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Abstract

Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the
association between two sets of variables. However, when the number of variables far exceeds the
number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is
not appropriate. In addition, when the variables are highly correlated the sample covariance
matrices become unstable or undefined. To overcome these two issues, sparse canonical
correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of
penalty. However, these methods do not have direct control over sparsity of solution. An
additional step that uses Bayesian Information Criterion (BIC) has also been suggested to further
filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso,
Elastic-net, SCAD and Hard-threshold) for SCCA with and without the BIC filtering step have
been carried out using both real and simulated genotypic and mMRNA expression data. This study
indicates that the SCAD penalty with BIC filter would be a preferable penalty function for
application of SCCA to genomic data.
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1. Introduction

Few statistical methods have been developed to maximize the use of the enormous amount
of genomic data to unravel the etiology of complex disease and drug related phenotypes.
Currently, the standard analysis method for large genome-scale data has concentrated on
analysis of a single data type, or experiment, at a time. This analysis approach ignores the
interaction between genes, proteins and biochemical reactions which give rise to complex
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diseases and drug related phenotypes. Therefore, integrative analytical approaches are
needed for the simultaneous assessment of multiple genomic data types and their influence
on drug related-phenotypes and complex diseases.

One approach for such integrative analysis is canonical correlation analysis (CCA),
proposed by Hotelling (1936). CCA focuses on the correlation between a weighted linear
combination of variables in one set and a weighted linear combination of the variables in
another set. The objective of CCA is to identify the pair of linear combinations having
maximum correlation. The pairs of linear combinations are referred to as the canonical
variables and their correlations are called canonical correlations. Following the identification
of the first canonical correlation and canonical variables, the second pair of linear
combinations is identified among all pairs uncorrelated with the initially selected pair, and
so on. However, in many situations, attention is focused primarily on the first canonical
correlation and variables.

When the number of variables far exceeds the number of subjects, such as in case of large-
scale genomic studies, traditional CCA methods are no longer appropriate. In addition, when
the variables are highly correlated, sample covariance matrices become unstable or
undefined, leading to additional difficulty in estimating the canonical correlation and
variables. Therefore, classical CCA requires a dimension reduction method to overcome this
problem. Numerous methods have been developed for shrinkage and variable selection over
the past decade including least absolute shrinkage and selection operator (Lasso) by
Tibshirani (1996), Elastic-net by Zou and Hastie (2005), Smoothly Clipped Absolute
Deviation (SCAD) by Fan and Li (2001) and non-negative Garrote by Breiman (1995).
Recently, these methods have been applied to CCA for assessing the relationships between
two sets of high-dimensional genomic data. The variable selection techniques are applied to
the canonical variable loadings which set some of the coefficients to exact zeros, thereby
selecting the remaining variables. The important variables selected are then called the sparse
set of variables and the canonical correlation analysis using these variables is often referred
to as sparse canonical correlation analysis (SCCA). Waaijenborg et al. (2008) first suggested
a penalized version of canonical correlation analysis using an iterative regression procedure
with the Univariate Soft Threshold (UST) version of the Elastic-net penalty. Subsequently,
Parkhomenko et al. (2009) suggested the SCCA method using a form of regularization
similar to UST elastic-net (Zou and Hastie, 2005). Witten et al. (2009) used the Lasso
penalty in their SCCA. These methods are appealing; however, they do not directly control
the sparsity of the solution. As a result, the methods may not necessarily produce sparse set
of variables (Lykou and Whittaker, 2009). To overcome the issue, Zhou and He (2008)
suggested two-step-procedure in carrying out SCCA in which a L1 penalty was used on the
variable loadings during the first step followed by additional variable filtering algorithm that
uses Bayesian Information Criterion (BIC). However, no assessment to determine the
“optimal” penalty function for SCCA involving genomic data has been completed.

