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One limitation for the study of chromosomal fragile sites is that
they must be studied on metaphase spreads, after the breakage.
We show here that bacterial lac operator (lacO) repeats are
prone to spontaneous breakage, which when combined with a
fluorescent lac repressor (lacR) has allowed us to track a fragile
site through the cell cycle. By using this system, we show that
Plk1-interacting checkpoint helicase (PICH) is already present at
fragile sites during interphase, suggesting roles for this helicase
beyond mitosis. In addition, we report that the oncogene Myc
promotes the formation of anaphase bridges and micronuclei
containing fragile-site sequences.
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INTRODUCTION
Chromosomal fragile sites represent unstable regions of the
genome, which are visualized in metaphase spreads as chromatid
gaps, breaks or chromosomal rearrangements (Durkin & Glover,
2007). Although the existence of break-prone loci was observed
previously, the term ‘fragile site’ was coined in 1970 with the
analysis of a heritable fragile site on chromosome 16 that was
present in several members of a large family (Magenis et al, 1970).
On the basis of this work, most of the early efforts were oriented to
the discovery of fragile sites that could be associated with familiar
diseases, such as X-linked mental retardation (Harvey et al, 1977).
In addition to its link to rare, heritable diseases, we now know that
fragile-site breakage is also a characteristic of many cancer cells
(Arlt et al, 2006). In summary, fragile-site breakage—also known
as ‘expression’—has been associated with several human diseases.

One of the most important pieces of information about fragile
sites is that their breakage can be stimulated in conditions of
replicative stress (Sutherland, 1977, 1979; Glover, 1981). Besides
its mechanistic relevance, this finding enabled easier testing of
fragile-site expression in the laboratory, by growing cells in the

presence of compounds that limit replication, such as low doses of
the DNA polymerase inhibitor aphidicolin (APH). In addition to
chemical agents, the presence of certain oncogenes can also be a
source of replicative stress (Bartkova et al, 2005; Gorgoulis et al,
2005; Halazonetis et al, 2008). Moreover, oncogene-induced
replicative stress has been found to occur preferentially at
common fragile sites (CFSs; Tsantoulis et al, 2008). Therefore,
the fact that oncogenes can generate replicative stress could
explain the increased frequency of fragile site breakage detected
in cancer (Dereli-Oz et al, 2011). Regardless of their association
with disease, and although more than 100 fragile sites have been
characterized in human cells, how, when and why fragile sites
break is not completely understood.

The link between fragile sites and replicative stress indicates
that conditions and sequences that perturb replication increase the
fragility of a given locus. Accordingly, the chromatin at fragile
sites has been shown to have features of compact chromatin (Jiang
et al, 2009), and difficult-to-replicate repeats or AT-rich regions
are frequently found at fragile sites (Durkin & Glover, 2007).
Moreover, telomeres, which are naturally occurring repeats, have
been recently identified as fragile sites (Martinez et al, 2009; Sfeir
et al, 2009). On the basis of these properties, we explored
whether the integration of tandem repeats of the lac operator
(lacO) sequence from bacteria can generate a fragile site in
mammalian cells, which when combined with a fluorescently
tagged lac repressor (lacR), could be used for the visualization of
fragile-site dynamics.

RESULTS AND DISCUSSION
To analyse the fragility of a DNA sequence, we decided to focus
on the lacO/lacR system from Escherichia coli. We used a
previously characterized NIH-3T3 cell line that contains 256
repeats of the lacR-binding site stably integrated on chromosome
3 (3T3lacO; Soutoglou et al, 2007). When combined with a
fluorescently labelled lacR, this system enables indirect visualiza-
tion of the underlying lacO DNA sequence. Such a strategy has
been used previously for the visualization of several nuclear
activities at the lacO locus, such as RNA Pol II-mediated
transcription (Darzacq et al, 2007) or DNA repair (Soutoglou
et al, 2007). Given that the inserted locus is a large stretch of
repeated small sequences and that the presence of lacR has
been shown to promote replication blockade of lacO insertions
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(Payne et al, 2006), we explored whether this insertion could
generate a fragile site in mammalian cells.

