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a  b  s  t  r  a  c  t

Humans  are  fundamentally  social  creatures  who  are  ‘motivated’  to be with  others.  In this
review we  examine  the  role  of oxytocin  (OT)  as  it relates  to  social  motivation.  OT  is  synthe-
sized  in  the  brain  and  throughout  the body,  including  in the  heart,  thymus,  gastrointestinal
tract,  as  well  as  reproductive  organs.  The  distribution  of  the  OT  receptor  (OTR)  system
in  both  the brain  and  periphery  is  even  more  far-reaching  and  its  expression  is  subject
to changes  over  the  course  of  development.  OTR  expression  is  also  sensitive  to changes
in  the  external  environment  and  the  internal  somatic  world.  The  OT system  functions  as
an important  element  within  a complex,  developmentally  sensitive  biobehavioral  system.
Other elements  include  sensory  inputs,  the  salience,  reward,  and  threat  detection  path-
ways, the  hypothalamic-pituitary-gonadal  axis,  and  the  hypothalamic-pituitary-adrenal
stress response  axis.  Despite  an  ever  expanding  scientific  literature,  key  unresolved  ques-
tions remain  concerning  the interplay  of the  central  and  peripheral  components  of  this
opamine
strogen
estosterone
tress

complex  biobehavioral  system  that dynamically  engages  the  brain  and  the  body  as  humans
interact with  social  partners  over  the course  of  development.
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Every variety of love. . .is born, lives, dies, or
attains immortality in accordance with the
same laws.

Henri Marie Beyle (Stendhal), 1822

1. Introduction

‘Motivation’ is defined in the Merriam Webster dictio-
nary as being: “1.a: the act or process of giving someone a
reason for doing something; b: the condition of being eager
to act or work; 2: a force or influence that causes some-
one to do something.” In this review, we begin with the
observation that humans are fundamentally social crea-
tures who are ‘motivated’ to be with others. The various
forms and contexts through which we can ‘be with others’
in today’s world are ever expanding and include, for exam-
ple, being ‘friends’ on Facebook and Twitter. More broadly,
the concept of social motivation considers the basic
human need to become a member of groups organized
around one’s familial, cultural, religious, national, commu-
nity, political, occupational, scholastic, and/or recreational
identity.

In this review, we first focus on the importance of
monitoring dyadic social interactions. We  then review
the ever-expanding scientific literature concerning the
biobehavioral processes that underlie the motivation to
be with others. The complex neural and somatic systems
that are influenced by the neuropeptide oxytocin (OT) in
the emergence of intimate dyadic relationships over the
course of development are a major focus of this review.
Next, we present a conceptual model and close by pos-
ing questions for future research. Before reviewing any
specific findings, we offer our evolutionary point-of-view
concerning the likely existence of common biobehav-
ioral processes in attachment and bonding among all
mammals.

Humankind and especially the human brain are remark-
able products of evolution. While the basic machinery
of the vertebrate brain has been in place for more than
450 million years, our subspecies (Homo sapiens sapi-
ens) emerged between 100,000 and 200,000 years ago.
In the struggle for life, certain traits have come to pre-
dominate. It is likely that many of the elements in our
mental and behavioral repertoire related to successful

mammalian reproduction have been the focus of intense
selective pressures ever since the first lactating proto-
mammals emerged some 300 million years ago. The
selection of a mate, bearing of viable offspring, and the
 . .  .  . .  . . . . .  . .  . . .  .  . . .  . . . .  . .  . . . .  .  . . .  .  . . . . . . .  .  . . . . . .  . . .  . . . .  .  . . .  . . . .  . 487

formation of parental commitments that will sustain an
infant through a period of dependency (especially lengthy
for humans) are just a few of the developmentally sensitive,
complex, interdependent processes needed for individ-
ual survival and species viability. Although most of our
biological and behavioral potentialities are likely to be
called upon at one point or another in the service of
these goals, there must be highly conserved brain- and
body-based systems that are specifically activated at devel-
opmentally appropriate moments to achieve and sustain
these processes. We  hypothesize that a thorough under-
standing of these “normal” processes will also lead to
deeper insights into our vulnerability to develop a range
of psychopathological outcomes (Leckman and Mayes,
1998).

This point of view is consistent with the work of Darwin
(1872),  Tinbergen (1963),  Lorenz (1978),  Hinde (1970,
1986), Bowlby (1969, 1973, 1980, 1988) and Ainsworth
et al. (1978),  as well as scientists currently engaged in
the study of bond formation (e.g., Carter et al., 2005) or
reproductive strategies (e.g., Belsky et al., 1991) from an
evolutionary perspective. As noted by Tinbergen (1963),
this evolutionary perspective challenges us to examine
both the “proximal” and “ultimate” causes of these con-
served behaviors. Consequently, we will examine the
biobehavioral mechanisms that stimulate and support
social interactions as well as how these mechanisms
change over the course of development. We will also con-
sider how this complex biobehavioral system compares
across species and how it directly impacts an individual’s
survival and ability to reproduce.

2. Characterization of dyadic social behaviors over
the course of development

One important mechanism by which mammalian par-
ents bond with their infants (Hrdy, 2005) and adults bond
with each other (Sacher, 2005) involves approach and
social engagement followed by a specific set of highly
repetitive and predictable behaviors that are often species-
specific. Consequently, this area of research depends upon
the ability of investigators to record and empirically code
the exact nature of these species-specific dyadic social

interactions. Coding schemes to monitor dyadic interac-
tions in rodents are well established (Myers et al., 1989;
Hammock and Young, 2005). For example, Myers et al.
(1989) developed a now-widely used intensive observation
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ystem in which dyadic interactions are scored 25 times
or 3 min  blocks five times per day for a total of 125 daily
bservation blocks per mother (Champagne et al., 2001;
rancis et al., 1999). The coded dyadic repertoire includes
uch items as the mother licking and grooming (LG) any
up, nursing of pups in an arched-back posture, engaging

n a “blanket” posture in which the mother lays over the
ups or a passive posture while the pups nurse, as well
s the absence of pup-mother contact. Similar paradigms
re available for coding human behavior (Ainsworth et al.,
978; Feldman, 1998; Koos and Gergely, 2001; Tronick
t al., 1980).

As with the animal work, these studies have begun to
ntangle the specific types of micro-level behaviors that
ypify different attachment relationships, such as inter-
ctions with mothers versus fathers, dyadic parent–child
nteractions versus whole family exchanges, interactions
etween parent and child as compared to those expressed
y romantic partners at the initiation of pair bonding,
s well as how the expression of these behaviors may
iffer by environment, e.g., in industrial versus more tra-
itional societies. For example, using Coding Interactive
ehavior (CIB) codes, Feldman and colleagues have been
ble to monitor minute, subtle, repetitive and sponta-
eous elements of dyadic and triadic behaviors across
he life span (Feldman, 1998, 2003, 2007; Feldman et al.,
010c, 2011). The codes used to characterize these dyadic
nd triadic interactions include mutual gaze, affect, vocal-
zation, arousal indicators, lead-lag relationships, joint
ocus, exploratory behavior, proximity position, and type
f touch. These behaviors are observed and coded through-
ut the interaction in multiple players within different
ontexts (for example, free play versus toy exploration
aradigms, paternal versus maternal play, or dyadic versus
riadic contexts) and can be consequently integrated into

eaningful behavioral composites. By assessing the degree
f coordination of various micro-level codes between
artners, an exchange can further be classified as “syn-
hronous” (interactions where partners coordinate their
ehavior in relation to the other’s social signals) versus
intrusive” (interactions in which one partner over-
timulates and disregards the other’s focus of interest or
eed for rest) (Feldman et al., 2010a).

. Biological determinants of motivation in a social
ontext during the course of development

There are several comprehensive reviews on this topic
hat focus either on animal studies, human studies, or both
Barrett and Fleming, 2011; Bartz et al., 2011; Bos et al.,
011; Goodson and Thompson, 2010; Heinrichs et al., 2009;
oss and Young, 2009). In this review, we have used a
ystems approach to survey important findings relevant
o neural and somatic systems integral to social motiva-
ion. In addition to the biology and ontogeny of the OT and

rginine vasopressin (AVP) system, we focus on how these
anopeptide systems interact with the salience and reward
athways, the hypothalamic-pituitary-gonadal axis, the
ypothalamic-pituitary-adrenal stress response axis, the

mmune system and other peripheral organ systems.
 Neuroscience 1 (2011) 471– 493 473

3.1. Molecular and anatomical framework: the oxytocin
(OT) and arginine vasopressin (AVP) axis

OT and AVP are nine amino acid peptides that are closely
related structurally, differing at only two  amino acids. Phy-
logenetically the genes regulating both OT and AVP can
be traced to invertebrates. However, the specific amino
acid sequences of OT and AVP are with few exceptions,
mostly present only in placental mammals (Gainer and
Wray, 1994). In the central nervous system (CNS), synthe-
sis of OT and AVP occurs primarily in the supraoptic nuclei
(SON) and paraventricular nuclei (PVN) of the hypotha-
lamus, although the spinal cord, bed nucleus of the stria
terminalis (BNST) and the anterior commissural nucleus
are also central sources of OT (Sofroniew, 1983) and the
suprachiasmatic nucleus, medial amygdala, BNST and other
caudal brain stem areas are other central sources of AVP
(Carter, 1998).

As depicted in Fig. 1, OT fibers are present in a num-
ber of brain regions including the medial preoptic area
(MPOA), the BNST, the lateral septum, the nucleus accum-
bens (NAcc), the amgydala, the hippocampus, as well as
caudally in the ventral tegmental area (VTA) of the mid-
brain and the spinal cord (Sofroniew, 1983; Wang et al.,
1996). Magnocellular neurons in both the SON and PVN
project to the posterior pituitary to release OT and AVP into
the bloodstream, where they exert peripheral effects.

Based on tract tracing studies performed in prairie voles
(Microtus ochrogaster), Ross and Young (2009),  argue that
OT release is not limited to the synaptic cleft. They hypoth-
esize that OT projections coursing through the forebrain
could either be direct projections or be collaterals from
magnocellular neurons projecting to the posterior pituitary
from either the SON or the PVN or both (Ross et al., 2009). If
the OT fibers seen in the forebrain are collaterals of magno-
cellular hypothalamic neurons, this would provide a direct
mechanism for coordination of central release in the fore-
brain with peripheral release under specific physiological
states, such as vaginocervical stimulation during mating or
parturition, or sensory stimulation during breast feeding.