In this paper, the performances of various penalty functions are assessed in application to
SCCA, using the SCCA algorithm as outlined by Parkhomenko et al. Four penalty functions
including Lasso (Tibshirani, 1996), Elastic-net (Zou and Hastie, 2005), SCAD (Fan and Li,
2001) and Hard-thresholding (Antoniadis, 1997) were applied to a pharmacogenomics study
of the drug gemcitabine, along with simulation studies to assess the performance of the
penalty functions to SCCA. In addition, the BIC variable filtering method was used, as
outlined by Zhou and He (2008), to further filter out unimportant variables. Results from the
simulation study indicate that the SCAD penalty with a BIC filter is a preferable penalty to
use in the SCCA for genomic data.
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2. Methods and Materials

2.1. Sparse canonical correlation analysis (SCCA)

Canonical correlation analysis (CCA) is a multivariate statistical method designed to explore
the correlation between two sets of quantitative variables (Hotelling, 1936). Suppose two
data sets X = (X1, X2,..., XP)and Y = (Y1, Y2,...,Y9) are of dimensions n x p and n x g,
with p < n and g < n measured on the same set of n subjects. Suppose the columns of X and
Y are standardized to have mean zero and standard deviation one. Let u and v be px1 and
gx1 vectors of weights and let & = Xu and n = YV be linear combinations of the variables in
data sets X and Y respectively, where & and n are nx1 vectors. Then, the coefficient vectors
u and v are estimated by maximizing the following equation,

___ Coem)
P= Dar@varpI ™
— u'XTyv i
[@TXTXuw)(vT Y yw) (1)

where XTX and YTY are within-data covariance matrices and XTY is the between-data
covariance matrix. Note that scaling u and v does not affect the correlation coefficient.
Therefore, the above equation can be re-expressed in the following way:

p=corr (§,7)=max u™XTyv subject to u"XTXu=vTyYTyv=1. 2)

When the number of variables is larger than the sample size, the CCA method mentioned
above is not applicable. Possible multicollinearity between predictor variables further adds
difficulty in the computation because the covariance matrices can become unstable or
undefined. Therefore, a few important variables are selected using standard model selection
criteria and the canonical correlation is computed using the selected set of variables making
the results interpretable, which is referred to as Sparse Canonical Correlation Analysis
(SCCA). Mathematically, SCCA is computed by maximizing the following penalized

. T+ T
L . = ,M=max u X Yv ) .
objective function, ¥ corr(§.m=ma subject to, uTXTXu = vTYTYv=1 with

Penalties P 1(u) and P »(v) on u and v respectively.

To deal with the multicollinearity issue, several methods have been proposed. Vinod (1976)
proposed adding penalty terms to the diagonal elements of the covariance matrix which is
similar to the ridge regression concept in regression analysis. This requires estimation of
additional ridge parameters. Other extreme types of regularization have been used where the
variance matrices are replaced with their corresponding diagonal matrices (Parkhomenko
2009) or identity matrices (Witten 2009). In this paper, the matrices XTX and YTY are
replaced with their corresponding diagonal matrices similar to the approach proposed by
Parkhomenko et al. (2009).

2.2. Regularization and Shrinkage methods

Penalized linear regression techniques have been widely used to analyze high dimensional
data which have in-built shrinkage and variable selection mechanisms. Let y be a nx1 vector
and X be a n x p matrix. Then the penalized regression coefficient § is estimated from the
following penalized regression model:

Breret=edzarg maxly — XBP+pa(B).
B ()]
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where p, (f) is the penalty term and 4 is a tuning parameter which is estimated using cross
validation or permutation methods. Ridge regression (Hoerl and Kennard, 1970) was the
first penalized regression method designed to mediate the multicollinearity among the
predictors in which a quadratic penalty term is added to the regular least square estimating
equations. Ridge regression shrinks the coefficients towards zero by imposing a penalty on
their squared size; however the shrunken coefficients never equal zero. As a result, ridge
regression does not perform variable selection. Other penalty functions, such as Lasso,
Elastic-net and SCAD, are available which account for the multi-collinearity issue
(“shrinkage™) as well as set some of the coefficients to exact zeros producing sparse set of
variables (i.e., variable selection). In this paper, we compare the performances of various
penalty functions for SCCA using the algorithm as outlined by Parkhomenko et al. (2009).
For all penalty functions, the sparseness parameters (tuning parameters for the penalty
function) are estimated using cross validation. Figure 1 shows the thresholding rules or the
solution functions of the four penalty functions assessed in this paper.