To determine whether evidence of DNA breakage could be
found at the lacO locus, we first analysed the distribution of
the phosphorylated form of histone H2AX (gH2AX)—a well-
characterized marker of DNA double-strand breaks (Fernandez-
Capetillo et al, 2004)—in 3T3lacO cells that had been transfected
with a Cherry-tagged lacR. This experiment showed that 44% of
the lacR spots that mark the lacO insertion colocalized with a
well-defined gH2AX focus in the absence of exogenous DNA
damage (Fig 1A,B). Moreover, the exposure of cells to conditions
that promote fragile-site expression, such as low doses of APH,
increased the percentage of lacR spots that colocalized with

gH2AX (Fig 1B). Other markers of chromosomal breaks, such as
Brca1 (28.2±7%) or Bard1 (24.7±4%), also colocalized with the
focalized lacR signal in otherwise untreated cells (Fig 1C). In
addition, a more-specific marker of fragile sites, such as FancD2
(Chan et al, 2009; Naim & Rosselli, 2009), also formed foci at the
lacO locus (Fig 1C). It is noteworthy that the presence of FancD2
foci at the lacR spot was less abundant (6.3±1.2%) than the one
observed for the previous proteins. Whereas these differences
between the percentages could be due to several factors including
antibody efficiencies, they could also reflect that FancD2 foci
have been shown to mark fragile sites before the breakage (Chan
et al, 2009; Naim & Rosselli, 2009). Altogether, these data suggest
that the lacO locus is prone to spontaneous breakage in lacR-
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Fig 1 | Spontaneous DNA breakage at the lac operator locus. (A) Example of a lacR–Cherry-transfected 3T3lacO cell that was stained with a gH2AX-

recognizing antibody. (B) Quantification of the percentage of lacR foci that colocalize with a well-defined gH2AX focus in 3T3lacO cells that had been

grown in the absence or presence of aphidicolin (0.2mM, 48 h). (C) Distribution of Brca1, Bard1 and FancD2 in lacR-transfected 3T3lacO cells. Scale

bars, 2.5mm. (D) FISH analysis of 3T3lacO metaphases with a DNA probe against the lacO insertion (red). Images show an intact chromosome 3

containing the insertion (left), and two examples of chromosomal breaks at the lacO locus. Both derivative fragments are present in the far right

example. White arrowheads indicate the position of the lacO FISH signals. (E) Quantification of the percentage of metaphases that presented a

chromosomal break at the lacO locus, as shown above. Numbers are shown for 3T3lacO cells that had been grown in the absence or presence of

aphidicolin (0.2 mM, 48 h). Error bars indicate s.d. from three independent experiments. *Po0.05; **Po0.01; Student’s t-test. APH, aphidicolin;

DAPI, 4,6-diamidino-2-phenylindole; FISH, fluorescence in situ hybridization; lacO, lac operator; lacR, lac repressor.
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transfected 3T3lacO cells, and that this phenotype is exacerbated in
conditions that promote fragile-site expression.

To demonstrate breakage of the lacO insertion, we performed
fluorescence in situ hybridization (FISH) analysis with a probe
prepared from a plasmid containing the lacO repeats. FISH analyses
from 3T3lacO cells revealed a significant number of metaphases
showing spontaneous breaks involving the lacO insertion (Fig
1D,E). Chromosomal breaks in which the two resulting fragments
harbouring the lacO sequence were still nearby were also
detectable, suggesting that the break occurred within the insertion
(Fig 1D). Importantly, all spontaneous breaks that could be
observed on 3T3lacO cells involved a lacO-positive FISH signal at
one end, which suggests that the lacO insertion was the most
important source of increased spontaneous breakage in these cells.
Finally, and similarly to our observations of foci in interphase cells,
breaks containing lacO sequences were also induced by low doses
of APH (Fig 1E). Altogether, these results indicate that the lacO
repeats are prone to spontaneous breakage in mammalian cells in a
manner that resembles the behaviour of CFS.

