
Dual Formulations of Mixed Finite Element Methods with
Applications

Andrew Gillettea and Chandrajit Bajajb
Andrew Gillette: agillette@math.utexas.edu; Chandrajit Bajaj: bajaj@cs.utexas.edu
aDepartment of Mathematics, University of Texas at Austin
bDepartment of Computer Sciences, University of Texas at Austin

Abstract
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete
Exterior Calculus explains why the degrees of freedom associated to the different variables should
be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer
information between the meshes. We show through analysis and examples that the choice of
discrete Hodge star is essential to the numerical stability of the method. Additionally, we define
interpolation functions and discrete Hodge stars on dual meshes which can be used to create
previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are
examined in detail.

Keywords
Discrete exterior calculus; Finite element method; Partial differential equations; Whitney forms;
Hodge star

1. Introduction
The theory of Discrete Exterior Calculus (DEC) has provided a novel viewpoint for
analyzing linear systems derived from finite element theory. We highlight three important
conclusions of this theory:

1. Variables in a PDE should be discretized as degree of freedom arrays (“cochains”)
over a primal simplicial mesh or its dual mesh.

2. A discrete Hodge star is used to transfer information between primal and dual
meshes.

3. Whitney elements provide stable finite elements for the primal mesh.

Most numerical methods for PDEs over unstructured tetrahedral meshes discretize variables
as cochains over the primal mesh and build up linear systems from there. In this paper, we
look at the alternative approach of discretizing variables over the dual mesh and design dual
formulations of the linear systems based on DEC theory. This approach is especially
valuable in the context of mixed finite element systems as they employ all the key
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ingredients of DEC theory: both primal and dual cochains, a discrete Hodge star, and,
typically, Whitney elements.

Before turning to mixed systems, however, we look at a simpler example from
electromagnetics illustrating the relevance and benefit of our technique. The example is
inspired by He and Teixeira [17]. Using a Discrete Exterior Calculus analysis of Maxwell's
equations, one can derive a second order vector wave equation

(1)

where E is the electric field intensity, discretized as a cochain on the primal mesh, ω is a
coefficient, 1 is a rectangular incidence matrix having entries of 0 and ±1 only, and k is a
discrete Hodge star operator.

The dual formulation of this physical phenomenon is an equation for the magnetic field
intensity H ̄, discretized as a cochain on the dual mesh:

(2)

Both systems (1) and (2) are computationally tractable if k is a diagonal matrix which, by
DEC theory, can be achieved when the primal and dual meshes are orthogonal. If
orthogonality is not guaranteed, as is the case with barycentric dual meshes, k is defined
using Whitney elements and results in a sparse matrix. As a consequence, system (2) then
involves possibly full rank matrices and is thus significantly more computationally
expensive to solve. He and Teixeira [17] reduce the rank of the  matrices by using a
topological thresholding technique which requires an input parameter.

Our approach skirts the problem of full rank inverses by introducing a novel definition of the
 matrices free of parameters and guaranteed to produce a sparse matrix. The outline of

the paper and summary of its contributions are as follows:

• In Section 2, we briefly discuss prior work and fix relevant notation.

• In Section 3, we use the Sibson coordinate functions to construct dual Whitney-like
functions which define a novel sparse inverse discrete Hodge star . We
show how the choice of discrete Hodge star requires certain geometric quality
conditions of the primal and dual mesh elements. A specific example is given
showing how our dual formulation of the problem can result in a better conditioned
linear system than the primal formulations.