2.2.1. Lasso penalty—The least absolute shrinkage and selection operator (Lasso) is a
shrinkage method which sets some of the coefficients to zero and hence retains the ability of
selecting important features (Tibshirani, 1996). The Lasso penalty term is defined as,

P
p{;m‘su (ﬁ):/lz Iﬁj' . ] . .
‘51, Where / is a tuning parameter. The solution of Lasso regression can be

given as
Eg‘ssoz(&;jl — Il)+sfgll(ﬁj) N

This coincides with the soft thresholding rule proposed by Donoho and Johnstone, (1994)
and Donoho et al. (1995) which was applied to wavelet coefficients for the estimation of a
function. SCCA utilizes a similar soft thresholding operator on the variable loading u and v,
as 0j =(|0jl—21)+ sign (0;) and Vj =(|Vjl—22)+ sign (V}) respectively.

2.2.2 Elastic-net penalty—Elastic-net (Zou and Hastie, 2005) is a regularization

technique that simultaneously performs variable selection and continuous shrinkage. This

method uses both the L, quadratic penalty of ridge regression and the L; penalty of Lasso,

forming a convex combination. Therefore, this method retains the variable selection

property while correcting for the extra shrinkage. The elastic net penalty function can be
)4

P
elastic—ne 2
P ! ”(ﬂ)ZIIIZWjH‘AZ E ,Bj
=1

defined as _ ‘=1 . However, the computational cost is slightly
higher for Elastic-net, as two tuning parameters need to be estimated.

As an alternative to Elastic-net, Zou and Hastie (2005) proposed univariate soft thresholding
(UST) as a simplified version of the elastic-net; the solution of which is given as,

“pelastic—net _ ;5 . 3
ﬁj tie=n ’:(Iﬁjl - 0.52), sign(B)). )

SCCA methods proposed by Waijenborg et al. (2008) and Parkhomenko et al. (2009) both
use a soft thresholding rule similar to UST. In this paper, the univariate soft threshold
version of the Elastic-net is used on variable loadings u and v as follows and is referred it as
Elastic-net type of penalty: 0j =(|j|—0.541)+ sign (0;) and Vj =(|Vj|-0.5 42)+ sign (V}).
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2.2.3. Smoothly clipped absolute deviation penalty (SCAD)—Fan and Li (2001)
proposed a non-convex penalty function referred to as the smoothly clipped absolute
deviation (SCAD). They provided the following three criteria for a good penalty function:
(i) Unbiasedness, (ii) Sparsity and (iii) Continuity. They further argued that SCAD penalty
satisfies these properties. The SCAD penalty is given by

,lw]'| iﬂﬂj' <Aa
o P=2ap |+ .
e () _(%) ifA<|8) <ad .
fatht if |3j1 >ad (6)

This corresponds to a quadratic spline function with knots at 2 and aA. The function is
continuous and the first derivative for some a>2 and > 0 can be given by

(al-p),
(a— DA

paB)=1 {I(ﬁ <D+ 1(/3>,1)}‘

(7)

The SCAD penalty is continuously differentiable on (—oo, 0)U(0,00) but singular at 0 with
its derivatives zero outside the range[—a4, a4]. This penalty function results in small
coefficients being set to zero, mid-size coefficients being shrunk towards zero and large
coefficients remaining untouched. Thus, SCAD penalty produces a sparse solution and
approximately unbiased coefficients for large coefficients. The solution for the SCAD
penalty can be given as