An important paradox about fragile sites is that they are
conserved throughout evolution, which is counterintuitive given
that, in principle, they pose a potential threat to genomic integrity.
Data derived from two recent works indicate that their conserva-
tion might be due to the fact that their presence might be
necessary for proper chromosome cohesion (Chan et al, 2009;
Naim & Rosselli, 2009). As DNA sequences at fragile sites are
difficult to replicate, cells could frequently go into mitosis with
unreplicated DNA or catenated sister chromatids at these loci.
Such structures would provide an extra layer of inter-sister

chromatid cohesion, which would then be normally dissolved in
mitosis by a network that involves topoisomerases and the Bloom
(BLM) helicase. In agreement with this view, culture conditions
that promote fragile-site expression derive into frequent anaphase
bridges that are enriched in BLM (Chan et al, 2007). We next
evaluated whether the frequent breakage observed at the lacO
locus could fit with the recently proposed model for endogenous
fragile sites. We reasoned that if the lacO insertion behaves as a
bona fide fragile site, it should be frequently (1) improperly
segregated into daughter cells and (2) observed at anaphase
bridges. In addition, both phenotypes should be aggravated in
conditions that promote fragile-site expression.

To analyse the segregation of the lacO locus, 3T3lacO cells
were transfected with lacR, and the number of lacR spots present
in each cell was scored 48 h after transfection. This analysis
showed that 18% of the cells that were positive for Cherry lacked
a detectable lacRC spot (Fig 2A). Whereas the absence of a lacR
spot could not only be explained by an imbalanced segregation of
the lacO locus, a similar percentage of Cherry-positive cells
presented more than one lacR focus (Fig 2B). Moreover, and
consistent with these phenotypes being associated with fragile-site
dynamics, they were all aggravated in the presence of APH. The
percentage of 3T3lacO cells that had one lacR focus decreased in
the presence of the drug (Fig 2C). At the same time, the percentage
of Cherry-positive cells that had either no detectable lacR focus or
several lacR foci increased when cells were cultured in the
presence of APH (Fig 2A–C). In summary, these data show that the
lacO insertion is prone to improper segregation, a phenotype that
is enhanced in conditions that promote fragile-site expression.
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Fig 2 | Deficient segregation of the lac operator insertion. Percentages of 3T3lacO cells that had been transfected with lacR for 48 h, were positive for

Cherry and had (A) zero, (B) more than one or (C) one lacR focus. Cells were grown in the absence or presence of aphidicolin (0.2mM, 48 h).

Representative examples of each case are shown below the graphs. Scale bars, 2.5 mm. Error bars indicate s.d. from three independent experiments.

*Po0.05; **Po0.01; Student’s t-test. APH, aphidicolin; lacO, lac operator; lacR, lac repressor.
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As mentioned above, a recent study revealed that CFSs are
frequently found in anaphase bridges (Chan et al, 2009),
indicating that fragile-site breakage could be the consequence of
the resolution of inter-sister chromatid linkages during mitosis. In
agreement with the lacO insertion behaving as a fragile site, the
analysis of mitotic figures in 3T3lacO cells showed that the lacR
signal was observed at an anaphase bridge in around one-fifth of
all anaphases (Fig 3A,B). The percentage of lacR-positive
anaphase bridges was enhanced in the presence of low doses of
APH, reinforcing its link with the ontogeny of fragile sites (Fig 3B).
Co-transfection of lacR with a green fluorescent protein-tagged
H2B allowed us to track this phenomenon in living cells
(supplementary Movie 1), which showed that the lacO sequence
underwent significant stretching and contraction at anaphase
bridges. We believe that this example illustrates the mechanical
forces that might affect stability of fragile sites in mitosis.

Previous studies have shown that the BLM helicase localizes to
and suppresses anaphase bridges (Chan et al, 2007). Further
analyses showed that BLM was particularly relevant for the
suppression of anaphase bridges involving chromosomal fragile
sites (Chan et al, 2009; Naim & Rosselli, 2009). In agreement with
this model, RNA interference-mediated knockdown of BLM
increased the percentage of anaphases that presented a lacR-
positive bridge signal on 3T3lacO cells (Fig 3B). It is noteworthy
that the anaphase bridges containing lacO repeats presented DNA
at the bridge that was detectable by 4,6-diamidino-2-phenylindole
(DAPI) staining. However, a recent study reported a distinct class
of anaphase bridges that showed no obvious signal for DAPI,
but which were detectable with an antibody that recognizes the
Plk1-interacting checkpoint helicase (PICH; Chan et al, 2007).
These structures are known as ultrafine bridges. Nevertheless, to
what extent ultrafine bridges are distinct from other anaphase
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Fig 3 | PICH coats anaphase bridges at the lac operator locus. (A) Example of an anaphase from 3T3lacO cells that had been transfected with lacR for