• In Section 4, we examine how our methodology applies to generic PDE problems
as well as to some specific applications employing mixed finite element methods.
We cast each into our common notational framework and show how to formulate
equivalent dual formulations of the problem from a DEC-based analysis. The
specific advantages of these dual formulations are analyzed, including an ability to
compare and contrast calculations on a primal mesh with the analogous calculations
on the dual mesh.
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2. Prior Work and Notation
Our work is inspired primarily by the emergent theory of Discrete Exterior Calculus (DEC).
DEC is an attempt to create from scratch a discrete theory of differential geometry and
topology whose definitions and theorems mimic their continuous counterparts [19, 9]. A
central conclusion of the theory is that degrees of freedom for finite elements should be
assigned to mesh vertices, edges, faces or interiors according to the dimensionality of the
variable being modeled. If these degrees of freedom have a natural geometric duality, as
occurs for example between electric and magnetic fields, two meshes of the domain are
necessary - a primal and dual mesh [18]. This has given rise to DEC-based methods for
solving problems of Darcy flow [20], electromagnetism [17] and elasticity [29], among
others. As we will show, the ‘bottom-up’ approach of DEC clearly suggests alternative
discretization methods less evident from such ‘top-down’ theories as finite element exterior
calculus [2].

The main notational aspects of DEC are encapsulated by Figures 1 and 2. Figure 1 shows
our notation for domain elements, i.e. primal k-simplices σk and their geometric dual n − k-
cells ⋆σn⋆k where n is the dimension of the domain. The dual domain mesh is defined by
taking the circumcenters or barycenters of n-simplices and connecting them based on
simplex adjacency in the usual manner. The measure of σk (respectively ⋆σn−k) is denoted |
σk| (respectively |⋆σn−k|), meaning length for k = 1, area for k = 2, and volume for k = 3, with
the convention that |σ0| = |⋆σn| = 1.

Figure 2 shows the various continuous and discrete spaces relevant to DEC theory for n = 3
and the operators between them. The vector space of k-cochains, i.e. linear mappings from
k-simplices to ℝ, is denoted ¯k. The vector space of dual k-cochains, i.e. linear mappings
from k-cells of the dual mesh to ℝ, is denoted k. The k matrix is the transpose of the (k
+1)st boundary operator, i.e. it encodes element adjacency and orientation information with
entries ±1.

The interpolation map k converts a k-cochain into a piecewise-defined k-form whose global
continuity in a distributional sense is indicated by Figure 2 (e.g. 1W ∈ H(curl)). Define k
by

(3)

where σk is the Whitney function associated to simplex σk. These functions are described
in Appendix A. The Whitney functions were first described in [27] and later recognized by
Bossavit [6] and others as the correct generalization of edge and face elements needed for
DEC theory. An extensive treatment of all of these spaces, functions, and operators is given
in [14].

We now discuss the Hodge star * and its discretization as a square matrix  or −1. As
shown in Figure 2, the continuous Hodge star * maps between forms of complementary and
orthogonal dimensions, i.e. * : Λk → Λn−k. For domains in ℝ3 as considered here, * is
defined by the equations
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For a more general definition of *, see [1].

A discrete Hodge star  maps not only between cochains of complementary dimensions but
also between primal and dual meshes [18]. In this paper, we focus on the two definitions of a
discrete Hodge star most relevant to DEC theory. The first is the diagonal discrete Hodge
star defined by

(4)

The definition of  fits nicely into DEC theory when the dual mesh is defined by taking
circumcenters of the primal simplices, thus producing orthogonal meshes [9]. In practice,
however, it is often desirable to use barycenters to define the dual mesh as this guarantees
that σk will intersect ⋆σk in the ambient space. A correction factor for this change is given by
Auchmann and Kurz [3].

The more widely used approach for barycentric dual meshes employs Whitney interpolants
in the definition of the discrete Hodge star:

(5)

The inner product here is the standard integration of scalar or vector valued functions over
the domain. Dodziuk [11] originally proposed the definition of  but it has been called
the Galerkin Hodge [7] for its relation to finite element methods. Bell [5] has implemented
linear solvers in a DEC context using  for various k.

Many other discrete Hodge stars appear in the literature, including the combinatorial discrete
Hodge star of Wardetzsky and Wilson [25, 28] and the metrized chain Hodge star of
DiCarlo et al. [10]. To our knowledge, no authors have defined a discrete Hodge star using
dual interpolatory functions as we propose in this work.