(B = ), sign(B;)_ iflB) <24
BP= L(a - 1)8j - sign(ﬂj)u/l} [(a=2) if2A<[Bj| < ad

This thresholding rule involves two unknown parameters A and a. Theoretically, the best pair
(4, @) can be obtained using a two dimensional grid-search with criteria similar to cross
validation methods. However, such an implementation could be computationally expensive.
Based on a Bayesian standpoint and simulation studies, Fan and Li (2001) suggested a =3.7
to be a good choice for various problems. They have further argued that the performance of
various variable selection problems do not improve significantly with a selected by data
driven methods. In our comparison of the penalty functions, a was set to 3.7 with A selected
by cross validation. As mentioned before, the thresholding rule (8) was used for loading
vectors u and v in this paper.

2.2.4. Hard-threshold penalty—Hard-thresholding, due to Antoniadis (1997) and Fan
(1997), sets some coefficients to zero directly. But since it does not shrink any coefficients
towards zero, this penalty function does not solve the problem of multicollinearity among
the predictors. However, this penalty results in unbiased estimates for the variables with
large effects. The solution of the hard-thresholding rule is given by

B?z:rd:ﬁj[(lﬁjp,l) ©)
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2.3. Selection of sparseness parameters

Waaijenborg et al. (2008) and Parkhomenko et al. (2009) recommend k-fold cross validation
method to optimize the penalty parameters for each canonical variate pair. The data is
divided into two parts: kel proportion of data for training and the remaining % proportion
of data for testing (validation). The loading vectors are estimated in the training set and
applied to the testing set. Parkhomenko et al. (2009) use cross validation to select the
sparseness parameters 4, and A, by maximizing the test sample correlation. The weight
vectors u and v are estimated using the pre-specified values of 4, andZ,. Then, the
correlation is computed as,

k
1 Sou -
AHFZ; |cor(Xju ™, ¥yvd)|,

J (10)

where k is number of times the cross validation is performed, u™ and v are the weight
vectors in the training sets X_j and Y_; respectively, in which the subset j was removed.
Similarly, Xj and Y are the test sets respectively. Then 4, and 4, values corresponding to the
maximum value of Aqr are the optimum sparseness (tuning) parameters.

For the comparison of the penalty functions, in this paper, the approach of Parkhomenko et
al. (2009) was used to select the tuning parameters. Sample 3D plots of test sample
correlation vs tuning parameters are shown in Figure 2, with 4, 4, and correlation
coefficients on the X-axis, Y-axis and Z-axis respectively. The peaks in each plot correspond
to maximum test sample correlation and combination of tuning parameters.

2.5. Variable filtering using BIC information

The main disadvantage of the available SCCA methods is that they do not have direct
control over the sparsity. As a result, it is difficult to achieve effective dimension reduction.
There is a trade-off between the maximum correlation and the sparsity of the variables. Zhou
and He (2008) proposed two-step procedure balancing the loss in the correlation and gain in
the sparsity of variables. In first step, they set a constraint on the loadings such that the
sparse-correlation does not decrease below a lower confidence limit of the approximated
canonical correlation by gradually imposing constraint through an iterative procedure. In the
second step, the variable filtering is carried out using a BIC-type criterion, setting the
smallest loading in absolute value to zero at each iteration for both variables. The new
correlation coefficient is computed corresponding to new loadings at each iteration and the
BIC is estimated by using

2

BIC(d)=nlog(1 — ry)+dlog(n), (11)

where d =p+q is total number of parameters, n is sample size and rf, is the correlation
coefficient with d parameters. The variables corresponding to the minimum BIC value are
the final selected variables.