It also appears likely that neurons in the PVN and SON
can release OT from their entire surface area (Pow and
Morris, 1989) and that OT can diffuse through the extracel-
lular space. Remarkably, dendritic release of OT has been
well characterized and is independent of neuronal firing (for
review see Ludwig and Leng, 2006) and likely contributes to
brain OT concentrations. The complexities of this somato-
dendritic release are still only partially understood, but this
mechanism could contribute to the ability of these com-
pounds to communicate more dynamically and holistically
with the body and brain (Bos et al., 2011; Landgraf and
Neumann, 2004; Veening and Barendregt, 2010; Veening
et al., 2010). Future research is needed to address the mech-
anisms that may  underlie the synchronous release of OT in
the brain and periphery.

OT receptors (OTRs) are widely distributed through
the CNS in a highly species-specific fashion (Donaldson

and Young, 2008; Goodson and Thompson, 2010). A large
number of taxa have been examined. Within species, the
both pattern of OTR distribution across brain regions and
the density of OTRs within specific brain regions can be
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Fig. 1. Central and peripheral sites of oxytocin (OT) release. Within the brain, OT is released from the paraventricular (PVN) and supraoptic (SON) nuclei
of  the hypothalamus, and to a lesser extent, the bed nucleus of the stria terminalis, spinal cord and anterior commissural nucleus. Central OT projections
are  pictured in green. Peripheral sources of OT include OT released into circulation via the posterior pituitary as well as numerous sites outside of the

mis, pr
cumben
brain,  including the heart, thymus, gastrointestinal tract, testis, epididy
breast,  pancreas and kidney are peripheral OT targets. NAcc = nucleus ac
VTA  = ventral tegmental area; A = amygdala.

affected by rearing environments and developmental stage
(Campbell et al., 2009; Leung et al., 2009).

3.1.1. Ontogeny of the OT and AVP systems: sensitive
periods and the impact of environmental pertubations

From the fetal to adult stage, several developmental
alterations take place in the OT and AVP systems. These
changes presumably underlie the maturation of social
behaviors and facilitate the various changing physiologic
functions of these systems across the lifespan. For example,
the weaning period is an important developmental transi-
tion in rodents, marked by reduced maternal investment,
alterations in diet and increased independent socialization
and exploration (Martin, 1984). The available evidence sug-

gests that it is also a critical period in the function of the
OT system (Higashida et al., 2010; Lopatina et al., 2011).
Prior to weaning, exogenous sources of OT are provided to
the young via the fetal placenta and maternal breast milk.
ostate, pregnant intrauterine tissue, ovaries, and adrenal medulla. The
s; MPOA = medial preoptic area; BNST = bed nucleus of stria terminalis;

Following weaning, the offspring become dependent upon
the endogenous synthesis of OT, and consequently, deficits
in the function of the OT system become more appar-
ent and different pathological phenotypes may  emerge. As
reviewed below in the genetic section, Higashida and col-
leagues found that following weaning, mice pups need to be
self sufficient in the production and release of OT in order
to sustain maternal behavior and male social recognition
(Higashida, 2010; Lopatina et al., 2011).

In adulthood, pregnancy and parturition mark another
major transition point in the pattern of neuropeptide secre-
tion and availability for females. During pregnancy, central
basal release of OT is transiently suppressed by high lev-
els of progesterone (Keverne and Kendrick, 1992). This is

thought to sensitize the brain to the effects of OT released
in the MPOA, BNST and olfactory bulb during parturition
to facilitate the induction of maternal behavior (Kendrick
et al., 1988a,b, 1992).
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In the brain, the expression of both the OTR and AVP
V1aR) receptor is sensitive to several important devel-
pmental transitions. The pre-weaning period in rats is
haracterized by reductions in OTR binding in the cingulate
ortex and dorsal hippocampus, along with the appearance
f OTR in the ventral hippocampus (Tribollet et al., 1989).
t the onset of puberty in the rat, Tribollet et al. (1989)
lso reported increases in OTR binding in the olfactory
ubercle and the ventromedial hypothalamic nucleus—an
rea with a high density of estrogen receptors in the adult
rain—suggesting expression in this region may  be contin-
ent upon increased gonadal function accompanying the
nset of puberty. In fact, estradiol-related and postpartum
ncreases in OTR binding have been identified in several
tudies (Insel, 1986; De Kloet et al., 1986). Lukas et al.
2010) report decreases in OTR binding in the caudate-
utamen and lateral septum and increases in OTR binding

n the ventromedial hypothalamus and increased V1aR
inding in the lateral septum with increasing age in male
ats. In contrast, expression of OTR in some regions appears
o be constant; for example, OTR binding in the dorsal

otor nucleus of the vagus nerve is first identified during
etal life and persists into adulthood (Tribollet et al., 1989).

Studies suggest the developmental trajectory of the
T and AVP systems is not completely hardwired can be
odulated by both early life experience and the rearing

nvironment. For example, maternal separation induces
ramatic and long-lasting changes in OT and AVP recep-
or binding in the juvenile, adolescent and adult brain.
n male rats, 3 h of daily maternal separation between
ostnatal days 1 and 14 is associated with age-dependent
lterations in receptor binding; specifically, increased V1aR
inding in the lateral septum of juveniles and piriform
ortex of adolescents and adults, decreased OTR bind-
ng in the agranular cortex of juveniles and adolescents
nd lateral septum and caudate putamen of adults and
ncreased OTR binding in the ventromedial hypothalamus
f adults (Lukas et al., 2010). The authors speculate that the
ltered expression of these receptor systems may  under-
ie the long-term behavioral alterations associated with
educed maternal contact, including altered expression of
lfaction-dependent behaviors such as social recognition
possibly related to changes in the piriform cortex or agran-
lar cortex, regions associated with olfactory processing)
r anxiety and aggression (presumably due to changes in
he lateral septum). Similarly, in highly social prairie voles,
iffering amounts of manipulation from postnatal day 1 to

 are also associated with alterations in the development
f the OT system and social function. Compared to those
ot handled at all or handled once on postnatal day 7, early
andling (once daily for the first 7 postnatal days or once
n postnatal day 1) is associated with lower OTR binding in
he BNST and NAcc, higher OT cell body density in the SON
nd behaviorally, increased time engaging in non-huddling
ontact and alloparental behavior (Bales et al., 2011).

Importantly, these effects seem to be sexually dimor-
hic and species-dependent. For example, early maternal

eparation is associated with decreased OT immunoreac-
ivity in the PVN of lactating females but increased AVP
mmunoreactivity in the PVN of males of CB57BL/6 mice
Veenema et al., 2007). In this population, maternal sep-
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aration is associated with decreased latency of maternal
aggression but increased latency of inter-male aggres-
sion, whereas in rats, the opposite effects are reported for
both adult inter-male aggression (Veenema et al., 2006)
and maternal aggression (Boccia and Pedersen, 2001). Off-
spring age at weaning is also associated with sex-specific
alterations in receptor expression and behavior. While no
sex-related differences are noted for mice weaned on post-
natal day 21, weaning on postnatal day 28 is associated
with increased OTR binding in females and decreased OTR
binding in males within the ventral medial hypothalamus
(VMH; Curley et al., 2009). Given that the VMH  is associated
with estradiol-induced regulation of sociosexual behav-
iors, it is possible that these alterations underlie changes
in reproductive strategies observed with varying parental
investment, such as the increased lordosis response of
females receiving low maternal care in the early postnatal
period (Curley et al., 2009). These environmentally driven
effects are likely driven by epigenetic mechanisms, dis-
cussed subsequently.

Other structural developmental changes in the brain
have been identified, including the gradual emergence of
projections between brain regions, such as AVP projections
from the BNST and medial amygdala to the lateral habenula
and septum (De Vries et al., 1981). Parturition, lactation and
the induction of maternal behavior have also been associ-
ated with several morphological changes to oxytocinergic
neurons in the rat SON, including dendritic bundling, the
emergence of large areas of somatic appositions, increases
in the number of presynaptic terminals making contact
with multiple postsynaptic elements and dye coupling (an
indicator of electrotonic coupling) (Hatton et al., 1992).

Outside of the brain, alterations in the peripheral OT
system have also been noted; for example, OTR density in
the porcine endometrium has been found to vary with the
menstrual cycle, increasing during oestrus and decreasing
during early pregnancy and the luteal phase (Okano et al.,
1996). In humans, OTR density in the myometrium and
decidua increase with pregnancy and peak with labor, pre-
sumably in association with OT’s role in the stimulation of
uterine contractions in the initiation of labor (Fuchs et al.,
1982).

3.1.2. The role of oxytocin and vasopressin in parental
behaviors

OT has long been considered a maternal hormone,
traditionally known for its role in milk-let down during
breastfeeding and uterine contraction during childbirth.
A synthetic form of OT is used for birth induction and to
prevent bleeding from uterine tissue after delivery. Breast-
feeding, a fundamental maternal behavior, relies on OT
secretion and OT is abundant in maternal milk and serves
as an exogenous source of OT for the nursing infant (Carter,
2003).

Infant behaviors during breastfeeding (i.e., suckling and
infant hand stimulation of the nipple) induce OT release in
the mother (Amico and Finley, 1986) and this response is

sensitive both to mechanisms of conditional learning and a
range of infant reminders (McNeilly et al., 1983). Repeated
assessments of maternal salivary OT around the time of
breastfeeding show that OT concentrations peak a few min-
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utes prior to breastfeeding in preparation for milk let-down
(White-Traut et al., 2009).

Animal research describes a specific time-window most
suitable for the initiation of bonding. For instance, dur-
ing the estrous cycle in females, varying levels of estrogen
sensitize the female brain to the effects of OT on pair
bonding. Specifically, estradiol potentiates the OT system
by increasing synthesis of the neuropeptide (Miller et al.,
1989; Caldwell et al., 1989) and its receptor (Insel, 1986). In
prairie voles, the removal of the ovary does not eliminate
the capacity to form pair bonds (Williams et al., 1992); yet,
females form bonds more quickly if they mate. This finding
led researchers to the hypothesis that OT is the critical ele-
ment in pair bonding (Carter, S., personal communication,
2011). The effect of OT on timing is also observed in the ini-
tiation of maternal behaviors; in virgin rats and sheep that
are “primed” with estrogen, intracerebroventricular injec-
tions of OT quickly induce the full repertoire of maternal
behavior in a dose-dependent fashion (Lévy et al., 1992;
Pedersen et al., 1982). Importantly, this effect is facilitated
by opioids, which are known to increase with parturition,
act in synergy with OT in the induction of maternal behav-
iors (Keverne and Kendrick, 1992) and play a role in the
development of maternal–infant touch and contact (Weller
and Feldman, 2003). Conversely, administration of an OTR
antagonist during this critical time supresses the onset of
maternal behaviors (van Leengoed et al., 1987). In addition,
in virgin female wild-type mice, central OT administration
inhibits infanticide (McCarthy, 1990). It appears that timing
creates both the willingness to partake in reward-seeking
behaviors and marks a redefined motivational salience for
participating in these bonding behaviors.