3. Dual Whitney Interpolants and Dual Discrete Hodge Stars
It is evident from the DEC-deRham diagram in Figure 2 that the direct interpolation of
degrees of freedom on a dual mesh is not available in the common theory. Further, we have
seen from the discussion in Section 2 that the definition of (Mk)−1 has only been implied
from definitions of k. In this section, we define a set of interpolation functions  analogous
to the Whitney functions and use them to provide an explicit definition of a dual discrete
Hodge star.

Define the dual Whitney interpolant of a dual k-cochain W̄ ∈ k to be

(6)

where ⋆σn−k is a dual Whitney function associated to the k-cell ⋆σn−k in the dual mesh.
These functions are defined using a generalization of barycentric coordinates known as
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Sibson functions [22], also called the natural neighbor or natural element coordinates [23].
Figure 3 summarizes the definition.

Definition 1—Let x be a point inside a polyhedral cell  of the dual mesh. Let P denote
the set of vertices {vi} and define

Denote the Voronoi cell associated to a point p in a pointset Q by

Note that these Voronoi cells have been restricted to  and are thus always of finite size. Fix
the notation

Ci ≔ |VP(vi)| = |{y ∈  : |y − vi| < |y − vj|, ∀j ≠ i}|

= area of cell for vi in Voronoi diagram on the points of P,

D(x) ≔ |VP′(x)| = |{y ∈  : |y − x| < |y − vi|, ∀i}|

= area of cell for x in Voronoi diagram on the points of P′.

By a slight abuse of notation, define

The notation is shown in Figure 3. The Sibson coordinates are defined to be

Milbradt and Pick [21] modify the definition of the Sibson functions for polytopes so that
the coordinates of a point on an edge or facet of the polytope are dependent only on the
Sibson functions associated to the boundary vertices of that edge or facet. This ensures C0

continuity of the functions across adjacent mesh elements.

Moreover, it has been shown that the Sibson functions are C∞ on the polygon except at the
vertices vi where they are C0 and on circumcircles of Delaunay triangles where they are C1

[22, 12]. Since the finite set of vertices are the only points at which the function is not C1,
we conclude that λ ̄i ∈ H1(K) where K is the domain mesh. This is the typical continuity
required for finite element applications with nodal interpolation functions and makes them
fit for use in the dual Whitney functions we define next.

Definition 2—The dual Whitney function ⋆σ3−k associated to the k-dimensional
element ⋆σ3−k in a 3D dual mesh is defined as follows.

• Dual Vertices. The function associated to a dual vertex ⋆σ3 ≔ v̄i is the Sibson
coordinate for the vertex, i.e.
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• Dual Edges. The function associated to an oriented dual edge ⋆σ2 ≔ [v̄i, v̄j] is the
vector-valued function

An example is shown in Figure 4.

• Dual Faces. Consider a dual face ⋆σ1 with m vertices {v̄0, …, v̄m−1}. Partition the
face canonically into triangles by adding a vertex c̄ at the centroid of the face
vertices and adding the edges [c̄, v̄i]. Define 2-simplices τi ≔ [c̄, v̄i, v̄i+1], indices
taken mod m. Define 3-simplices by connecting the τi to the endpoint of σ1 inside
the polyhedron. Define

where χτi is the characteristic function on τi (1 on τi, 0 otherwise) and

Note that τi is the Whitney 2-form associated to face τi of a tetrahedron (see (A.2)
in Appendix A) and that these tetrahedra partition the entire polyhedra. An example
is shown in Figure 5.

• Dual Cells. The scalar-valued function associated to a dual cell ⋆σ0 is a constant
function on the cell:

Since the dual Whitney functions use a generalization of barycentric coordinates, it can be
shown that they have the standard continuity across faces, e.g. tangential continuity for ⋆σ2
and normal continuity for ⋆σ1. This means the image of 0 is in H1, the image of 1 is in
H(curl), and so forth (see Figure 2). A proof of this and other properties of k appears in
[14]. We are also developing a higher order version of these operators [15].