2.6. Description of the Human Variation Panel

SCCA, using the various penalty functions, was applied to data collected on the HVP
(Human Variation Panel). The HVP consists of EBV-transformed lymphoblastoid cells
derived from 51 Caucasian-American (CA), 45 African-American (AA) and 51 Han

Comput Stat Data Anal. Author manuscript; available in PMC 2013 February 1.
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Chinese-American (HCA) subjects (Coriell Institute, Camden, NJ) resulting in a total
sample size of 147. Whole genome Expression data for the HVP was obtained using
Affymetrix U133 Plus 2.0 Expression array chips, containing over 54,000 probe sets (Li et
al., 2008). The mRNA Expression array data were normalized on the log2 scale using the
GCRMA methodology (Zhijin et al., 2004). The gemcitabine pathway contains 31 probe sets
from the Affymetrix U133 plus 2.0 Expression array chip.

Gnome-wide single nucleotide polymorphism (SNP) data was obtained using Illumina
HumanHap 550K BeadChips for the HVP. The SNP genotyping was completed at the
Genotyping Shared Resources at the Mayo Clinic in Rochester, MN (Li et al., 2009). SNPs
mapped to the gemcitabine pathway, which passed quality control, were identified. In
particular, there are 19 genes in the pathway with a total of 749 SNPs that meet Hardy-
Weinberg equilibrium (HWE p > 0.001) and call rate > 95%. Missing genotypes were
imputed prior to all analyses using the program fastPHASE (Scheet and Stephens, 2006). In
this paper, the performances of the various penalty functions for SCCA are compared using
the 31 mRNA Expression probe sets and 749 SNPs in the 19 genes within the gemcitabine
pathway from the HVP.

SNP data from the HVP for the gemcitabine pathway was adjusted for race and possible
population stratification as outlined by Niu et al. (2010). A principal component analysis
(PCA) approach was used to adjust for population stratification, in which PCA was
completed by race with the top five principal components saved. Individual genotypes were
regressed on race and race specific principal components to obtain the residuals. The mRNA
expression data was adjusted similarly for gender, race and population stratification. Then
SCCA was applied to the adjusted data using the four different penalty functions.

2.7. Description of the simulated data

Simulation of the genotype data was based on the gemcitabine pathway SNP data, for the
Caucasian cell lines within the HVP. Genotypes within genes in the gemcitabine pathway
were mapped to chromosomes, with haplotype phase inferred from the SNP genotypes on
the same chromosome using the program fastPHASE (Scheet and Stephens, 2006). These
haplotype frequencies were used as the “true” haplotype frequencies for the underlying
population, with haplotypes simulated using the hapsim library in R
(http://cran.r-project.org/web/packages/hapsim/index.html). These haplotypes were then
assigned in a sequential fashion to the 200 individuals, producing simulated genotypes for
SNPs within the gene (and thus pathway) that mimic realistic LD for markers within the
same gene, in addition to LD between genes on the same chromosome.

Following the simulation of the genotype data for n=200 subjects, MRNA gene expression
data was simulated, such that, some of the SNPs were correlated with some of the mRNA
variables. The mRNA expression values for each individual were simulated using a
multivariate normal distribution X=M V N (p;, X), where pj = G; x B, the mean for
individual i, is based on the effect matrix B and genotypes for each individual G;.Matrix B
and vector G;j are defined in the following way. Let

kK 0 0
B= 0 k
0 0 k£ O

represent a matrix with the number of rows equal to the number of SNPs and number of
columns equal to the number of MRNA variables (i.e., B is a 734 by 31 matrix). Next, SNPs
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http://cran.r-project.org/web/packages/hapsim/index.html

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chalise and Fridley

3. Results

Page 8

were selected to be associated with gene expression, with effect size of k = 0.96 for those
SNP-mRNA pairs. Using this mean p; (based on G; and B) and covariance matrix (X) based
on the observed correlation structure between the mRNA expression values within the
gemcitabine pathway, mRNA data for individual i was simulated. In addition, the
simulations were also run with sample sizes 100, 150, 250, 300, 350, 400, 450 and 500 to
assess the effects of the sample sizes on the performance of the methods. One-hundred
simulations were run for each sample size.