Production of OT during breastfeeding is associated with
traits that support responsive and sensitive mothering,
such as calmness and sociability (Uvnas-Moberg, 1998a,b),
and a decrease in feelings that might hinder mater-
nal function like anxiety, aggression, guilt and suspicion
(Uvnas-Moberg et al., 1990, 1993). Similarly, the amount of
breast milk mothers expressed following premature birth
was found to predict the amount of micro-level maternal
behaviors during mother–infant interactions, especially
affectionate touch (Feldman and Eidelman, 2003).

Numerous studies assessing the involvement of OT in
human bonding examined the expression of micro-level
social behavior in each partner during dyadic or tri-
adic interactions along the dimensions of gaze, proximity,
arousal, touch, affect, exploratory behavior, and vocaliza-
tions. The expression of these behaviors in various social
contexts – such as face-to-face interactions, exploratory
play, triadic contexts, interactions between children or
adolescents with their best friends or a peer group, and
exchanges between romantic partners – are assessed in
relation to peripheral measures of OT. Such micro-level
behaviors are integrated into meaningful behavioral con-
stellations with distinct temporal patterns and can advance
our understanding of the intricate relationships between
the oxytocinergic system and attachment processes in

humans. While human studies are limited to peripheral
measurements (plasma, saliva, urine, or CSF) due to obvi-
ous constraints in the measurement of brain OT, studies
testing the correlations between the behaviors of parents
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and infants and other social partners may  show consistency
with the animal studies and thus validate the use of periph-
eral measures. Neuroimaging studies of new mothers also
point to the involvement of OT-related circuitry in sensitive
care giving (Kim et al., 2011; Strathearn et al., 2009).

Measuring plasma OT in pregnant mothers through-
out pregnancy and in the immediate postpartum period,
Feldman and colleagues found that higher OT concen-
trations in the first trimester of pregnancy and the first
postpartum month predicted maternal bonding behaviors,
including gaze to infant, “motherese” high-pitched vocal-
izations, positive affect, and affectionate touch (Feldman
et al., 2007). In this sample, the increase in OT concentra-
tions from the first to the third trimester of pregnancy was
associated with the mother’s self-reported attachment to
her fetus prior to birth (Levine et al., 2007). In contrast,
Skrundz et al. (2011) reported that that expectant mothers
during the third trimester of pregnancy at risk for post-
partum depression have lower levels of plasma OT during
pregnancy.

In a study of mothers and fathers during the first 6
months after the birth of their first child, maternal plasma
OT concentrations were correlated with the mother’s
affectionate-style parenting, including maternal gaze, pos-
itive affect, “motherese” vocalizations, and affectionate
touch (Gordon et al., 2010a). On the other hand, fathers’
OT levels were associated with their stimulatory play style,
which included stimulatory and proprioceptive touch, high
positive arousal, and object focus—measures thought to
capture the father’s tendency to induce positive arousal
and orient the infant towards the external environment
(Gordon et al., 2010a).  In a social play context, paternal
OT was  also associated with affect synchrony, which was
indexed by the coordination of paternal gaze, vocalizations,
and positive affect during moments of infant positive vocal-
izations (Gordon et al., 2010c).  Close proximity and warmth
during mother–father–infant triadic family interactions
were similarly linked with both maternal and paternal OT.
At 6 months, the amount of triadic synchrony—defined
as moments of physical proximity and affectionate touch
between mother, father, and child while parents synchro-
nize social gaze—was predicted by the peripheral levels of
maternal and paternal OT (Gordon et al., 2010b).

To examine the effects of maternal and paternal touch
patterns on the OT response, a group of 112 mothers
and fathers (not couples) interacted in 15-min “play-and-
touch” sessions with their 4–6 month old infants. Mothers
who  provided high levels of affectionate contact showed an
increase in salivary OT following dyadic interactions, but
mothers who provided minimal touch did not show an OT
response. Among fathers, those who provided high levels of
stimulatory contact also exhibited an OT response, whereas
those displaying minimal contact showed no OT increase
following the parent–infant session (Feldman et al., 2010b).

Another study tested the cross-generational trans-
mission of peripheral OT levels from parents to infant.
Mothers and fathers were observed in the “play-and-

touch” paradigm and salivary OT was assessed in both
parent and infant before and after play. Correlations were
found between the OT levels of mothers and fathers and
that of their infant in both the pre-play baseline and the
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ost-contact period. Importantly, we found that the degree
f affect synchrony moderated the cross-generational
ransmission of OT levels from parent to child. Dyads
ngaging in synchronous play also exhibited a significantly
igher cross-generational link between the parent and

nfant’s OT levels (Feldman et al., 2010c).  Finally, we  found
hat maternal and paternal plasma and salivary OT were
nter-related and were associated with affect synchrony as

ell as with self-reported measures of romantic attach-
ent and bonding to own parents, indicating that OT may
ediate the individual’s multiple attachments across the

ifespan (Feldman et al., 2011). Interestingly, peripheral OT
evels measured in young adults who were currently not
nvolved in a romantic relationship were found to be cor-
elated with the level of affectionate care they reported
eceiving as a child from their mothers as well as their
athers (Mother Care, r = 0.42, p < .01; Father Care, r = 0.36,

 < .05) (Gordon et al., 2008; Parker et al., 1979).
OT reactivity measured in urine after a “cuddle play”

ession in which foster mother and child were asked to play
ogether in an interaction that included a lot of warm phys-
cal contact was associated with the amount of “maternal
elight” foster mothers displayed during the interactions
Bick and Dozier, 2010).

These findings linking parental behaviors with rela-
ively stable peripheral levels of OT raise a number of issues
hat are as yet unresolved. Most notably, how are stable
T concentrations maintained in the periphery and how
re they related to events in the brain? Is somatodendritic
elease and diffusion sufficient? Or is it due to release from
xon collaterals extending into the forebrain from magno-
ellular hypothalamic neurons? Or, as we discuss in a later
ection of the review, are there, as yet unexplored mecha-
isms by which peripheral sources of OT contribute to this
tability?

.1.3. The role of oxytocin and vasopressin in sexual
ehavior and the formation and maintenance of adult
air bonds

Evidence from microinjection, double immunofluores-
ence and intra-cerebral microdialysis studies suggests
NS OT may  play an important role in both the motivational
nd consummatory phases of sexual behavior by virtue
f its connections with mesolimbic dopaminergic neurons
for a review, see Melis and Argiolas, 2011). OT injection
nto the PVN and extra-hypothalamic sites facilitates penile
rections and improves male copulatory performance in
onkeys, mice, rats, and rabbits (Melis and Argiolas, 2011;
rgiolas and Gessa, 1991; Carter, 1992; Pedersen et al.,
992; Argiolas and Melis, 1995, 2004; Argiolas, 1999;
inslow and Insel, 1991; Arletti et al., 1985). In females, OT

s thought to increase sexual receptivity. Intracerebroven-
ricular and intraperitoneal injections of OT significantly
ncrease lordosis behavior in estrogen-treated female rats
n a dose-dependent manner (Arletti and Bertolini, 1985;
aldwell et al., 1986).

Consistent with these findings, OT is released during

exual activity in both men  and women (Carmichael et al.,
987). Plasma OT levels measured in men  during sexual
limax were five times higher than at basal levels, but sub-
equently returned to basal levels within a 30 min  period
 Neuroscience 1 (2011) 471– 493 477

(Murphy et al., 1987; Uckert et al., 2003). Loving affection-
ate touch between romantic partners, such as hugs and
provision of social support, are related to higher levels of
OT (Grewen et al., 2005; Light et al., 2004, 2005; Turner
et al., 1999).

The effects of AVP on sexual behavior and partner pref-
erence formation seem to be more important in males,
especially considering the fact that AVP has been found to
be more abundant in males (De Vries et al., 1994; Insel and
Hulihan, 1995). In the monogamous prairie vole, admin-
istration of a V1aR antagonist inhibits the formation of
partner preference that normally follows mating, while
AVP administration alone can induce partner preference
in the absence of mating (Cho et al., 1999). Consistent with
these findings, differences in the neuroanatomical distri-
bution of V1aR correlate with differences in pair-bonding
behaviors between different rodent species (Insel et al.,
1994). In human males, AVP is secreted during sexual
arousal (Murphy et al., 1987). Additionally, as in rodent
species, the V1aR also seems to be important in regula-
tion of sexual and bonding behaviors. Walum et al. (2008)
report an association between a polymorphism in the gene
encoding V1aR (AVPR1a) and various dimensions of male
partner bonding, including perceived marital problems,
marital status and marital quality.

Intranasal administration of OT and AVP is one mech-
anism whereby the central effects of these peptides can
be manipulated and studied in humans. Intranasal admin-
istration can deliver AVP, and almost certainly OT, to
the brain without uptake into the peripheral circulation
(Riekkinen et al., 1987; Born et al., 2002). Two  routes have
been proposed for the passage of these peptides from the
nose to the brain: an intraneuronal and an extraneuronal
pathway (Chen et al., 1998; Illum, 2000). Intraneuronal
transport requires the internalization of the peptide into
olfactory neurons, followed by axonal transport. However,
the likelihood of lysosomal degradation and lengthy period
for delivery to the olfactory bulb (Illum, 2000) suggest
this is an unlikely route. It therefore seems more plausible
that AVP and OT travel by the extracellular route, passing
through patent intercellular clefts in the olfactory epithe-
lium to diffuse into the subarachnoid space (Illum, 2000).

