3H
cDNA (Accession no. X58138 [12]), was found in the inte-
grated wheat science database, KOMUGI (http://www.shigen
.nig.ac.jp/wheat/komugi/top/top.jsp), by blast search. The
F3H3LP and F3H2RP primers were designed, respectively,
in the 5′ UTR near the start codon (ATG) and in
the middle region of the F3H cDNA sequences (Table 2,
Figures 2 and 4). Two PCR products of about 1.6 kbp
and 1.2 kbp were obtained in CS genomic DNA using a
pair of F3H3LP and F3H2RP primers (see Supplementary

Figure 1 in Supplementary Material available online at doi:
10.1155/2011/369460). These products were similar to barley
F3H and included two putative intron regions. Similarity in
the exon region between the 1.6 kbp fragment and barley
F3H was 94.3%; that between the 1.2 kbp fragment and
barley F3H was 93.8%.

The 1.2 kbp fragment was not amplified in the ditelo
2DS line in preliminary experiments using 40 ditelosomic
lines. This fragment appears to be located on the long arm of
chromosome 2D. The results also suggested that the 1.6 kbp
fragment was also on the long arms of chromosomes 2A and
2B. We amplified and cloned two 1.6 kbp fragments in ditelo
2AS and 2BS lines, which, respectively, lack the long arms of
chromosomes 2A and 2B. The 1.6 kbp fragments amplified
in ditelo 2AS and 2BS mutually differed in their nucleotide
sequences. These sequences on chromosomes 2AL, 2BL, and
2DL were, respectively, designated tentatively as F3H-A1,
F3H-B1, and F3H-D1.

3.3. 3′ Regions of F3H-A1, F3H-B1, and F3H-D1. The 3′

regions of F3H amplified by the 3′ RACE included about

http://www.shigen.nig.ac.jp/wheat/komugi/top/top.jsp
http://www.shigen.nig.ac.jp/wheat/komugi/top/top.jsp
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Table 3: Primers and annealing temperature for each PCR.

F3H-A1 F3H-B1 F3H-D1

Location analysis

Sense F3H1stintAspLP F3H1stintBspLP F3Hint2LP

Antisense F3HABDRP F3HABDRP F3HABDRP

Temp.∗1 62.0 62.0 62.0

Expression analysis

Sense F3H5LP F3H5LP F3H5LP

Antisense F3HARP F3HBRP F3HDRP

Temp.∗1 55.0 60.0 62.0

Inverse PCR

Sense F3HBLP F3HABDLP F3H4LP
1st PCRAntisense F3H3RP F3H4RP F3HABDRP

Temp.∗1 55.0 55.0 55.0

Sense F3H1stintAspLP F3HBLP F3H2LP
2nd PCRAntisense F3H4RP F3H5RP F3H3RP

Temp.∗1 58.0 58.0 58.0

Sense F3H1stintAspLP F3H1stintBspLP F2H2LP
3rd PCRAntisense F3H5RP F3H5RP F3H4RP

Temp.∗1 60.0 60.0 60.0
∗1

Annealing temperature at PCR reaction.

: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - t t c g a a g a t g a
: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - t c t a c a a g c c a t g g a a a t a t
: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. . . .

: g c t c g t g g c t c g a t g - a t t g g t t g t g g c g g t - - g g c c a c c c a g c c c g c c c a a g a t c g a t c t c t g g g a t c - - g a t g t g g g t
: g a - c g t g t c a t g a t g t a t a g g t t t t a g a t a t t g g g c g a a c c a a t c t g t g g t t g g a t g g t t a a a g g g a c t c t g a t a t c c c c
: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

: g t c t c a t c t a g g g t a c t a c c t c c g t c t t g g t g a a t a a g t c a t t c a c a t a g t t c t a g g t t g a c g a t t t a a c t a t c t a a a t a
: a g t c c a - c t a a g g t t c a a a t c t g g t g c t - - t g a g t t t a t t c c t g g a t t a t t t c a g g a t t t t c g a c g a t g t g c a t t c a g t a
: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

: t g t a t t a t a t g t g a c a a a a g a t a t a t a t t t a g a a a c t a c a t t a t t g t a a a a a t c t a g - t g a t a t a c t t - t t c a t g a c a t a
: g g - a g a a g a c g t t c c c g t c g a c a a c g a g t t g c c c a c g a t g a c t t c g t a a a t t t c a a g a t a a t a t g c c g a t t c - - g g t c t t
: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - g a g c t c g t g g - c t c g a t g a t t g t t t g t g g t g g t

. . . . . . . . . . . . . . . . . . . . * . . . . . . * . . . * * . . . . * * . . * . . . .