3.1 SCCA of the HVP data

Table 1 displays the sparse canonical correlations and the number of variables selected using
various penalty functions when applied to the gemcitabine pathway. SCAD selected the
fewest SNPs (113) and mRNA variables (21). Lasso, Elastic-net, and Hard-thresholding
selected 316, 257 and 320 SNPs out of 749 total SNPs and 28, 26 and 27 mRNA expression
variables out of 31 genes, respectively. The correlation coefficients from Lasso, Elastic-net
and Hard-threshold were similar (r around 0.67); however, the correlation coefficient from
the SCAD method (r =0.6059) was the smallest out of the four penalties.

Next, the overlap of the selected variables for the four penalty functions was assessed, with
107 SNPs and 19 mRNA variables selected by all penalty functions. In addition to these
commonly selected variables, 1 SNP and 1 mRNA was selected exclusively by Lasso, 1
SNP was only selected by Elastic-net, 5 SNPs and 1 mRNA were only selected by SCAD
and 5 SNPs were only selected by Hard-threshold. Considering the two-way overlap of
selected SNPs, there were 58 SNPs present only in Lasso and Hard-threshold, with no two-
way over lap for mRNA variables. For three-way overlaps of selected variables, 149 SNPs
and 7 mRNA variables were selected for Lasso, Elastic-Net and Hard-threshold with 1 SNP
and 1 mRNA expression overlap for Lasso, SCAD and Hard-threshold. These results show
that, except for a few cases, all four penalty functions selected a common set of variables.

However, SCCA with all four penalty functions resulted in a large number of selected
variables. Following the application of the BIC filter, Lasso, Elastic-net, SCAD and Hard-
thresholding selected 5, 6, 4 and 9 SNPs and 5, 5, 2 and 5 mRNA variables, respectively. As
there is reduction in the number of variables, the corresponding first canonical correlation
values were also reduced (values for r ranged from 0.43 to 0.51). There were 3 SNPs
(rs10742250, rs17103186 and rs4877848) and 2 mMRNA (201802_at and 1553995 _a_at)
variables selected by all four penalty functions. The fourth SNP selected by SCAD
(rs1474500) was also selected by Elastic-net. There were 3 SNPs (rs10251079, rs10835678
and rs1332535) selected only by the Hard-threshold penalty.

3.2 SCCA of the simulated data

In addition to the application of SCCA using the four penalty functions to the HVP, the
methods were also applied to simulated data sets, in which the “truth” was known. Seven
SNP variables (rs2840075, rs16961564, rs1246274, rs2778944, rs7776847, rs11776754 and
rs1265147) and five mRNA variables (203302_at, 219708 _at, 220475_at, 223298 _s_at and
223342_at) were chosen to have “non-zero” effects. The results were compared with respect
to three parameters: average number of false discoveries (AvgFD); average number of non-
discoveries (AvgND); and number of times true variables were selected (NTTS). False
discovery here is defined as the number of noise variables selected and non-discovery
represents the number of true variables that were not selected. AvgFD was computed by
adding all the false discoveries detected across 100 simulations divided by 100 and AvgND
was computed by adding all the non-discoveries across 100 simulations divided by 100.

Comput Stat Data Anal. Author manuscript; available in PMC 2013 February 1.
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NTTS was computed for each true variable by keeping track of the number of simulations
(out of 100) in which significant effects were detected. For example, if SNP rs2840075 was
detected in 74 simulations out of 100 simulations, then the NTTS value for rs2840075 is 74.
The NTTS values for both SNPs and mRNA were generally higher for the SCAD penalty.
Therefore, to facilitate the comparison, the observed NTTS values for variables from Lasso,
Elastic-net and Hard threshold were re-scaled with respect to the NTTS values of those
variables from the SCAD penalty (i.e., the NTTS values for each SNP and each mRNA
expression from Lasso, Elastic-net and Hard threshold methods was divided by the NTTS
value of the corresponding SNPs and mRNA expression from the SCAD penalty).