Several studies suggest intranasal OT administration
may  increase prosocial behaviors and improve social cogni-
tion in humans under certain circumstances—an effect that
would presumably enhance engagement in both parental
and romantic affiliative behaviors. For example, intranasal
OT administration is associated with increased perceptions
of attractiveness (Theodoridou et al., 2009), trustwor-
thiness (Baumgartner et al., 2008; Kosfeld et al., 2005;
Theodoridou et al., 2009), and approachability (Rimmele
et al., 2009). OT administration has also been found to
enhance various dimensions of social cognition such as
emotion recognition in both healthy adults (Domes et al.,
2007) and individuals with autism (Guastella et al., 2010)
and social memory (Rimmele et al., 2009; Savaskan et al.,
2008). Importantly, not all studies of intranasal OT admin-

istration report a significant main effect of OT on the
aforementioned dimensions, and a few studies actually
report negative effects (Declerck et al., 2010; Bartz et al.,
2010a,b) or an increase in behaviors that are not consid-
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ered prosocial, like jealousy and gloating (Shamay-Tsoory
et al., 2009). A review of the extant literature by Bartz et al.
(2011) concludes that the prosocial effects of OT in humans
are likely highly context- and person-specific and likely
the result of OT’s combined effects on anxiety reduction,
affiliative motivation and perceptual selectivity.

Recent work from the Feldman laboratory, suggests that
intranasal OT can dramatically increase peripheral levels
of OT and may  also influence the peripheral levels of OT of
individuals involved in dyadic interactions (Weisman et al.,
2011). If replicated, this finding again raises the question
of the nature of the interrelationship between the factors
that influence and co-determine central and peripheral OT
levels.

Administration of intranasal AVP in humans appears to
have sex-specific effects (Thompson et al., 2006). Specif-
ically, in men, AVP stimulates agonistic facial motor
patterns in response to the faces of unfamiliar men  and
decreases perceptions of the friendliness of those faces.
In contrast, in women, AVP stimulates affiliative facial
motor patterns in response to the faces of unfamiliar
women and increases perceptions of the friendliness of
those faces. More recently, intranasal AVP administration
to men  was also found to selectively prime cognitive pro-
cessing towards sexual words over other types of words
(Guastella et al., 2011) and to increase stress reactivity only
in situations in which men  experienced social evaluations
(Shalev et al., 2011).

3.2. Interactions with dopamine and related salience and
reward pathways

The dopaminergic system and its interactions with OT
have been implicated in various aspects of motivated states
and affiliative behavior. Central to dopamine’s (DA) role in
supporting affiliative behaviors is its involvement in the
process of hedonic transformation, linking sensory cues
from the object of recognition and bonding with the reward
system to enable and sustain the formation of selective
social bonds (Leckman et al., 2005).

DA is synthesized from l-dihydroxyphenylalanine (l-
DOPA) in the soma of neurons in the substantia nigra,
hypothalamus, arcuate nucleus, VTA and zona incerta. The
axons of these neurons project widely within the CNS via
six main pathways with involvement in distinct functions:
mesocortical (motivational and emotional responses),
mesolimbic (reward and reinforcement behaviors), nigros-
triatal (production of movement), tuberinfiundibular
(regulation of prolactin secretion from the anterior pitu-
itary), incertohypothalamic (innervation of the SON and
PVN and related regions for control of endocrine func-
tion and sexual behavior) and diencephalospinal (spinal
reflexes) (Baskerville and Douglas, 2010). Five DA recep-
tor subtypes (D1, D2, D3, D4 and D5) have been identified.
Of these receptors, D1 and D2 are the most abundant and
are found in the striatum, cortex, hypothalamus, olfactory
bulbs and substantia nigra.
There is substantial anatomical overlap between the
OT and dopamine neuron populations. For example, OT is
released from the MPOA, SON, and PVN of the hypotha-
lamus (which mediates sociosexual behavior in rodents)
 Neuroscience 1 (2011) 471– 493

and these regions are also rich in D2 receptors, suggest-
ing DA released from the incertohypothalamic system may
play a regulatory function in OT release in this region
and consequently, in the regulation of associated sociosex-
ual behaviors (Baskerville et al., 2009; Buijs et al., 1984;
Decavel et al., 1987). Overlap in the OT–DA circuit also
exists between the OT output from the PVN of the hypotha-
lamus to the VTA, hippocampus and amygdala and the
dopaminergic output from the VTA to the hippocampus,
amygdala and NAcc, suggesting bidirectional interaction
between the two systems (Baskerville and Douglas, 2010).

The prefrontal cortex and NAcc, which receive input
from both OT and DA neurons and are rich in receptors for
both systems, have been proposed as additional integra-
tive sites that may  underlie social attachment behaviors
(Baskerville and Douglas, 2010; Gingrich et al., 1992;
Smeltzer et al., 2006; Young, 1999). Dopaminergic stim-
ulation has also been shown to induce OT secretion in
both in vitro and in vivo studies (Argiolas, 1999; Bridges
et al., 1976; Cameron et al., 1992; Melis et al., 1990, 1992;
Succu et al., 2007) and stimulation of DA receptors in
electrophysiological studies induces depolarization of OT
hypothalamic cells (Mason, 1983; Yang et al., 1991).

Evidence suggests DA–OT interactions are involved in
the neuromodulation of various aspects of mate-specific
affiliative behavior, from the activation of the sexual
response to the subsequent post-copulatory induction of
bonding and partner preference. Both OT–DA and DA–OT
pathways seem to be involved in the activation of penile
erection. For example, intracerebroventricular administra-
tion of OT and DA independently facilitate penile erection
(Arletti et al., 1985; Hull and Dominguez, 2007; Martino
et al., 2005; Melis et al., 2005, 2006, 2007, 2009; Paredes
and Agmo, 2004). Cross-deactivation of these two  systems
has also been observed, as penile erection following admin-
istration of OT or a DA agonist can be blocked by OTR
blockade (Argiolas et al., 1987) or DA receptor antagonist
(Martino et al., 2005), respectively.

Projections of OT neurons in the MPOA to the VTA (the
origin of the mesocorticolimbic DA pathway that mediates
behavioral responses to stimuli of salience) are important
in the regulation and maintenance of social bonds, includ-
ing human parenting. In the case of partner preference,
mating-induced OT release may  link sexual arousal and
bonding by activating the mesolimbic dopamine circuit
and causing release of DA from the NAcc (Aragona et al.,
2003; Insel, 2003; Liu and Wang, 2003; Wang et al., 1999;
Young and Wang, 2004). There is also evidence to sug-
gest these effects may  be reciprocal (Hammock and Young,
2006; Liu and Wang, 2003). Consistent with these sugges-
tions, administration of OT or DA antagonists into the NAcc
can block or attenuate the formation of partner preference
(Waldherr and Neumann, 2007). Connections between the
related neuropeptide, AVP, and DA in the NAcc may  influ-
ence pair bonding perhaps in a gender specific fashion
(Carter, 2007; Hammock and Young, 2006; Insel and Young,
2001).
The DA mesocorticolimbic pathway and its connections
with the OT system are also important for the antici-
patory (e.g., pup seeking) and consummatory (e.g., pup
retrieval, pup LG) aspects of maternal behavior. Pups are an
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xtremely salient stimuli for lactating dams – elevated DA
n the NAcc is observed in response to pup suckling (Hansen
t al., 1993) as well as in anticipation of LG (Champagne
t al., 2004) and pup suckling elicits greater activation of
he mesocorticolimbic DA system than either cocaine or
ood (Ferris et al., 2005; Turchan et al., 2001). Furthermore,
ollowing separation from pups, lactating dams will bar
ress many times for access to pups, but if the MPOA is

esioned, a significant reduction in bar-pressing behavior is
bserved (Lee et al., 2000). Human structural and functional
euroimaging studies also support the involvement of
egions of the hypothalamus and the mesocorticolimbic DA
ystem in perceived early attachment experience, specifi-
ally the quality of maternal care in childhood (Kim et al.,
010).

Local increases in DA levels within the NAcc are
bserved during nursing bouts (Champagne et al., 2004;
ansen et al., 1993) and variations in the magnitude of

he NAcc DA signal correlate with the duration of pup LG
Champagne et al., 2004). Furthermore, injections of DA
eceptor antagonists result in deficits in maternal behavior
Keer and Stern, 1999; Numan et al., 2005), whereas
mprovements in dopaminergic signaling within the NAcc
f dams with olfactory bulbectomies positively impacted
heir deficits in observed maternal behaviors (Sato et al.,
011). Evidence from Shahrokh et al. (2010) suggests
his DA signal is OT-dependent. For example, infusions
f OT into the VTA increases the DA signal observed in
he NAcc, while infusion of an OT antagonist into the VTA
bliterates differences in the magnitude of the NAcc DA
ignal observed between high and low LG dams. A signif-
cantly higher number of OT projections from the MPOA
nd PVN of the hypothalamus to VTA has been identified
n high compared to low LG dams, suggesting individual
ifferences in appetitive behaviors directed towards pups
ay  at least in part be explained by differences in the

umber of MPOA-PVN projections and activity in the
esocorticolimbic pathway during interactions with pups

Shahrokh et al., 2010).
Along with DA, noradrenergic and serotonergic path-

ays are also involved in the salience and reward systems.
he enzyme dopamine beta hydroxylase (Dbh) synthe-
izes two ligands for adrenergic receptors, epinephrine and
orepinephrine. As reviewed below, Dbh knockout mice
xhibit widespread deficits in maternal behavior (Thomas
nd Palmiter, 1997; Thomas et al., 1995, 1998).

.3. Interactions with sex hormones and the
ypothalamic-pituitary-gonadal axis

The gonadal steroid hormones estradiol, the main estro-
en in humans, and testosterone are likewise thought to
gure prominently in the regulation of social behavior,

n part through their developmental and direct effects on
T and AVP expression. Testosterone and estradiol are
resent in both sexes to varying degrees and synthesized
rom a common precursor, cholesterol. Testosterone is syn-
hesized primarily in the Leydig cells of testes and to a

esser extent, in the adrenal gland. Estradiol is synthesized
rom the combined action of the theca (which produce
estosterone) and granulosa (which convert testosterone
 Neuroscience 1 (2011) 471– 493 479

to 17�-estradiol with the enzyme aromatase) cells of the
ovaries. In men  and postmenopausal women, extragonadal
sites, including the brain, mesenchymal cells of adipose tis-
sue, vascular endothelium and smooth muscle cells, as well
as bone osteoblasts and chondrocytes, are more important
sources of estradiol (Simpson, 2003).