: t a a c a c a t a t t t a a a t c c t c a a a t c g a t g a c c t a g a a c c a c g c g a g t g - a t t t a t t c a c c t a g a c g g a g g t a - g t a g c t -
: t c g g a g g t g - - - - - - - - c t c a t a g g g g t a g g g t g t g - - - - c g t g t g t g c g t t t a t a g g g a t g a g t g t a t g c a c g t a t a t a
: g g c c a c g c a g c c c g - - c c c a a g a t c g a t c t c t g g g a - - - - c g t g g g t g - t c t c a t c c g g g g t a c c t c a c a c g - t c t a - - -

. . * . . . . . * . . * * . . * . * . . . . . * * . * * * * . * . * * . . . . . . . * . . . . . . .

: c a c a c g t c t a c a a g a t g a c g t g t g g t g a t g t a t a g g t t g t a g a t c t t g g t t g g t g t a t a g c g g g t g t c t a g t a g t g t g t g
: t g a g c g c t t g t a t c t g g a c - t g t g t t a a - a a a a a a g t t c t a g a t c t t g g t t g g t g t a t a g c g g g t g t c c a g t g g t g t g t g
: c a a g c c t t g g a a a g a t g a c g t a t c g t g a t g t a t a g g t t g t a g a t c t t g g t t g c t g t a t a g c g g g t g t a t a g t - - - - - - - -

. . . . * . . . . . * . . . . * * * . * . * . . * . * . . . * . * . * * * . * * * * * * * * * * * * * . * * * * * * * * * * * * * * . . * * * . . . . . . .

: t g c g t g t g a t g t g t g t g t t g t g c g t a t a t g g g t c g a t c g a t a c g g c t g g a t g g a t g - - - - c a t g g g t g c g g c c c g g t t a g
: t g c t t g t g a t g t g t g t g t t g t g c g t a t a t g g a t c g a t c g a t a c g g c t g g a t g g a t g - - - - c a t g g g t g c g g c c c g g t t a g
: - g c g t g t g a c g t g t g t g t t g t g c g t a t a t g g a t c g a t c g a t a c g g c t g g a t g g a t g g a t g c a t g g g t g c g g c c c g g t t a g

. * * . * * * * * . * * * * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

: t t g c g c a c c t a a c a c g a g t g c c c g a g g g c g a c t t c c t t g g t t a g t t g c g t g c g c a c g c g c g a c t t g c a g g t c g c g t c t g c
: t t g c g c a c c t a a c a c g a g t g c c c g a g g g c g a c t t c c t t g g t t a g t t g c g t g c g c a c g c g c g a c t t g c a g g t c g c g t c t g c
: t t g c g c a c c t a a c a c g a g t g c c c g a g g g c g a c t t c c t t g g t t a g t t g c a t g c g c a c g c g c g a c t t g c a g g t c g c g t c t g c

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

: c c c t c a t c t t c c a a c g t a g t a t a c a c a a t g c c c t c t t c c c g g c c g t a t a t a t c c g c g t g c g t a c a a c g t c c a g a a a a c c a
: c c c t c a t c t t c c a a c g t a g t a t a c a c a a t g c c c t c t t c c c g g c c g t a t a t a t c c g c g t g c g t a c a a c g t c c a g a a a a c c a
: c c c t c a c c t t c c a a c g t a - - - t a c a c a a c g c c c t c t c c c c g g c c g t a t a t a t c c g c g t g c g t a c a a c g t c c a g a a a a c c a

* * * * * * . * * * * * * * * * * * . . . * * * * * * * . * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

: c a g c c c a a a c g a c c g a g c t a g c c c t t c a a g a a a c a a a c c a t c a t a c g a g a c a g a c g c c g g c c g c g a c a c a a g c g g a c g a t
: c a a c c c a a a c g g c c g a g c c t - t t c a t c a a g g a a c a a a c c a t c a t a c g a g a c a g a c g c c g g c c g c g a c a c a a g c g g a c g a t
: c a a c c c a a a c g a c c g a g c t - - - t c a t c a a g g a a c a a a c c a t c a t a c g a g a c a g a c g c c g g c c g c g a c a c a a g t g g a c g a t