The simulations were run with sample sizes 100, 150, 200, 250, 300, 350, 400, 450 and 500.
The NTTS values for the simulations with these various sample sizes were similar.
Therefore, only the NTTS results for a sample size of 200 are shown in Table 2 for purpose
of comparison. The NTTS for most SNPs and mRNA variables were higher with SCAD
than those from other penalty functions. For a few SNPs, the NTTS values from SCAD were
identical to those from other methods. Similar trends were observed for the mMRNA
expression variables, with the SCAD penalty generally having higher NTTS values. Table 2
also shows the NTTS values after using the BIC filter algorithm on the results obtained from
the SCCA methods. The NTTS values for most SNPs and mMRNA expression variables were
larger with SCAD than those from other penalty functions. A few variables had slightly
smaller NTTS values after using the BIC filter. However, the relative performance of the
four penalty functions before and after using the BIC filter were similar.

Next, the methods were compared with respect to AvgFD, AvgND and total discordance.
Total discordance was computed by adding AvgFD and AvgND. In addition to these, the
effects of the sample sizes in the performances of the methods were assessed. Simulations
with sample sizes: 100, 150, 200, 250, 300, 350, 400, 450 and 500 were run. For each
sample size, 100 simulations were run and AvgFD and AvgND values were computed, with
the sum of the AvgFD and AvgND resulting in the total discordance. The AvgFD, AvgND
and total discordance values are displayed in Figures 3 (before BIC filter) and 4 (after BIC
filter). For SNPs, the AvgND values were consistently low for all sample sizes and penalty
functions; however, the AvgFD varied with sample size and penalty function. AvgFD (and
hence the total discordance) decreases as sample size increases for all penalties except the
Hard-threshold penalty. After a sample size of 300, the penalty functions behave similarly in
terms of AvgFD. However, for sample sizes smaller than 300, AvgFD is larger for Lasso
and Elastic-net. Similar trends can be seen with the mRNA variables. Thus, there appears to
be a strong effect of sample size on the performance (in terms of AvgFD) of the penalty
functions. Figure 3 shows that discordances are consistently lowest with SCAD and highest
for the Hard-threshold. Figure 3 also shows that the AvgFD decreases with sample size.
However, there is still the presence of AvgFD for both SNP and mRNA variables even with
a sample size of 500. Application of the BIC filter to SCCA substantially lowered the
number of false positive variables as shown in Figure 4. Figure 4 further shows that both
AvgND and AvgFD (and hence total discordance) are smaller for the SCAD penalty than
other penalty functions.

In addition, further simulations were carried out under the null association between the
SNPs and mRNA expression (with effect size k = 0). None of the variables were selected in
more than 5% of simulations before using the BIC filter. After using BIC filter, none of the
variables were detected in more than 3% of the simulations.
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4 Discussion and Conclusions

It is becoming increasingly common in biomedical research to carry out multiple studies on
the same set of subjects. Multiple types of measurements are collected on the same patient
sets for such studies and hence integrative analysis approaches are increasingly necessary.
Canonical correlation analysis (CCA) is one of the most commonly used data analysis
techniques for multiple data sets. However, the traditional CCA has its limitations. It can not
be used when the number of variables is larger than the sample size. To overcome this issue,
a sparse version of CCA (SCCA) can be implemented. Since SCCA uses only a few
important selected variables, it also facilitates the interpretation of the results. SCCA
methods proposed in the literature (Waaijenborg et al. 2008; Parkhomenko et al.2009; Le
Cao et al.2009; Witten and Tibshirani 2009; Lykou and Whittaker 2009) have either used
Lasso or a univariate soft threshold version of the Elastic-net penalty. The goal of this paper
is to determine the best penalty function for SCCA involving genomic data in the form of
SNPs and mRNA expression.