Gonadal function, and consequently the synthesis of
estradiol and testosterone, varies markedly over the
lifespan and is driven by the release of hypothalamic
Gonadotropin Releasing Hormone (GnRH), which in turn
causes the anterior pituitary to release Follicle Stimulating
Hormone (FSH) and Luteneizing Hormone (LH). In males,
FSH induces spermatogenesis in Sertolli cells, while LH
induces testosterone production by Leydig cells (which in
turn also exerts positive feedback on the spermatogenic
effects of Sertolli cells). The male HPG axis is regulated by
negative inhibition at both the level of the anterior pitu-
itary and hypothalamus by testosterone, as well as negative
feedback on the anterior pituitary by Inhibin, a product of
the Sertolli cells. In females, regulation of the HPG axis is
cycle-dependent. During the follicular phase, FSH and LH
secreted by the anterior pituitary induce estradiol secretion
by follicular cells, which in turn exerts negative feedback
on the anterior pituitary. Mid-cycle, rising estradiol levels
exceed a critical concentration and subsequently begin to
exert positive feedback on the anterior pituitary, ultimately
leading to the FSH/LH surge associated with ovulation.
During the luteal phase, LH and FSH primarily induce the
secretion of progesterone from the ovaries, which then
regulates the female HPG axis via negative feedback on
the anterior pituitary. Variations in patterns and levels of
gonadal hormonal secretions across the lifespan set into
motion cascades of events with various important devel-
opmental consequences.

Gonadal steroids have profound biological and behav-
ioral effects. In the periphery, prenatal and neonatal
exposure to sex steroids guides key events in fetal phe-
notypic sexual differentiation, including differentiation of
internal and external genitalia. Puberty is marked by the
pulsatile and increased secretion of GnRH, which in turn
drives greater FSH, LH, estradiol and testosterone secretion.
These hormonal changes are responsible for the develop-
ment and maintenance of secondary sex characteristics
and later, ovum development, pregnancy maintenance
and preparation of the female breast for lactation during
the reproductive years. Finally, senescence is marked by
increases in the levels and pulsatility of GnRH, LH and FSH,
and decreases in estradiol.

In the brain, the conversion of testosterone into
estradiol is catalyzed by the enzyme aromatase, whose
expression in avian and mammalian species is restricted
to the hypothalamic MPOA, limbic system and scattered
neuronal populations in the cerebral cortex (Cornil et al.,
2006). Sex hormones have important effects on the mam-
malian brain during development and can also alter brain
function via both short and longer term pathways later
on. In the short-term (seconds to minutes), estradiol and
testosterone can exert transient non-genomic effects via

induction of various second messenger signal transduc-
tion cascades (Balthazart et al., 2006; Heinlein and Chang,
2002). Binding to androgen or estrogen receptors can initi-
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ate transcription of target genes, resulting in a longer term
genomic effect.

Unlike OT and AVP, estradiol and testosterone can
both readily cross the blood–brain barrier to exert cen-
tral effects. Prenatal exposure to gonadal steroids (from
both the fetus’ circulating hormones and the hormones
that enter fetal circulation via the placenta) guides patterns
of connectivity between neurons in different brain regions
and neuron death and survival, with the consequence that
early exposure to androgens impacts sex-typical behav-
ior across the lifespan (Arnold and Gorski, 1984; Collaer
and Hines, 1995; De Vries and Simerly, 2002). One promi-
nent example of the effects of prenatal androgen exposure
is seen in the case of Congenital Adrenal Hyperplasia,
whereby girls exposed to high levels of testosterone in
the womb exhibit, for example, male-typical play behav-
ior and drawings (Iijima et al., 2001; Nordenstrom et al.,
2002; Swaab, 2007).

During adult life, estradiol and testosterone have been
linked to the rapid activation of various socio-emotional
behavioral profiles (many of which have also been linked
to OT and AVP), including reproductive behaviors (sexual
receptivity, frequency of copulatory behavior) and aggres-
sion (Balthazart and Ball, 2006; Mehta and Beer, 2010).
Consistent with these findings, evidence suggests these
steroid hormones directly modulate the function of the OT
system, with estradiol potentiating the OT system, testos-
terone potentiating the AVP system and also affecting OT
via aromatization of testosterone to estradiol. For exam-
ple, estradiol administration is associated with increases
in electrical excitability of OT-producing neurons in the
PVN (Akaishi and Sakuma, 1985) and increases in the rate
of transcription of the OTR gene (via the effect of estra-
diol on the gene’s promoter region) (Quinones-Jenab et al.,
1997). Fluctuations in estradiol levels during the estrous
cycle produce parallel fluctuations in plasma OT and OTR
mRNA levels (Bale et al., 1995; Ho and Lee, 1992; Sarkar
et al., 1992; for a review, see Choleris et al., 2008).

3.3.1. Interactions between the OT/AVP and HPG axes
and parental behaviors

It has been suggested that the pregnancy-related
increases in estradiol and testosterone may  help prime
maternal behavior via the effects of these hormones on
the OT system as steroid hormones have also been impli-
cated in parental behaviors. In humans, administration of
testosterone in women without children increases neural
responsiveness towards infant crying (Bos et al., 2010) and
increases in the levels of testosterone have been observed
in pregnant women (Fleming et al., 1997). In fathers, infant
crying is associated with increases in peripheral testos-
terone concentrations (Fleming et al., 2002).

Increased parental care in mice is also associated with
increased aromatase activity (indicating higher conver-
sion of testosterone to estradiol) in the brain (Trainor and
Marler, 2002). In ewes, this parturition-induced increase
in OT has also been shown to be potentiated by estra-

diol (Bridges, 1984; Keverne and Kendrick, 1992; Miller
et al., 1989). Drawing from this evidence, it has been
proposed that testosterone-mediated increases in AVP
function and/or aromatization of testosterone to estradiol
 Neuroscience 1 (2011) 471– 493

(which would increase central estradiol levels, in turn caus-
ing increases in OT synthesis) may  activate caring behavior
in the mother and father.

However, the most compelling evidence suggesting the
HPG axis is crucial for maternal behavior comes from stud-
ies of mice that lack either aromatase (Ogawa et al., 1998;
Spiteri et al., 2010a,b) or estrogen receptor (ER) alpha
(Pierman et al., 2008), which are discussed in the genetics
section.

3.3.2. Interactions between the OT/AVP and HPG axes
and sexual behavior and the formation and maintenance
of adult pair bonds

Reduced expression of ER alpha in the ventro medial
nucleus of the hypothalamus is associated with deficits
in the entire repertoire of female rat sexual behavior,
including absence of sexual incentive motivation (mate
approach) as well as deficits in copulatory behaviors
(failure to exhibit the lordosis response and proceptive
behaviors such as ear wiggling, hopping and darting, and
increased rejection of sexual advances by male stud mice)
(Ogawa et al., 1998; Spiteri et al., 2010a,b).

Bos et al. (2011) propose a model whereby gonadal
steroids and neuropeptides jointly influence the motiva-
tion for social behavior via their action on the amygdala.
Specifically, in contexts characterized by social challenge,
testosterone acts in concert with AVP to reduce fear and
increase sympathetic efference, amygdala output to the
brainstem and motivation to act; in contrast, in contexts
deemed to be safe, estradiol and OT increase parasym-
pathetic efference and inhibit amygdala output to the
brainstem, enabling greater prefrontal activity and OT-
dopamine interactions, which would function to facilitate
bonding (Bos et al., 2011). Consistent with this hypothesis,
Riem et al. (2011) performed a randomized controlled trial
to examine the influence of intranasally administered OT
on maternal neural responses to infant crying. Intranasal
OT significantly reduced activation in the right amygdala
and increased activation in other limbic and frontal regions.

3.4. Arousal, anxiety, threat detection and the stress
response in social bonding

The interaction between stress and affiliation is com-
plex. Anatomically, the PVN – one of the nuclei where OT
is produced in the brain – is also a key structure in the
HPA axis. Specifically, the PVN is also the sole site of cor-
ticotropin releasing hormone (CRH) production. From the
PVN, CRH is transported to the anterior pituitary, stimulat-
ing adrenocorticotropic hormone (ACTH) release, thereby
activating the HPA axis and prompting the release of corti-
sol (CORT) from the adrenal gland. As in the case of the HPG
axis, HPA axis function is regulated by negative feedback
effects, in this case exerted by corticosteroids at the level of
both the hypothalamus and pituitary. Indeed, Dabrowska
et al. (2011) recently presented neuroanatomical evidence
for reciprocal regulation of the CRH and OT systems in the

hypothalamus and the bed nucleus of the stria terminalis
in rats.

Elevated concentrations of stress hormones have been
reported in humans during periods of falling in love
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nd during the transition to parenthood (Carter, 1998;
arazziti and Canale, 2004). The HPA axis steroid CORT has

een consistently implicated in human maternal behav-
or and responsiveness to the infant (Fleming et al., 1993,
997; Maestripieri, 2001; Stallings et al., 2001), how-
ver, the associations between CORT and parenting have
een shown to be complex, depending on multiple factors

ncluding maternal age, prior experience, and feeding pat-
erns (Krpan et al., 2005). OT has been reported to have
egative (Altemus et al., 1995; Heinrichs and Domes, 2008;
einrichs and Gaab, 2007; Meinlschmidt and Heim, 2007),
ositive (Hoge et al., 2008; Marazziti et al., 2006; Taylor
t al., 2006; Tops et al., 2007) as well as non-significant
Gordon and Feldman, 2008; Levine et al., 2007) correla-
ions with CORT.

One mechanism to explain the prosocial effects of OT is
hat the OT system reduces anxiety, especially social anx-
ety (McCarthy et al., 1996; Heinrichs and Domes, 2008).
he transition to parenthood is known to be one of the
ost stressful periods in parents’ lives accompanied by
orries and preoccupation around the newborn that is

ntroduced into the emerging family system and requires
ubstantial caretaking and resources from both parents
Cowan and Cowan, 1992; Cox and Paley, 1997). Simi-
arly, bio-behavioral as well as mental aspects of stress
ome into play during periods of falling in love with a
omantic partner, which includes preoccupations, wor-
ies about reciprocity, and increased stress and anxiety
Leckman et al., 1999). Activation of the stress response is
ot considered pathological during bond formation peri-
ds; in fact, lack of preoccupation or singular focus on
he loved one during these times is considered abnor-

al. To some extent, stress may  be an integral part of
onding and it may  facilitate idealization of the other and

ncreased focus and attention on the emerging attachment.
vidence in support of this hypothesis comes from work
n male–female pair bond formation in male prairie voles
De Vries et al., 1996). Winnicott’s (1956) notion of “pri-

ary maternal preoccupation” is a prime example of a
heoretical construct that incorporates aspects of men-
al stress in normative maternal bonding to the infant.
T is also thought to mediate the calm state associated
ith breastfeeding (Neumann and Landgraf, 2008; Uvnas-
oberg, 1997, 1998a,b).
An anxiety reduction hypothesis has also been proposed

o explain some of the prosocial effects of intranasal OT,
uch as increasing trust and social approach (Heinrichs and
omes, 2008). This reduction in anxiety might also account

or some of the selectively beneficial effects of intranasal
T for individuals on the autism spectum, given that social
nxiety is frequently an important part of their clinical pre-
entation (Amaral et al., 2008; Bartz et al., 2010a,b).