Using dual Whitney functions, we define a novel dual discrete Hodge star by

(7)

The inner product here is the standard integration of scalar or vector valued functions over
the dual domain ⋆K. For instance, in the case k = 3, the definition yields
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The formulation for other k values will similarly involve integrals of the λ ̄i functions.

Lemma 1—  is sparse.

Proof: Observe that ⋆σk has localized support by construction. Entry ij of  will be

non-zero only if  and  are adjacent. Thus each row of the matrix will have at most as
many non-zero entries as  has adjacent n − k cells, meaning the matrix is sparse.

Lemma 1 does not hold if  is replaced by  as these sparse matrices typically have

dense inverses. Note that  is trivially sparse since it is diagonal, however, it can
only be employed when the meshes are orthogonal.

3.1. Local Structure of Discrete Hodge Stars
The continuous Hodge star * is a local operator meaning its effect on a differential form
evaluated at a particular point on a manifold depends only on the geometry of a local
neighborhood of the point. The discrete Hodge star is thus required to be a local operator as
well meaning the evaluation of k on a basis cochain  (1 on  and 0 otherwise) should
involve values on only a few simplices adjacent to . In the language of matrix theory, this
requirement says k should be sparse.

We now give a more specific characterization of the sparsity structure of  and
. The intuition for these results is demonstrated by Figure 6

Lemma 2—Entry ij in  is non-zero only if there exists σn ∈ K such that σn has at least

one vertex from  and one vertex from .

Proof: Computing entry ij in  involves [4, Prop. 9.6] summing terms of the form

(8)

where λ1, λ2 are barycentric functions associated to , , respectively; I is a list

of k vertices from  not including v1; J is a list of k vertices from  not including v2; and
VI, WJ are n × k matrices. The pth column of VI is the vector ∇λp where λp is the barycentric
function associated to the pth entry in I. The qth column of WJ is the vector ∇λq where λq is
the barycentric function associated to the qth entry in J.

Observe that the support of the barycentric function associated to vertex v is contained
within the n-simplices touching v. Thus, if there is no σn with at least one vertex from  and
one vertex from , the λ1 and λ2 appearing in (8) will always have disjoint support, making
the entry zero.

Using the same kind of reasoning, we have a similar result for our dual discrete Hodge star.
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Lemma 3—Entry ij in  is non-zero only if there exists ⋆σ0 ∈ ⋆K such that ⋆σ0 has

at least one vertex from  and one vertex from .

The number of k-simplices in an n-simplex is  which gives the following corollary.

Corollary 1—Let A(σk) denote the number of n-simplices in K incident on at least one
vertex from σk. Then the number of non-zero entries in row i of  or row i of 

is at most .

The bound can be sharpened for particular choices of n and k or if additional assumptions
are made about K. As stated, however, the corollary provides a simple means for evaluating
the computational expense of a particular discretization scheme as we will discuss in Section
4.

3.2. Numerical Stability
To maintain the numerical stability of a DEC-based method, the discrete Hodge star matrix
should have a bounded condition number. Put differently, the entries of the matrix should be
roughly the same order of magnitude. This requirement is frequently considered from the
context of numerical analysis but is often absent from the literature on discrete operators.

The common thread in the geometrically-defined discrete Hodge stars such as  is a
measurement of the size of dual cells i.e. |⋆ σk|. This suggests that geometric criteria on
primal elements alone will not be sufficient to control the condition number of the discrete
Hodge star matrix. In particular, since ratios of primal to dual cells are computed, the
following criteria must be satisfied:

N1. Primal simplices σk satisfy geometric quality measures.

N2. Dual cells ⋆σk satisfy geometric quality measures.

N3. The value of |⋆ σk|/|σk| is bounded above and below.

N4. The primal and dual meshes do not have large gradation of elements, i.e. 
and  are the same order of magnitude and  and  are the
same order of magnitude.