* * . * * * * * * * * . * * * * * * . . * . * * * * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . * * * * * * *

: c c c c g g a g t g c g g a t c g - ATGGCGCCGGTGAGCAACGAGACGTTCCTCCCGACGGCGGCGTGGGGGGAGGCCACGCTGCG
: c c c c g g a g t g c g g a t c g - ATGGCGCCGGTGAGCAACGAGACGTTCCTCCCGACGGCGGCCTGGGGGGAGGCGACGCTGCG
: c c c c g g a g t g c g g a t c g a ATGGCGCCGGTGAGCAACGAGACGTTCCTCCCGACGGCGGCCTGGGGGGAGGCGACGCTGCG
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * . * * * * * * * *
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Figure 4: The 5′ region sequences of F3H-A1, F3H -B1, and F3H -D1. Sequences in box indicate the binding sites of transcription factors; the
box of broken lines is a putative TATA-box. Exons are indicated in uppercase letters with gray box; the 5′ untranslated region and promoter
are in lowercase letters. The putative translation initiation codon (ATG) is shown in italic typeface. Primer sequences are written in bold
with primer names and arrows (right arrow: sense primer; left arrow: antisense primer). Elements for transcription factor binding are as
follows: bZIP911: bZIP transcription factor of Antirrhinum majus; G-box: bZIP-type transcription factor; P: MYB-type transcription factor,
P of maize; RAV1: transcription factor with AP2 and B3 domains.
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200 bp of 3′ UTR. The F3H-3UTRRP primer was designed
in the 3′ UTR region (Table 2, Figure 2). The 3′ regions
with the second intron were amplified using a pair of
primers, F3H2LP and F3H-3UTRRP, in genomic DNA of
CS. One amplified fragment was similar in the second
intron to F3H-A1. The F3Hint1LP and F3Hint2LP primers
were newly designed in intron 1 of F3H-B1 and F3H-D1
(Table 2, Figure 2). The 3′ regions of F3H-B1 and F3H-
D1 were amplified with F3Hint1LP and F3H-3UTR primers
for F3H-B1 and F3Hint2LP and F3H-3UTRRP primers for
F3H-D1 (Table 2, Figure 2). The F3HARP primer specific to
F3H-A1, the F3HBRP primer specific to F3H-B1, and the
F3HDRP primer specific to F3H-D1 were designed in the 3′

UTRs (Table 2, Figure 2). These primers were used to amplify
cDNA sequences of F3Hs and to elucidate the expression of
each gene.

3.4. Nucleotide Sequences after the Start Codon of F3H-A1,
F3H-B1, and F3H-D1. The full sequences of F3H-A1, F3H-
B1, and F3H-D1 between the start codon and 3′ UTR
region were amplified with F3HARP, F3HBRP, F3HDRP, and
F3H3LP primers in genomic DNA and cDNAs to examine
whether the partial sequences and 3′ regions isolated are in
cis position (Table 2, Figures 2 and 4). All three F3Hs had
3 exons and 2 introns; these introns were inserted in the
same position as the introns of rice and Arabidopsis F3Hs
(Figure 5(a)). The ORF sequences of wheat F3H-A1, F3H-
B1, and F3H-D1 were similar to each other at more than
96% (F3H-A1 versus F3H-B1: 96.7%, F3H-A1 versus F3H-
D1: 96.9%, and F3H-B1 versus F3H-D1: 97.4%), whereas
differences exist in sequence and length between the introns,
as observed in Figure 2. An F3H enzyme has been reported
to have a unique motif of pfam03171 that is maintained
commonly in a superfamily of 2-oxoglutarate (2OG) and Fe
(II)-dependent oxygenase. Deduced amino acid sequences of
wheat F3Hs also have this pfam03171 motif (Figure 5(a)).
Phylogenic relationships among F3Hs of wheat and other
plant species were calculated using the UPGMA method
of GENETYX software ver. 7.0. Wheat is grouped into the
monocotyledon species, including barley, rice, and maize
(Figure 5(b)).