The SCAD penalty selected the least number of variables while the Elastic-net, Lasso and
Hard-thresholding selected more variables (in increasing order). Both the simulation study
and the application to the real data showed that SCAD and Elastic-net penalties performed
similarity, while the behavior of the hard-threshold penalty was sometimes unpredictable
due to the inability to handle multi-collinearity between variables. The additional BIC filter
algorithm worked well in removing noise variables, with the relative performance of the
four penalty functions preserved after using BIC filter.

Besides choice of a penalty function, the performance of a SCCA method also depends on
the approach and criteria for selecting the sparseness parameters. The criteria for selecting
sparseness parameters, as outlined by Parkhomenko et al.(2009) and used in the simulation
study and real data examples, maximizes the correlation in the test set via cross validation.
However, there is a trade off between the maximum correlation and the sparsity of the
variables. The more variables are used to compute correlation, the larger the correlation
coefficient will be. Therefore, this procedure of determining sparseness parameters alone
does not guarantee a sparse solution. Further investigation is needed in determining the
sparseness parameters to improve SCCA methods. In addition, this method has only been
used for SNP and mRNA expression data. The performance of the method has yet to be
assessed with other data types (e.g., phenotypic data, methylation data, microRNA data).
This is an area of currently ongoing investigation.

Since the focus of the current paper was to assess the relative performance of the different
penalty functions and to demonstrate the need of an additional variable filtering technique in
the available SCCA methods, a simple sparse model was used for the simulation studies.
However, in many genetic settings, there may be more complex models. For example many
SNPs may contribute to the gene expression levels or a few SNPs may be associated with a
large number of gene expression levels. The method has yet to be assessed with such
complex scenarios. Also, in this manuscript, the matrices XX and YTY have been replaced
with their corresponding diagonal matrices as a regularization technique. We have only
looked at this type of regularization as this is the commonly used regularization step in
SCCA, such as in Parkhomenko et al. (2009). However, we believe that the results could be
generalized to other regularization methods.

The SCCA method can also be applied to large scale genome-wide data sets. However, such
an application will be computationally intensive. Therefore, prior dimension reduction steps
before using SCCA might be helpful in reducing the computational cost. One of such

techniques could be partitioning the SNPs within a gene into bins based on their correlation
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using a hierarchical clustering method (Rinaldo et al., 2005). Then, principal component
analysis (Gauderman et al., 2007) can be carried out for the SNPs within the bin. The first
principal component for each bin of SNPs can then be used in the model as the “genetic
variable” as opposed to the individual SNP genotypes.

In summary, the previously proposed SCCA methods, which use a Lasso type penalty, yield
a large set of selected variables. Therefore, an additional variable filtering method is
generally required to achieve effective dimension reduction. In addition, the penalty function
used in SCCA can contribute to the performance and sparseness of solution. This research
indicates that use of the SCAD penalty for SCCA, with an additional BIC filter, results in
the best performance for the analysis of high-dimensional SNP and mRNA expression data
sets.
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Figure 1.
Plots showing the thresholding rules of the four penalty functions.
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Figure 2d
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Figure 2.

For each plot, the X-axis represents the tuning parameter for u, Y-axis represents the tuning
parameter for v and Z-axis represents the test sample correlation. Each plot represents
sample plot for one simulated data only. Each simulated data has its own tuning parameters
and the test sample correlation.
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Figure 3.

For each sub plot, the X-axis represents the sample sizes and the Y-axis represents the
values. The top four plots are for SNP variables while the bottom four plots are for mMRNA
variables. In each plot, the red and blue dotted lines represent the average number of false
discovery (AvgFD) and average humber of non discovery (AvgND), respectively, and the
solid line represents the average total discordance.
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Figure 4.

For each sub plot, the X-axis represents the sample sizes and the Y-axis represents the
values. Top four plots are for SNPs and the bottom four plots are for mRNA variables. In
each plot, the red and blue dotted lines represent the average number of false discovery
(AvgFD) and average number of non discovery (AvgND), respectively, and the solid line
represents the average total discordance.
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