Conditions N1 and N2 are required for discretization stability. Aspect ratio is often used as a
geometric quality measure for tetrahedra. Conditions N3 and N4 are based on our analysis
above. Condition N4 in particular shows that these discrete Hodge stars are not fit for use on
meshes tailored to multi-resolution situations where gradation is necessary to achieve
reasonable computation times. Examples are shown in Figures 7 and 8.

For , the size of the matrix entries are controlled by the size of the inner products of
Whitney basis forms. The integrals in (8) are on the order of the size of |σk|, meaning again
that a large gradation in primal mesh element size could produce large condition numbers.
Since  does not depend on the size of dual mesh elements, however, its condition
number is more stable against violations of conditions N2 and N3. Analogously, the
condition number of  is more stable against violations of conditions N1 and N3.
Our conclusions are summarized below.
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• Conditions N1-N4 are necessary to ensure  has a good condition number.

• Conditions N1 and N4 are necessary to ensure  has a good condition number.

• Conditions N2 and N4 are necessary to ensure  has a good condition
number.

3.3. Improved Condition Numbers with 
To provide concrete evidence for our numerical stability claims, we present a simple

example in 2D showing how  and  can have condition numbers an order of
magnitude worse than  on the same mesh. This serves as a proof of concept that the
DEC-based dual formulation of a problem can provide practical advantages in cases of
difficult mesh geometry.

In the 2D mesh shown in Figure 9, the labeled vertices of the primal mesh have coordinates

v1 = (0, 0), v2 = (0, 1), v3 = (P, ), and v4 = (−P, ), where P is a free parameter we can
adjust to modify the geometry. The remaining vertices are chosen so that they form
equilateral triangles with edges σ13, σ23, σ14, and σ24, as shown. The orthogonal,
circumcenter-based dual mesh is shown in red.

Without loss of generality, fix any ordering on the mesh edges, beginning with

(9)

We first calculate the upper left 5 × 5 block of each matrix, yielding the matrix values
assigned to all possible interactions between pairs of these first five edges. Using the
circumcentric dual mesh and definition (4), we compute

(10)

where . Since  is diagonal, its condition number is the ratio of its
largest diagonal entry to its smallest. The uncomputed diagonal entries will be very close to
ϱ meaning the condition number can be approximated as

Using the Whitney interpolant for edges (see (A.1) in Appendix A) and the definition of
 given in (5), we can also compute
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(11)

where , , , and . Note that some of the
structure of  suggested by (11) is an artifice of our ordering of the edges as stated in
(9). However, the remaining diagonal entries of  are all close to γ, the entire matrix is
symmetric, and the remaining non-zero off-diagonal terms are roughly the same size. Thus,
the eigenvalues of the 5 × 5 matrix shown in (11) allow us to approximate the condition
number of . Using Mathematica, we find analytical expressions for the max and min
eigenvalues of the 5 × 5 matrix and take their ratio to approximate

Finally, we compute  using the barycentric dual mesh and definition (7), yielding

(12)

where , , ,  and

. Note that analytical expressions of these inner products are not feasible
due to the need to compute areas of intersection of irregular polygons in the definition of the
λ ̄ functions. Instead, using Matlab, we create a simple grid-based quadrature method to
estimate the entries of  for various values of P. As with , we then estimate the
condition number of the entire matrix by the ratio of the max and min eigenvalues of the 5 ×
5 matrix given in (12).

The cases P = 2, 5, and 10 were tested. The integral required to compute ξ has support
outside of the portion of the dual mesh shown in Figure 9. We thus set ξ to be the same as ζ,
since both are inner products associated to adjacent edges in the dual mesh. The computed
values of κ were very small, as expected; we found that setting κ to zero did not affect the
condition number estimate. Our results are summarized in Table 1.