3.5. Nucleotide Sequences of 5′ Region. The 5′ upstream
regions of F3H-A1, F3H-B1, and F3H-D1 were amplified by
the inverse PCR. The respective sequences of 734 bp, 731 bp,
and 504 bp from the start codon (ATG) of F3H-A1, F3H-B1,
and F3H-D1 were isolated and identified as the 5′ regions
of respective F3H based on the intron sequences of the PCR
products (Figure 4). Three P elements to which an MYB-type
transcription factor, P, was able to bind were found in these 5′

upstream sequences. A G-box core sequence and an element
for RAV1 transcription factor were also found in all three
promoters. Only F3H-A1 had a unique element for a leucine
zipper-type transcription factor, bZIP911, in the promoter
(Figure 4).

3.6. Chromosomal Locations of F3H-A1, F3H-B1, and F3H-
D1. Chromosomal locations of F3H-A1, F3H-B1, and F3H-
D1 were examined in three deletion lines of CS with

primers that were specific to each F3H (Tables 2 and 3). No
amplification of F3H-A1, F3H-B1, and F3H-D1 was observed
in deletion lines 2AL-1 (FL = 0.85), 2BL-6 (FL = 0.89),
and 2DL-6 (FL = 0.94), which lack only the small telomeric
region of the long arm of chromosomes 2A, 2B, and 2D
(Figure 6(a)). These results suggest that F3H-A1, F3H-B1,
and F3H-D1 were located, respectively, on the telomeric
regions of the long arms of chromosomes 2A, 2B, and 2D.

3.7. Expressions of F3H-A1, F3H-B1, and F3H-D1. Respec-
tive expressions of F3H-A1, F3H-B1, and F3H-D1 in grains
harvested at 5 DPA and 3-day-old coleoptiles were investi-
gated with ANK-1C (red grain and red coleoptile; R/Rc), CS
(red grain and white coleoptile; R/rc), NS67 (white grain and
red coleoptile; r/Rc), and Norin 17 (white grain and white
coleoptile; r/rc). F3H5LP and F3HARP primers for F3H-
A1, F3H5LP and F3HBRP primers for F3H-B1, and F3H5LP
and F3HDRP primers for F3H-D1 were used for RT-PCR
(Table 2). All F3H-A1, F3H-B1, and F3H-D1 were highly
expressed in red grains of ANK-1C and CS and red coleoptile
of ANK-1C and NS67 (Figure 7). On the other hand, no
expression of F3H-A1, F3H-B1, and F3H-D1 was detected in
white tissues, although F3H-A1 of grains and coleoptiles of
Norin 17 was slightly expressed.

4. Discussion

4.1. Sequences of Wheat F3H Genes. The deduced amino
acid sequences of three wheat F3Hs were similar to those
of F3Hs of the other monocotyledon species (Figure 5(b)).
Three F3Hs of wheat had a characteristic motif (pfam03171)
found in the enzymes of 2OG-Fe (II) oxygenase super-
family (Figure 5(a)). Furthermore, 2-oxoglutarate- (2OG-)
dependent and Fe (II)-dependent dioxygenases are known
to catalyze oxidation of organic substrates using a dioxygen
molecule [13]. Flavonol synthase (FLS), anthocyanidin syn-
thase (ANS), and flavone synthase I (FS I) of the flavonoid
pathway are also known to have the pfam03171 motif. Two
histidines and one aspartic acid of the motif have been
identified as sites for putative iron binding; an arginine
residue has been identified as a 2-oxoglutarate binding site
[14] (Figure 5(a)). These amino acid residues were conserved
in wheat F3Hs (Figure 5(a)). Three wheat F3H enzymes
appear to function as oxygenases. Recently, two sequences
of F3H genes on B genome in wheat were isolated and
reported as one of these sequences was not detected in red
coleoptiles [15]. It is consistent with the result of southern
blot which showed four fragments (Figure 3). It appears that
the fourth gene F3H-B2, a nonhomologous duplication of
F3H-B1, remains to be characterized.