.5. Interactions with the immune system

Some preliminary evidence suggests that the OT system
ay  play a role in the modulation of immune function,
erhaps by acting as a link between the neuroendocrine
nd immune systems (Hansenne, 2005; Macciò et al., 2010;
elis et al., 1993). Specifically, OT is produced in the

hymus (Elands et al., 1990). Within the thymus, OT is
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expressed in thymic nurse cells and is thought to play a
role in the maturation and differentiation of T-cell lympho-
cytes by acting as the self-antigen of the neurohypophysial
family (Geenen et al., 1986, 1988).

Administration of OT has been found to increase
the mitogenic response of peripheral blood mononuclear
cells to administered phytohemagglutinin (PHA), as well
as the expression of CD25 (a transmembrane protein
present on activated T-cells) and CD95 (a receptor protein
that mediates apoptotic signaling). When administered in
conjunction with estradiol, OT can counteract the immuno-
suppressive effects of estradiol on PHA-induced mitosis of
peripheral blood mononuclear cells (Macciò et al., 2010).
OT may  also be involved in the regulation of T-cell lympho-
cytes. For example, Yamaguchi et al. (2004) found that OT
can attenuate the neuroendocrine and cytokine response to
a bacterial endotoxin (Clodi et al., 2008). Other investiga-
tors have reported that high levels of OT are associated with
accelerated wound healing (Gouin et al., 2010). In addition,
Ndiaye et al. (2008) identified both OT and the OTR on all
major T-cell populations within the bovine corpus luteum
and demonstrated that administration of OT induces cal-
cium influxes in T-cells, suggesting OT may  be involved in
the regulation of immune cell activity within the corpus
luteum.

3.6. Involvement of other peripheral organ systems

As depicted in Fig. 1, in addition to the thymus (Elands
et al., 1990), OT and closely related peptides are synthe-
sized in a number of somatic organ systems including
the gastrointestinal tract (Ohlsson et al., 2006), heart
(Danalache et al., 2010; Jankowski et al., 1998), pregnant
intrauterine tissue (Chibbar et al., 1993; Mitchell et al.,
1998), ovaries (Ivell and Richter, 1984), as well as the testis,
epididymis and prostate (Ivell et al., 1997).

OT secreted from the posterior pituitary as well as
these peripheral sources engage receptors in multiple sites,
enabling the neuropeptide to play diverse roles in the main-
tenance of homeostasis. Peripheral OT targets include the
mammary gland (Kimura and Ivell, 1999), ovary (Fuchs
et al., 1990), uterine endometrium (Kimura et al., 1992)
and myometrium (Fuchs et al., 1984), amnion, chorion and
decidua (Chibbar et al., 1993), testis (Ivell et al., 1998),
epididymis and prostate gland (Frayne and Nicholson,
1998), vascular endothelium (Thibonnier et al., 1999), heart
(Gutkowska et al., 1997), and kidney (Schmidt et al., 1990).

Consistent with this pattern of distribution, OT exerts
diverse peripheral effects, including milk ejection (Moos
and Richard, 1989; Nishimori et al., 1996), initiation of par-
turition, contraction of ejaculatory tissues (Thackare et al.,
2006), analgesia (Kordower and Bodnar, 1984), as well as
trophic effects on myometrial cells (Devost et al., 2005). OT
also regulates body fluid levels and cardiovascular home-
ostasis via its interactions with atrial natriuretic peptide
(Gutkowska et al., 1997), influences pancreatic hormone
secretions and circulating levels of glucagon, glucose and

insulin (Bjorkstrand et al., 1996) and attenuates the syn-
thesis or secretion of CORT by the adrenal cortex (Legros
et al., 1988); for a review, see Gimpl and Fahrenholz (2001),
Landgraf and Neumann (2004),  and Neumann and Landgraf
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(2008).  OT may  also be involved in regulation of gas-
tric motility (McCann and Rogers, 1990), and along with
AVP, thermoregulation (Lipton and Glyn, 1980). AVP also
has several peripheral targets and is involved in diverse
homeostatic functions including regulation of water reab-
sorption by the kidney and peripheral vascular resistance.

4. Genetic and epigenetic influences

4.1. Genetic influences

The gene for the OT peptide is located in chromosome
20 in humans (Summar et al., 1990) and in chromosome 2
in the mouse (Hara et al., 1990). It consists of three exons,
which together encode for the signal peptide, the non-
apeptide, a tripeptide processing peptide and the carrier
molecule for OT, neurophysin I (for a review, see Winslow
and Insel, 2002).

The development of OT knockout (OTKO) mice (Gross
et al., 1998; Nishimori et al., 1996; Young et al., 1996) was
an important contribution to the existing pharmacologi-
cally based OT literature. While OTKO mice lack the milk
ejection reflex and thus cannot lactate, other aspects of
maternal behavior, associated with the OT system, such as
parturition, initially appeared to be intact (Nishimori et al.,
1996; Young et al., 1996). However, subsequent and more
in depth studies of these mice revealed that nulliparous
OTKO mice showed decreased levels of pup retrieval and LG
(Pedersen et al., 2006) and were significantly more likely to
engage in infanticidal behavior than wild-type mice in the
same environment (Ragnauth et al., 2005). Compared to
wildtype mice, OTKO mice also exhibit increased aggres-
sion in both isolation and resident-intruder paradigms
(Winslow et al., 2000) and fail to recognize familiar con-
specifics (Ferguson et al., 2000, 2001), an effect which may
result from abnormal processing of olfactory social stimuli
in the medial amygdala (Winslow and Insel, 2002).

It is also clear from the work of Higashida and colleagues
that the endogenous production and proper secretion of OT
is key to the maintenance of social recognition and mater-
nal behavior (Higashida, 2010; Lopatina et al., 2011). They
studied animals that lacked the gene for CD38, a trans-
membrane glycoprotein with ADP ribosyl cyclase activity,
whose proper function is required for calcium-induced cal-
cium release for OT secretion in hypothalamic neurons.
Prior to the weaning period, no behavioral differences
were noted between CD38 knockout and wildtype mice.
However, post-weaning, CD38 knockout mice exhibited
decreases in plasma OT and elevations in hypothalamic and
pituitary OT concurrent with impaired social recognition
(Higashida et al., 2010). In a subsequent study they also
reported deficits in maternal behavior that were in part
conditioned by whether the CD38 knockout dams were
primiparous or multiparous (Lopatina et al., 2011).

The gene for the OTR is found on chromosome 3 in
humans (Kimura et al., 1992) and chromosome 6 in mice. It
consists of 3 introns and 4 exons and codes for a 388-amino

acid polypeptide with seven transmembrane domains typ-
ical of G protein-coupled receptors. OTR knockout (OTRKO)
mice demonstrate deficits in lactation. In the postpartum
period, the OTRKO dams also display longer latencies to
 Neuroscience 1 (2011) 471– 493

retrieve pups and spend less time crouching over their
pups (Takayanagi et al., 2005). Interestingly, when the OTR
gene was  conditionally knocked out in the forebrain only,
females were able to lactate (Lee et al., 2008); this may in
part be due to the low selectivity of the OTR and the capac-
ity of AVP to function as a partial agonist for the receptor
in the absence of the preferred ligand (Chini et al., 1996;
Kimura et al., 1994; Postina et al., 1996). The male adult
OTRKO mice also display deficits in social discrimination
and elevated aggressive behavior, obesity and dysfunc-
tions in temperature regulation (Nishimori et al., 2008).
Importantly, the OTRKO pups make fewer vocalizations in
response to social isolation (Nishimori et al., 2008). Similar
findings have been reported for pups lacking the mu-opioid
receptor gene (Moles et al., 2004).

In human studies variations in the OTR gene have been
associated with observed maternal sensitivity during a
series of problem-solving tasks between mother and 2 year
old toddlers (Bakermans-Kranenburg and Van IJzendoorn,
2008). Allelic variations in OTR gene have also been asso-
ciated with women’s tendency to give birth at a relatively
earlier age (Prichard et al., 2007). Replication of these stud-
ies is needed as are studies to determine of these are indeed
functional polymorphisms.

In addition to the genes coding for OT and the OTR,
several other genes related to the OT circuitry have been
identified as important for affiliative behaviors. For exam-
ple, dams lacking the alpha-subunits of the two main
members of the G-protein family needed for the OTR to
function [Galpha(q/11) and Galpha(11)] also show pro-
found deficits in maternal behavior in that they do not
display nest building, pup retrieval, crouching or nursing
(Wettschureck et al., 2004).

Concerning the HPG axis, gene knockout studies have
found that mice lacking a key enzyme involved in estrogen
synthesis, aromatase, display deficits in social recognition
(essential for establishing the mother–infant bond) and
AVP activation (Pierman et al., 2008). They also report
that the exogenous administration of estrogen recovers
social recognition and AVP activation. In addition, ER
alpha knockout mice are less likely to engage in appro-
priate sexual behaviors (e.g., lordosis) and typical parental
behavior (e.g., pup retrieval) (Ogawa et al., 1996, 1998).
These dams were also more likely to engage in infanti-
cide. In a subsequent study, Spiteri et al. (2010a,b) localized
these effects, finding that decreased receptor expression in
the posterodorsal amygdala is associated with deficits in
social recognition and decreased anxiety, while decreased
receptor expression in the ventromedial nucleus of the
hypothalamus results in increased aggression towards
novel juveniles.

With regard to the social salience pathway, mice lacking
the dopamine transporter (DAT) gene have been char-
acterized by high extracellular DA levels, spontaneous
hyperlocomotion and marked deficits in maternal behav-
ior (Spielewoy et al., 2000). These DAT knockout mice
were fertile, but the percentage of pregnant females was

lower and they had smaller litters compared to wildtype
dams. Although there were no genotype differences in
the first contact or first retrieval, the knockout mothers
spent less time in the nest, took a longer time to regroup
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ll the pups in the nest and spent more time between
etrievals.