48 h, presenting an anaphase bridge that is positive for lacR (red). Scale bars, 2.5 mm. (B) Quantification of the percentage of anaphases showing a lacR
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presence of DAPI at the bridge. APH, aphidicolin; BLM, Bloom syndrome protein; DAPI, 4,6-diamidino-2-phenylindole; lacO, lac operator; lacR, lac

repressor; PICH, Plk1-interacting checkpoint helicase; siRNA, small-interfering RNA.
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bridges remains to be clarified. For instance, BLM was shown to
suppress both DAPI-positive and DAPI-negative anaphase bridges
(Chan et al, 2007). In agreement with this idea, 67% of the
anaphase bridges involving lacO repeats were also recognized by
the PICH antibody, regardless of the presence of DAPI (Fig 3C).
Interestingly, a significant fraction (27±2%) of lacR foci
colocalized with a distinct PICH spot on interphase cells
(Fig 3C), suggesting that PICH might recognize fragile sites at
other stages besides mitosis.

One limitation in the study of anaphase bridges is the short
duration of mitosis. However, anaphase bridges have been shown
to frequently derive into micronuclei on daughter cells (Hoffelder
et al, 2004), so that the presence of micronuclei could be used as a
surrogate marker of past anaphase bridges. In agreement with
anaphase bridge data, 3T3lacO cells had an increased number of
micronuclei containing lacR signals, even more so when cells
were cultured in the presence of APH (Fig 4A,B). It is noteworthy
that some of these micronuclei presented several lacR foci (Fig
4A), reinforcing the link between a deficient segregation as the
origin of micronuclei. Together, these data indicate that
the mechanism of breakage of the lacO insertion is similar to
that reported for CFS, and suggest that the role of PICH in dealing
with fragile sites might extend from that observed at mitosis.

As mentioned, several oncogenes have been shown to be a
source of replicative stress, which would limit the expansion of
early malignant lesions through the activation of the DNA damage
response (DDR; Halazonetis et al, 2008). In particular, the Myc
oncogene has been shown to generate significant amounts of
replicative stress (Herold et al, 2009). In the context of this model,
we reasoned that the replicative stress induced by the oncogenes
might not be intrinsically distinct from that induced by APH and
could therefore also promote the formation of anaphase bridges or
micronuclei containing lacO sequences. In agreement with this,
transduction of 3T3lacO cells with a Myc-expressing retrovirus led
to an significant increase in the number of micronuclei and

anaphase bridges that presented lacR signals (Fig 5A,B). In
addition, the presence of Myc led to the appearance of cells
(12±2.5%) containing large numbers of lacR foci, which were not
found on control cells (Fig 5C). Altogether, these data indicate that
the stability of the lacO integration site is perturbed by the
presence of the Myc oncogene.

We present data here to illustrate that the introduction of
several tandem repeats of bacterial lacO provides a traceable
fragile site in mammalian cells. As mentioned before, the lacR has
been shown to promote a replication block at lacO sequences
(Payne et al, 2006), so it is possible that the repressor could not
only mark, but also facilitate the expression of this fragile site. In
fact, while we were resubmitting this work, an independent study
in yeast has shown that the introduction of lacO sequences also
generates a fragile site in Schizosaccharomyces pombe, which
was stimulated by the lacR (Sofueva et al, 2011). Our study
extends these findings and shows the breakage of the fragile site in
metaphase chromosomes in mammalian cells. Moreover, our
work shows that the PICH helicase might have a more active role
on fragile sites beyond mitosis, and for the first time reveals that
oncogenes can stimulate the generation of anaphase bridges and
micronuclei containing fragile-site sequences. Altogether, we
believe that the system provides a powerful platform for
investigating the biology of fragile sites. The system could, for
example, be used to obtain an in cellulo view of new proteins and
chromatin modifications that mark fragile sites in interphase
cells or anaphase bridges. A more-comprehensive characteriza-
tion of the mechanisms responsible for resolving anaphase
bridges remains a key question for future studies of the origin of
fragile-site breakage.