4.2. Chromosomal Location of F3H Genes of Wheat. The
results suggest that the F3H genes of wheat are located
on the telomeric regions of the long arms of chromo-
somes 2A, 2B, and 2D (Figure 6(a)). Reportedly, there is a
syntenic relationship between the chromosomes of wheat
homoeologous group 2 and rice chromosomes 4 and 7
[16, 17]. Rice F3H (OSJNBa0084K01.10) in BAC clone
OSJNBa0084K01 (Accession no. AL606999) was located on
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1 : MAP VS NE TF LP T AAWGE AT L R P S F VR DE DE R P KVAHDRF S DAVP VI S L DGI DG- - AR RAE I R DR VAAACE GWGI F QVVDH

1 : MAP VS NE TF LP T AAWGE AT L R P S F VR DE DE R P KVAHDRF S DAVP VI S L DGI DG- - AR RAE I R DR VAAACE GWGI F QVVDH

1 : MAP VS NE TF LP T AAWGE AT L R P S F VR DE DE R P KVAHDRF S DAVP VI S L DGI DG- - AR RAE I R DR VAAACE GWGI F QVVDH

1 : MAP VAT - TF LP T AS - NE AT L R P S F VR DE DE R P RVAY NQF S DAVP VI S L QGI DE - - AARAE I R AR VAGACE E WGI F QVVDH

1 : - - - - - MAP GTL T E L AGE S KL NS KF VR DE DE R P KVAY NVF S DE I P VI S L AGI DDVDGKRGE I CRQI VE ACE NWGI F QVVDH
. . . . . . . . . . . * . . . . * . . * . . . * * * * * * * * * . * * . . . * * * . . * * * * * . * * * . . . * . * * . . . . . . * * * . * * * * * * * * *

: GVDADL I ADMTR L S RE F F AL P AE DKL R Y DMSGGKKGGF I VS S HL QGE AVQ DWRE I VT Y F S Y P VKAR DY GRWPE KP AGWR A

: GVDADL I ADMTR L S RE F F AL P AE DKL R Y DMSGGKKGGF I VS S HL QGE AVQ DWRE I VT Y F S Y P VKAR DY GRWPE KP AGWR A

: GVDADL I ADMTR L S RE F F AL P AE DKL R Y DMSGGKKGGF I VS S HL QGE AVQ DWRE I VT Y F S Y P VKAR DY GRWPE KP AGWR A

: GVDAGL VADMAR L ARDF F AL P P E DKL R F DMSGGKKGGF I VS S HL QGE AVK DWRE I VT Y F S Y P VKS R DY S RWPDKP AGWR A

: GVDT NL VADMTR L ARDF F AL P P E DKL R F DMSGGKKGGF I VS S HL QGE AVQ DWRE I VT Y F S Y P VR NR DY S RWPDKP E GWVK
* * * . . * . * * * . * * . * . * * * * * . * * * * * . * * * * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * * * . . * * * . * * * . * * . * * . .

: VVE R Y S E RLMGL S CKL L GVL S E AMGLE S E AL AKACVDMDQKVVVNF Y P R CP QP DL T L GL KR HTDP GT I T L L L QDL VGGL Q

: VVE R Y S E RLMGL S CKL L GVL S E AMGLE S E AL AKACVDMDQKVVVNF Y P R CP QP DL T L GL KR HTDP GT I T L L L QDL VGGL Q

: VVE R Y S E RLMGL S CKL L GVL S E AMGLE S E AL AKACVDMDQKVVVNF Y P R CP QP DL T L GL KR HTDP GT I T L L L QDL VGGL Q

: VVE QY S E RLMGL ACKL L GVL S E AMGLDTNAL ADACVDMDQKVVVNF Y P KCP QP DL T L GL KR HTDP GT I T L L L QDL VGGL Q

: VT E E Y S E RLMS L ACKL L E VL S E AMGLE KE S L T NACVDMDQKI VVNY Y P KCP QP DL T L GL KR HTDP GT I T L L L QDQVGGL Q
* . * . * * * * * * . * . * * * * . * * * * * * * * . . * . . * * * * * * * * . * * * . * * . * * * * * * * * * * * * * * * * * * * * * * * * * . * * * * *

: AT RDGGKTWI T VQP I S GAF VVNL GDHGHF MS NGR F KNADHQAVVNGE S S RL S I ATF QNP AP DAR VWP L AVR E GE E P I L E E

: AT RDGGKTWI T VQP I S GAF VVNL GDHGHF L S NGR F KNADHQAVVNGE S S RL S I ATS QNP AP DAR VWP L AVR E GE E P I L E E

: AT RDGGKTWI T VQP I S GAF VVNL GDHGHF MS NGR F KNADHQAVVNGQS S RL S I ATF QNP AP DAR VWP L AVR E GE E P I L E E

: AT RDAGKTWI T VQP I P GS F VVNL GDHAHY L S NGR F KNADHQAVVNS DCCRL S I ATF QNP AP DAMVY P L AVR DGE E P I L E E

: AT RDNGKTWI T VQP VE GAF VVNL GDHGHF L S NGR F KNADHQAVVNS NS S RL S I ATF QNP AP DAT VY P L KVR E GE KAI L E E
* * * * . * * * * * * * * * . . * . * * * * * * * * . * . . * * * * * * * * * * * * * * * . . . * * * * * * . * * * * * * * . * . * * . * * . * * . . * * * *