Our numerical experiments thus provide evidence for the claim
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The above example confirms that while our dual discrete Hodge star has an analogous
definition to the primal discrete Hodge star, its condition number is indeed controlled by the
geometric properties of the dual mesh elements, not those of the primal mesh elements. This
fact is especially useful for problems on tetrahedral meshes where slivers (narrow, nearly
planar tetrahedra) frequently occur and are difficult to remove.

4. Applications
The dual interpolation functions n−k we defined in (6) and the dual discrete Hodge star we
defined in (7) are new tools for designing stable finite element methods. We start by
explaining the generic methodology of our approach and then apply it to two sample finite
element problems from the literature: magnetostatics and Darcy flow.

4.1. Generic methodology
The Discrete Exterior Calculus approach to discretizing a PDE is as follows:

I. Translate the continuous PDE problem into the language of exterior calculus.

II. Linearize the problem, possibly by introducing an intermediary variable (i.e. a
mixed method).

III. Discretize the k-forms into k-cochains and the operators d and * into  and 
matrices.

IV. Solve a linear system constructed from the discrete equations.

Our methodology focuses on step III and exposes how there are often many natural choices
for discretization in line with DEC theory. Consider the case where we are given a PDE in
terms of a variable u that is treated as a k-form in the continuous setting. Suppose that a
mixed method is possible in which the intermediary variable v should be interpreted as an n
− k − 1 form. In this case, the typical mixed linear system is

(13)

where U ∈ k, V ̄ ∈ n−k−1 are the discretized variables and F ̄ ∈ n−k, G ∈ k+1 are the
discretized load data.

The simple idea at the heart of our technique is to swap the type of dicretization (primal or
dual) of each variable and then infer the rest of the system from DEC theory. Note that the
cochain order of each variable should not change, only the mesh on which it is discretized.
Hence, the dual formulation of system (13) is

(14)
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where now Ū ∈ k, V ∈ n−k−1 are the discretized variables and F ∈ n−k, Ḡ ∈ k+1 are the
discretized load data. We show in Figure 10 how these two discretizaions fit into a generic
DEC-deRham diagram in a natural and complementary fashion.

Additional equivalent systems can be derived by using proxy variables in clever ways, e.g.
solving for some Z ∈ k−1 such that X is defined uniquely by X = k−1Z. These systems are
easiest to understand via the specific examples we now examine.

4.2. Magnetostatics
The magnetostatics problem is characterized by Gauss's law for magnetism, Ampère's law,
and a constitutive relationship, respectively,

(15)

Here, j is a given current density and b and h both represent the magnetic field. It is assumed
that the domain Ω is contractible with boundary Γ written as a disjoint union Γe ∪ Γh such
that n̂ · b = 0 on Γe and n̂ × h = 0 on Γh.

A DEC-based treatment of the problem reveals canonical and symmetrical ways to put this
into a mixed formulation linear system, depending on whether b is discretized as a primal or
dual cochain. If we discretize b as a primal 2-cochain B ∈ 2 and h as a dual 1-cochain H ̄ ∈

1, equations (15) become

This allows for two possible mixed systems. The first is

(16)

In this system, H ̄0 ∈ 1 is any dual 1-cochain satisfying  and H ̄ is defined by

. Thus  is assured.

The second mixed system is

(17)

In this system, B is defined by B := 1A, so that 2B = 2 1A = 0. For a fixed J ̄, systems (16)
and (17) result in the same solution pair (B, H ̄) and were shown by Bossavit [7] to converge to
the solution pair (b, h) to (15) as the size of mesh elements goes to zero.

We now consider a novel dual discretization approach by treating b as a dual 2-cochain B̄ ∈
2 and h as a primal 1-cochain H ∈ 1. The continuous problem (15) is now discretized by
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The first mixed system of this dual formulation is

(18)

In this system, H0 ∈ 1 is any primal 1-cochain satisfying 1H0 = J and H is defined by

. Thus 1H = 1(H0+ 0P) = J is assured. The last system is

(19)

where B̄ is defined by  so that . For a fixed J, systems (18) and
(19) will result in the same solution pair (B̄, H). In a future work, we will show that these
systems also converge to the solution pair (b, h) to (15) as the size of mesh elements goes to
zero. Taking that for granted, we state the advantages of having all four systems (16), (17),
(18), and (19) available for implementation.