Similarly, the loss of a key enzyme in the synthesis
f norepinephrine, Dbh, is also associated with deficits in
aternal behavior (Thomas and Palmiter, 1997; Thomas

t al., 1995, 1998). Mice homozygous for the Dbh muta-
ion die in utero of apparent cardiovascular failure (Thomas
t al., 1995). However, these mice could be rescued by
rovision of adrenergic agonists or a synthetic precur-
or of norepinephrine, l-threo-3,4-dihydroxyphenylserine
DOPS), in the maternal drinking water (Thomas et al.,
995). The majority of these rescued animals became viable
dults. In a subsequent study, Thomas and Palmiter (1997)
emonstrated impaired maternal behavior across virtu-
lly all domains evaluated. Pups were observed scattered
ithin the bedding around the nest. Often pups were not

leaned, and their placentas remained attached. Milk was
ot detected in the stomachs of most pups born to these
nockout dams, which suggests that the pups were not
ursing despite the presence of normal mammary gland
issue.

Timing is critical to the relationship between the pres-
nce of Dbh and the induction of maternal behaviors.
pecifically, while administration of a norepinephrine pre-
ursor, l-threo-3,4-dihydroxyphenylserine (DOPS), in the
vening prior to birth is associated with some recovery of
aternal behavior, administration of DOPS in the morn-

ng after birth does not result in recovery. The greatest
ecovery is observed when DOPS is administered both
efore and after birth, suggesting norepinephrine may  play

 role in continuously realigning the dam’s sense of what
s salient as the object of salience evolves (Thomas and
almiter, 1997). Interestingly, in 85% of the mutant females,
he rescue of maternal behavior by DOPS extended to
he mother’s subsequent pregnancies even in the absence
f DOPS injections (Thomas et al., 1998). This observa-
ion again reinforces the view that initial conditions are
ritically important and that once the neural processes
ssociated with maternal behavior are initiated, they are,
o some degree, self-sustaining.

Another gene crucial for the emergence of maternal
ehavior is FosB, an immediately early gene. Postpartum
ams lacking FosB exhibit decreased pup retrieval, nursing
nd nest building, an effect presumably mediated at least
n part by decreased FosB protein expression in the MPOA,
n OT, estradiol and prolactin-sensitive region involved
n maternal behavior (Brown et al., 1996). In addition
enes coding for specific transcription factors (Peg3, Fkh5),
nzymes (Mest/Peg1, neuronal nitric oxide synthase) and
he prolactin receptor have also been shown to be impor-
ant for diverse aspects of maternal behavior (Gammie and
elson, 1999; Lefebvre et al., 1998; Li et al., 1999; Lucas
t al., 1998; Ormandy et al., 1997; Wehr et al., 1997).

In sum, more than a dozen genes have been identi-
ed that disrupt various aspects of maternal behavior in
odents and there are at least two genes that reduce the
evel of ultrasonic vocalizations in response to maternal

eparation. They include the genes for OT and the OTR as
ell as genes that are essential for the function of the HPG

xis and DA and noradrenergic central salience pathways.
hese findings offer compelling proof that the neurobiolog-
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ical systems that depend on the normal expression of these
genes are, indeed, essential for normal patterns of dam-pup
dyadic behavior to appear at a key point in development.
Some of these findings from the DBH knockout studies
also indicate that the circuitry required for the initiation of
maternal behavior may  not be crucial for its maintenance
or re-initiation at the birth of subsequent litters (Thomas
et al., 1998).

4.2. Epigenetic influences

Aspects of the intrauterine and early postnatal envi-
ronments can have an enduring impact on the social
development of mammals. One strand of the literature on
epigenetic effects draws from studies on the effects of nat-
urally occurring variations in pup LG, a measurable and
stable maternal phenotype in female rodents (Francis et al.,
1999). Pup LG is an important source of tactile stimula-
tion and enhances brain development and plays roles in the
regulation of endocrine and cardiovascular function in the
neonatal rat (Schanberg et al., 1984). Patterns of LG exhibit
intergenerational transmission so that the offspring of high
LG mothers go on to become high LG mothers themselves
and vice versa for low LG mothers (Francis et al., 1999).
Cross-fostering studies further highlight the importance of
the early environment, with pups born to low LG mothers
but raised by high LG mothers exhibiting high LG behav-
ior; conversely, high LG pups raised by low LG mothers
exhibit low LG as mothers. Intergenerational transmission
of maternal behavior is not unique to rodent models and
has also been observed in various primate species includ-
ing humans (Krpan et al., 2005; Maestripieri, 2005; Miller
et al., 1997). Although the exact mechanisms whereby pup
LG induces epigenetic effects remain to be fully elucidated,
there is a growing literature documents the existence of
maternally induced epigenetic effects, whereby differences
in maternal care received in early life induce structural
alternations in DNA that permanently alter gene expres-
sion in specific brain regions (for a review, see Kappeler
and Meaney, 2010). This environmental programming of
gene expression is thought to occur via the mechanism of
DNA methylation. Presumably, this phenotypic plasticity
is an adaptive response that has been shaped by natu-
ral selection, activating and matching different phenotypic
programs to parental cues that are supposedly reflective of
likely future environmental demands (Hinde, 1986).

Thus far, epigenetic changes have been documented in
several genes that play key roles in the HPG and HPA axes.
For example, Weaver et al. (2004) report that increased pup
LG and arched-back nursing (ABN) by rat mothers altered
the methylation of the promoter region of the glucocor-
ticoid receptor (GR) gene in the hippocampus, such that
significant differences in methylation patterns emerged
between offspring of low versus high LG and ABN dams.
Of note, these differences emerged over the first week of
life and persisted into adulthood, but could be reversed
with cross-fostering. They were associated with altered

histone acetylation and transcription factor (NGFI-A) bind-
ing to the GR promoter. The exact mechanisms whereby
pup LG induces epigenetic effects remain to be fully elu-
cidated, but cytosine methylation in the pups of high LG
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mothers has been directly observed during the first week of
life (Champagne and Curley, 2008, 2009; Champagne et al.,
2003).

Similar epigenetic alterations have been reported in the
promoter region of the GR gene in the hippocampus of
humans who were suicide victims with a history of child-
hood abuse (McGowan et al., 2009). Compared to controls,
these individuals exhibited increased methylation of the
neuron-specific glucocorticoid receptor (NR3C1) promoter
gene, along with decreased levels of GR mRNA and GR 1F
splice variant mRNA transcripts. These findings bridge the
gap between the animal and human literature, suggest-
ing common epigenetic mechanisms mediate the effects of
parental care on function of the HPA stress response system
of the offspring.

Other epigenetic modifications may  also have an impact
on hippocampal function. For example, Zhang et al. (2010)
reported changes in the methylation of the glutamic acid
decarboxylase 1 (GAD1) gene in the hippocampus. Com-
pared with the offspring of low-LG mothers, those reared
by high-LG dams showed enhanced hippocampal GAD1
mRNA expression, decreased cytosine methylation, and
increased histone 3-lysine acetylation of the GAD1 pro-
moter.

Roth et al. (2009) have also reported that early-life
adversity can leave lasting epigenetic marks in the brain-
derived neurotrophic factor (BDNF) gene in the adult
prefrontal cortex. They also observed a transgenerational
effect such that altered BDNF DNA methylation was also
observed in the offspring of females that had previously
experienced the maltreatment regimen.

Epigenetic modifications have also been reported in
some of same genes needed to initiate and sustain mater-
nal behavior. Specifically, Champagne et al. (2006) found
that the female offspring of high LG mothers showed
increased ER alpha expression in the MPOA. Cross-fostering
studies confirmed this association between maternal care
and ER alpha expression in the MPOA. These findings
suggest that maternal care is associated with cytosine
methylation of the promoter, providing a potential mech-
anism for the programming of individual differences in
ER alpha expression and maternal behavior in the female
offspring.

These data from animal and human studies indicate that
the interval surrounding birth is a critical period in the life
of mammals – one that is likely to have enduring neuro-
biological and behavioral consequences, especially since
these epigenetic changes can be passed on from generation
to generation. If epigenetic programming of these genes
does indeed take place, then the early epigenetic program-
ming of many more genes is likely to occur some of which
will influence the emergence of a wide variety of social
behaviors. For example, there is now preliminary data to
suggest that the OTR is differentially expressed and methy-
lated in some individuals with autism. Specifically, Gregory
et al. (2009) found statistically significant increases in the
DNA methylation of the OTR in the peripheral blood cells

and temporal cortex of individuals with autism as com-
pared to age and sex matched controls. This increase in
methylation was associated with reduced OTR mRNA levels
in the temporal cortex tissue derived from these indi-
 Neuroscience 1 (2011) 471– 493

viduals. If replicated, this could be a major advance in
our understanding of the biological factors underlying this
disorder.

5. An emerging systems model

Drawing on the extant literature, we offer a tenta-
tive bio-behavioral model that focuses on the interface
of several highly conserved neural systems involved in
perception, arousal, maintenance of physiological home-
ostasis, and stress regulation, as well as reward and threat
detection and response pathways (Fig. 2). Motivation and
our OT systems are key ingredients in this model, but
they do not work alone. We propose that in the course
of evolution, natural selection has led to a species-specific
integration of these systems producing the diversity of
affiliative behaviors observable today. In our estimation,
the utility of this integrative model comes in identification
of which of these biobehavioral components are active in
any one of a range of adaptive and maladaptive outcomes.
Finally, we  encourage investigators to explore how these
systems are interacting with each other at each level of
analysis, from the genome and epigenome to social behav-
ior to metacognitive representations (Fig. 2). We  believe
this emerging model will provide a fruitful point of orien-
tation for scientists from a range of disciplines to integrate
their work and evaluate new experimental and therapeu-
tic interventions as they develop this model and seek to
inform social policy.