: P I TF AE MY R RKME R DLDLAKR KKQAKDQLMQQQL QL QQQQ- AVAAAPM PAAT - KS L NE I L A

: P I TF AE MY R RKME R DLDLAKR KKQAKDQLMQQQL QL QQQQQAVAAAPM PTAS - KS L NE I L A

: P I TF S E MY R RKME R DLDLAKR KKQAKDQLMQQQL QL QQQQQAVAAAPM PTAT - KS L NE I L A

: P I TF AE MY R RKMAR DLE LAKL KKKAKE QR QL QQAAL P P P P P T QVAAE L AAQKP KS L DE I L A

: P I TF AE MY KRKMGR DLE LARL KKL AKE E R DHKE VDKP VDQI F A- - - - - - - - - - - - - - - - - -

* * * * . * * * . * * * . * * * . * * . . * * . * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5: (a) Deduced amino acid sequences of wheat, rice, and Arabidopsis F3H. Lines with an arrowhead indicate the intron insertion
sites. The region in the black box indicates a characteristic motif, pfam03171, of 2OG-Fe(II) oxygenase superfamily. White circles indicate
conserved histidine (H) and aspartic acid (D) residues for ferrous-iron coordination, and a black circle indicates arginine (R) residue for
a binding site of 2-oxoglutarate. Triangles show a site of glutamine (Q) residue lacked and an amino acid substitution from threonine
(T) to alanine (A) in F3H-A1. (b) UPGMA tree depicted using GENETYX software ver. 7.0, using the following genes belonging to 2OG-
Fe(II) oxygenase superfamily: ANSs of Arabidopsis thaliana (Q96323) and Oryza sativa (CAA69252), FLSs of Arabidopsis thaliana (Q96330)
and Oryza sativa (XP 467968), F3Hs of Arabidopsis thaliana (Q9S818), Hordeum vulgare (CAA41146), Ipomea nil (BAA21897), Medicago
sativa (S71772), Oryza sativa F3H (XP 474226), Vitis vinifera (P41090), and Zea mays (AAA91227), and F3H-A1 (AB223024), F3H-B1
(AB223025), and F3H-D1 (AB223026) of Triticum aestivum.
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Figure 6: Amplification of F3H with the primers specific to F3H-A1, F3H-B1, and F3H-D1 in CS, ditelosomic and deletion lines of
chromosomes 2A, 2B, and 2D: (a) amplification of F3H-A1 in CS, ditelo 2AL, ditelo 2AS, and a partial deletion line of 2AL-1 (FL = 0.85)
(left), F3H-B1 in CS, ditelo 2BL, ditelo 2BS, and a partial deletion line of 2BL-6 (FL = 0.89) (center), and F3H-D1 in CS, ditelo 2DL, ditelo
2DS, and a partial deletion line of 2DL-6 (FL = 0.94) (right). (b) Locations of two wheat EST clones (WHE1784 G04 M08ZS and WHE0981
C04 F07ZS) and F3H-B1 on the 0.89–1.00 region of wheat chromosome 2BL, and putative rice F3H (OSJNBa0084K01.10) and two rice
genes (OSJNBA0084K01.3 and OSJNBa0084K01.14) corresponding to the two wheat ESTs on rice chromosome 4.

the telomeric region of rice chromosome 4 (Figure 6(b)). The
BAC clone (OSJNBa0084K01) also included two putative
genes, OSJNBa0084K01.3 and OSJNBa0084K01.14, that,
respectively, showed high degrees of similarity (more than
80%) to wheat EST clones: WHE1784 G04 M08ZS (Acces-
sion no. BF202800) and WHE0981 C04 F07ZS (Accession no.
BE500307). These two wheat EST clones were also located

on the telomeric region of the long arm of the chromosome
2B (2BL6 0.89–1.00) in the physical bin map of wheat EST
clones (http://wheat.pw.usda.gov/wEST/binmaps/) (Figure
6(b)). These results confirmed a high syntenic relationship
between the telomeric region of the long arm of the
chromosome of wheat homoeologous group 2 and the
telomeric region of rice chromosome 4.