Finally, we note that many mammalian studies are exploiting
the power of this lacO/lacR system to bring factors to a known
chromatin location. For instance, 3T3lacO cells were previously
used to claim that a DNA break was not necessary to activate the
DDR (Soutoglou & Misteli, 2008). The strategy used was to bring
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DDR factors to the lacO sequence by tethering them to the lacR,
which showed an activation of the DDR by the presence of lacR
foci that colocalized with some of the factors analysed here, such
as gH2AX. However, although it is possible that bringing DDR
factors to chromatin might activate a DDR, the data presented
here should be taken into account when interpretting these
observations. Given the wide use of this strategy among cell
biologists, we believe that the inherent fragility of the lacO
insertion should be considered in determining the suitability of
such an approach.

METHODS
Cells and plasmids. Cells (3T3lacO) and the Cherry-conjugated
lacR expression plasmid have been described before and were
kindly provided by T. Misteli (Soutoglou et al, 2007). The plasmid
was transfected using Lipofectamine 2000 (Invitrogen), following
the manufacturer’s instructions. BLM-targeting validated small-
interfering RNA sequences were obtained from Invitrogen,
transfected at 20 nM with Lipofectamine 2000, and knockdown
was verified by quantitative reverse transcription polymerase
chain reaction 48 h after transfection.
Immunofluorescence. The primary antibodies used in this work
were gH2AX (Upstate Biotechnology), FANCD2 (Novus Biologi-
cals), Brca1 (gift from A. Nussenzweig, National Cancer Institute,
USA), PICH (gift from I. Hickson, University of Copenhagen,
Denmark) and Bard1 (gift from J. Chen, MD Anderson, USA). For
immunofluorescence, secondary antibodies conjugated with
Alexa 647 or Alexa 488 (Molecular Probes) were used at 1:250.
The lacR signal coming from the lacR–Cherry construct was
imaged without extra antibodies. Image acquisition was done by
using a Zeiss Axioimager Z1 microscope equipped with an
Apotome system of structured illumination.
Live-cell imaging. For live-cell imaging, 3T3lacO cells that had
been previously transfected with a human H2B–enhanced green
fluorescent protein expression plasmid (Addgene) were cultured in
DMEM (Lonza) supplemented with 10% FCS and antibiotics. Cells

were grown on glass-bottomed P96-Well plates (Greiner Bio-One
96-Well Microplates) and maintained in a 37 1C environmental
chamber with CO2. All live microscopy was carried out on a Leica
Workstation AF6000, with a � 63 objective. The acquisition was
done every 30 s in 10 different Z-axis plan. The images from the
same acquisition time were merged and cut using the Leica Las AF
software (v.1.3).
lacO FISH. FISH of the lacO sequences was performed as described
previously (Soutoglou et al, 2007). Briefly, 3T3lacO cells were
incubated in colcemid (Invitrogen) for 3h, swollen in pre-warmed
50mM KCl, fixed in methanol/acetic acid (3:1), and air-dried on
slides overnight. FISH was performed with a probe labelled with
biotin-dUTP generated from a plasmid containing the lacO insertion
DNA (gift from T. Misteli). The FISH probe was precipitated in 50%
formamide, 20% dextran sulphate and 2 SSC, and hybridized to slides
containing metaphase spreads for 48 h at 37 1C. Slides were then
washed three times in 50% formamide in 2� SSC at 45 1C, three
times in 0.1� SSC at 60 1C and incubated for 45min at 37 1C with
avidin–fluorescein isothiocyanate (1:200) diluted in 4� SSC, 0.1%
Tween20. The slides were finally washed three times in 4 SSC, 0.1%
Tween20 at 45 1C and preserved in DAPI-containing mounting
media. The imaging was done as described above.
Myc overexpression. pBabe-puro-MycER (Addgene) was retro-
virally transduced into 3T3lacO cells following standard proce-
dures. Infected cells were selected with 1.5 mg/ml puromycin for
2–3 days and subsequently grown in the presence of 4-
hydroxytamoxifene for 48 h for Myc activation. The empty
pBabe-puro vector (Addgene) was used as a control.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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