6. Critique of model and questions for future
research

While the extant literature provides strong support
for this model, many questions remain regarding the role
of the OT system in social motivation. Moving forward,
we must continue to disentangle the genomic and epige-
nomic mechanisms through which the HPA and HPG axes
and the other systems that we  examined interact with
the OT/AVP system. We  also need to examine how envi-
ronmental conditions influence dyadic social interactions
at key points in development and contribute to mold
our social repertoires. Noting that these relationships are
dynamic and may  vary widely across species, it will be
important to investigate these effects more thoroughly
in humans and at different points in time in the forma-
tion and maturation of parental and romantic bonds. A
clear understanding of the molecular events that underlie
the various components of social motivation and affilia-
tive behaviors, as well as how central and peripheral OT
release are coordinated is also missing from the litera-
ture. Box 1 offers specific questions for future research.
The various gaps in the literature and questions elicited
by our model are challenges for future researchers and
we hope that our emerging model will provide a frame-
work from which new hypotheses can be formulated and
evaluated. Eventually, an understanding of these processes

could be instructive in the treatment of various disor-
ders characterized by altered or absent social motivation
including social phobia, post-traumatic stress disorder,
depression, obsessive-compulsive disorder, schizophrenia
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Fig. 2. Integrative model. An integrative model of biobehavioral processes involved in the formation and maintenance of caretaker–child bonds and related
attachment phenomena. “Responsiveness” includes: (a) a range of perceptual, autonomic, behavioral, emotional and cognitive responses conditioned by
the  absence, presence, or merely cues of the other; (b) responses conditioned by the caretaker’s experience of being cared for as an infant; and (c) responses
conditioned by perceived threats and adversity. By entering into a synchronous affective dyadic communication with the infant, the caregiver provides
an  external support for the infant’s developing bioregulatory abilities and thereby conveys lifelong resilience to stress and enhanced coping ability. The
experience of the caregiver and child’s micro-level matching of affective states and level of arousal during face-to-face dyadic interactions beginning around
the  second month of life provides the basis for children’s self awareness, social development, empathy, and moral internalization. Maternal gaze matching,
facial  expressions, vocalizations, and regulation of arousal states during face-to-face play provide critical environmental inputs during the sensitive period
of  maturation of the visual cortex. Furthermore, by synchronizing with infant arousal state, mothers entrain the infant’s biological rhythms, providing
a  “resonance” of internal and external experience, self and other, brain and behavior. Metacognitive representations and mental states correspond to
internal working models and are continually being updated and revised. However, one’s earliest experiences with caregivers can powerfully shape the
landscape of possible and expected interactions with others. For example, stranger anxiety appears when infants experience a mismatch between expected
caregiver stimuli and stimuli that the infant encounters when exposed to an unfamiliar person. These metacognitive representations and mental states
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nd autism, and also in the development of preventa-
ive interventions and social policy (Leckman and Mayes,
007).

. Conclusions

As briefly summarized in Box 2 , for over 100 years, a
rowing literature has implicated OT in a wide variety of
hysiological and behavioral functions that sustain mam-
alian survival and social behavior across all phases of

he life cycle. Drawing from a vast literature that incor-
orates findings from both animal and human data and
arious investigative techniques, we propose a biobehav-
oral model whereby OT interfaces with various highly
onserved neural systems – the dopaminergic reward path-
ay, the HPG and HPA axes, the social engagement system

or arousal and threat detection, and various perceptual
ystems—to modulate social behavior and cognition in
ammalian species. At birth and in early life, the evi-
ence suggests that these interactions mediate key events
n reproductive physiology (parturition, milk letdown) as

ell as the bonding and parenting behaviors necessary
or our survival. As we emerge into adulthood, OT seems
f responsiveness in the self and others as well as the core neural circuitry
on) the oxytocin (OT) and arginine vasopressin (AVP) and the dopamine
A) and the hypothalamic-pituitary-gonadal (HPG) axes (see text).

to underlie other critical elements of our sociobehavioral
repertoire, including mate affiliation and bonding, social
recognition, sexual incentive and copulatory behaviors,
and aggression.

Importantly, in addition to its involvement in the activa-
tion of these various timing-dependent and stage-specific
behavioral profiles, the OT system also seems to play a
central role in ongoing homeostatic processes, interacting
with the HPG and HPA axes and the reward circuitry at
multiple levels, and exerting its own effects in the periph-
ery to maintain basal homeostasis in response to changing
environmental demands. Literature on the genetics of the
OT system suggests interspecies and inter-individual dif-
ferences in the function of the OT system and affiliative
behaviors may  be to a large degree hardwired. However,
it is also evident that the OTR system is highly nuanced
and exhibits substantial plasticity, being responsive to
early environment via epigenetic feedback effects that have
long-lasting consequences.
What is the origin of the factors that motivate us to
engage in social bonds? Apart from the evolutionary impor-
tance of successful reproduction, it is also important to
reflect on our origins and the “oneness” that character-
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Box 1: Questions for future research

1. How do the peripheral and central oxytocin (OT) sys-
tems interact moment-to-moment over the course
of development to influence social motivation?
Although several research groups are reporting rel-
atively stable levels of peripheral levels of OT, what
does this mean in specific social and developmen-
tal contexts (falling in love vs. early parenting)? To
date, individual stability has been reported over the
course of several months but can it be observed
over several years and across developmental tran-
sitions? How does the OT system function during
periods of rapid brain reorganization (e.g., puberty)
versus those of relative developmental stability? Is
the source of OT being measured in the plasma
and saliva entirely derived from the posterior pitu-
itary or do somatic sources such as the GI tract
also contribute? If peripheral sources do contribute,
what regulatory mechanisms guide this process
and do they differ depending on gender, age or
social context? What role do sensory afferents and
the autonomic nervous system play as we seek to
understand the brain–body interface and the role of
OT in social motivation within dyadic relationships?

2. Are the effects of OT on prosocial and affiliative
behaviors causal or are they secondary to the anx-
iolytic effects of OT or the increased saliency of
social cues related to OT? As reviewed by Bartz
et al. (2011),  the acute effects of OT on social cogni-
tion and prosocial behaviors are variable depending
on context and the individual’s relevant attributes.
Additional research is needed to understand these
individual differences.

3. Are clinical trials of intranasal OT justified in children
with autism or other neuropsychiatric disorders?
Several studies are underway to examine the safety
and efficacy of intranasal OT. Given the known
risks and benefits, are there additional preliminary
studies that should be performed? Are there any
long-term risks associated with repeated OT expo-
sure?

4. Can OT administration be used to improve par-
enting in conditions associated with disruptions to
the maternal–infant bonding, such as post-partum
depression and premature birth? The numbers of
women suffering postpartum depression and those
of prematurely born infants increase significantly
each decade and carry known risks to the initiation
of parenting. Disruptions to OT functioning in these
conditions have also been reported. What are the
risks and benefits to using OT administration as a
therapeutic agent in such conditions?

5. What are the effects of trauma on the functioning
of the OT system? Exposure to trauma carries a
multi-dimensional effect on well-being and stress
proneness but its impact on OT is still unknown.
What are the differential effects of continuous
versus acute trauma? Trauma experienced in early
childhood versus that experienced at later stages?

6. What are the effects of differing levels (central
and peripheral) of OT on interpersonal interactions
within the family and beyond? Recently, the Mother
Child Education Foundation (Anne Ç ocuk Eğitim
Vakfı), based in Turkey, suggested that family- and

community-based programs designed to enhance
early child development can alter patterns of decision
making within the families and communities, so that
there is greater “peace” and less conflict within fam-
ilies as well as within the larger community. Based
on the preliminary report by Weisman et al. (2011),  it
may  be reasonable to monitor peripheral levels of OT
before and after such interventions

7. We  have described the involvement of OT in bond
formation but what are the effects of bond dissolu-
tion on OT? If OT functions to maintain long-term
affiliative bonds, what happens when we fall “out of
love” or when individuals lose partners due to divorce
or death? Alternatively, what happens if someone
remains ‘in love’ despite being rejected by the other?

8. How variable is the distribution and density of OT
receptors in humans and do individual differences
vary depending on gender, developmental stage and
the initiation of intimate dyadic relationships? In var-
ious animal species the number and distribution
varies by sex and developmental stage. To what
extent is this true of our human species, particularly
when new dyadic parent–child or adult romantic rela-
tionships are being formed?

9. To what extent are central or peripheral OT recep-
tors sensitive to epigenetic modification? Given the
preliminary findings in the temporal cortices and
peripheral blood of a small number of autistic
subjects (Gregory et al., 2009), do epigenetic modifi-
cations of the OT receptor matter? Can these changes
be transmitted from generation to generation? What
is the impact of differing patterns of OT receptor
methylation in specific brain regions and somatic tis-
sues on social behaviors and motivations? Under
what circumstances can these epigenetic changes be
reversed?

Box 2: Highlights
The oxytocin (OT) system is a key element in social
motivation.

• OT is produced in the hypothalamus, the heart, thy-
mus, GI tract, and reproductive organs.

• It is implicated in sexual behavior, pair bonding, and
parenting.

• It interacts with the reward, sexual behavior, sen-
sory, and stress response pathways.

• It is sensitive to timing and is context-dependent and
epigenetically programmed.

• Peripheral measures of OT are individually stable
and associated with dyadic affiliative behaviors.
ized the earliest periods of our biological and emotional
development. It is possible that the forceful motivation and
desire to bond lies in the longing to return in some ways to
that initial state when we are a part of another, seen and
experienced by our parents and under optimal conditions

having our needs met, intimately and fully. Just as we are
programmed to bond, an integral part of the human con-
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ition is also to try and understand the origins of our own
otivation to engage in social behavior.
Behavioral, neurobiological, genetic, and epigenetic

ata relevant to social bonding in our human species
nd in model mammalian systems have the potential to
nform our understanding of social motivation as well as to
uide aspects of clinical practice, particularly early inter-
ention programs for high-risk expectant parents. “Good
nough” genes combined with “good enough” parental care
re needed to ensure positive outcomes in childhood and
eyond. Among these positive outcomes is the develop-
ent of resiliency to subsequent adversities in life, the

apacity to be a good enough parent for the next genera-
ion, and possibly improved physical health. Consequently,
t is possible that effective early intervention programs may
ave enduring positive consequences extending to subse-
uent generations.

Close collaborations between clinicians and the design-
rs of model intervention programs have been long
tanding. These collaborations are now beginning to
nclude neuroimagers, developmental and behavioral neu-
oscientists, geneticists, and immunologists. Our capacity
o study genes, the development of the brain and the
eterminants of immunological health has never been
tronger. Future studies should permit the examination
f how successful early intervention programs influence
rain development, problem solving abilities, and stress
esponses and vulnerability to mental and physical ill-
esses.

While OT is a key element in this unfolding story, it is
urely not the only one. Moving forward, we must con-
inue to untangle the relationships between OT and other
layers in our highly complex internal biological and emo-
ional worlds and external social environment, and how
hey produce the rich and highly nuanced, dynamic dyadic
nteractions that are characteristic of our species.
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