http://wheat.pw.usda.gov/wEST/binmaps/
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Figure 7: Expression of F3H-A1, F3H-B1, and F3H-D1 in grains and coleoptiles. Respective expressions of F3H-A1, F3H-B1, and F3H-D1
in grains harvested at 5 DPA and 3-day-old coleoptiles were investigated with ANK-1C (red grain and red coleoptile; R/Rc), CS (red grain
and white coleoptile; R/rc), NS67 (white grain and red coleoptile; r/Rc), and Norin 17 (white grain and white coleoptile; r/rc). Actin was used
as an internal control.

4.3. Expression of F3H and Pigmentation of Wheat Grain and
Coleoptile. F3H-A1, F3H-B1, and F3H-D1 were all activated
in red grain and coleoptile. On the other hand, only F3H-
A1 of Norin 17 was slightly expressed in white grain and
coleoptile. These results suggest that at least F3H-B1 and
F3H-D1 are involved in pigmentation of the grain and
coleoptile. Winkel-Shirley [6] showed that F3H took part
in the biosynthesis of proanthocyanidin (condensed tannin)
and anthocyanins, but not in that of phlobaphene. Pigment
synthesized in wheat grain appeared to be proanthocyanidin.

The F3H-A1 of Norin 17 was expressed in the non-
pigmented tissues. Comparison of the deduced amino acid
sequence of F3H-A1 with that of F3H-B1 and F3H-D1, F3H-
A1, showed an amino acid substitution from threonine to
alanine and a lack of glutamine residue in the C-terminal
region (Figure 5(a)). If these residues play an important
role in function, F3H-A1 protein might not be involved
in flavonoid biosynthesis. However, this possibility is not
probable because these changes in the amino acid sequence
occurred far from the characteristic motif, pfam03171, which
is a key domain for enzyme function. Himi et al. [5]
suggested that DFR was not expressed in white grains and
coleoptiles and played a critical role in pigment production.
Without DFR expression, F3H expression might not be
decisive for pigmentation.

4.4. 5′ Region of F3Hs. Three P (MYB-type transcription
factor) binding motifs were found in the 5′ region of F3H-
A1, F3H-B1, and F3H-D1 (Figure 4). Himi and Noda [11]
showed that DFRs of wheat also had three P motifs in
their promoters. The F3H and DFR of wheat appeared to
be controlled by a P-like transcription factor. Recently, we
isolated an MYB-type gene of wheat, Tamyb10, which might
control grain color [9, 18]. It is possible that Tamyb10 protein
interacts with the P-binding motifs in promoters of F3H and
DFR.

An RAV1 binding site was also found in the pro-
moters of F3H-A1, F3H-B1, and F3H-D1. Rice F3H
(OSJNBa0084K01.10) also had an RAV1 binding site in its
promoter. In addition, RAV1 (RAV: for related to ABI3/VP1)

was identified as a DNA binding protein possessing an N-
terminal AP2/ERF- (or EREBP-) type DNA binding domain
and a C-terminal B3 domain [19]; RAV1 is cold-responsive
[20]. In Arabidopsis and petunia, cold stress (4◦C) is known
to activate PAL and CHS expression and to induce the
accumulation of anthocyanin in leaves, stems, and flowers
[21, 22]. It is likely that an RAV1-like transcription factor also
activates wheat F3Hs because wheat coleoptiles showed more
reddish color after chilling.

F3H-A1 was expressed in white grain and coleoptile. A
recognition site of bZIP-type transcription factor (bZIP911)
was found only in the promoter of F3H-A1. In Antirrhinum,
bZIP911 reportedly modifies gene expression of histone H4
and chlorophyll a/b (CAB) binding protein [23]. Although
no reports have described the bZIP911-like gene in wheat,
a bZIP protein such as bZIP911 might activate F3H-A1
in white grain and coleoptile. Differences in promoter
sequences of the F3Hs increase variation of F3H expression
and appear to have occurred in evolution during differentia-
tion of three wheat genomes (A, B, and D).
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