First, observe that systems (16) and (17) make use of the 2 matrix and its inverse while
(18) and (19) use the 1 matrix. If the diagonal Hodge star is used, then 2 requires good
ratios between the size of primal faces and their dual edges while 1 requires good ratios
between the size of primal edges and their dual faces. Thus, on unstructured meshes, one
system may break numerically on a mesh that is acceptable for another system.

Second, if the Whitney Hodge star is used,  may be a full rank matrix, making systems
(17) and (18) less attractive numerically. By constructing the dual discrete Hodge stars as
proposed in this paper, these systems become sparse again by Lemma 1 and thus are
available as a practical alternative.

Third, having four systems available for the same problem allows for rigorous error-
checking and cross-confirmation of results. This is particularly valuable when physical
experimental confirmation of the results is impossible or expensive.

4.3. DarcyFlow
The Darcy flow problem in ℝ3 is

(20)

where k and μ are physical constants, f is volumetric flux and p is pressure. It is assumed that
there is no external body force, the boundary Γ := ∂Ω is piecewise smooth, and the
compatibility condition ∫Ω ϕdΩ = ∫∂Ω ψdΓ is satisfied. Without loss of generality, take μ =
k.
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First consider discretizing f as a a primal 2-cochain F ∈ 2 and p as a dual 0-cochain P ̄ ∈  0,
yielding the discretized equations

Hirani el al. [20] used this approach to derive the linear system

(21)

We present an alternative formulation using the same discretization, inspired by the
magnetostatics systems (17) and (19). Let F0 ∈ 2 be a primal 2-cochain satisfying 2F0 = Φ.
The system is

(22)

Here, P ̄ is a solution to  The existence of P ̄ is guaranteed by the exactness of the
dual cochain sequence at 1 and uniqueness of P ̄ is determined by initial conditions or

boundary data. The flux cochain F is defined to be  so that

.

We now present the dual formulations derived by treating f as a dual 2-cochain F ̄ ∈ 2 and p
as a primal 0-cochain P ∈ 0. The discretized equations are now

The first system of this formulation is

(23)

The second system is

(24)

where F ̄ 0 is a solution to  and F ̄ is defined to be 1Q, analogous to system (22).

Thus, taking  of both sides of the top equation of (24) yields . Further, the bottom
equation of (24) yields 1Q = 0 which, by the exactness property of the primal cochain
sequence implies that there exists a solution P to 0P = −Q.
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We now have four mixed systems, (21)-(24), discretizing the Darcy flow equations (20),
three of which had not be considered by Hirani et al. [20]. This plethora of equivalent
systems offers the same advantages as those discussed at the end of the magnetostatics
example from Section 4.2.

5. Conclusion
In this work we have augmented the theories of Discrete Exterior Calculus and mixed
methods by introducing two novel tools: Whitney-like interpolation functions defined on
dual domain meshes and a sparse inverse discrete Hodge star. We have shown the tools to
have natural, straightforward definitions and clear geometric interpretations. We have used
them to derive previously unexamined numerical stability criteria relating to the condition
number of the discrete Hodge star used in the method, based on the geometry of the dual
mesh cells. Further, we have demonstrated in both general and specific contexts how these
tools can be used to develop alternative discretizations of PDEs with sparse, well-
conditioned matrices. The techniques we have described provide a valuable methodology for
researchers to revisit their current finite element formulations and confirm or improve their
results with new discretization methods.
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Appendix A. Whitney Functions for Primal Meshes
Whitney k-forms are piecewise linear functions on a primal mesh, one for each k-simplex in
the mesh.

• Primal Vertices. The Whitney 0-form associated to a vertex σ0 ≔ vi is denoted

where λi is the barycentric function for the vertex. More precisely, λi is defined by
the condition of being linear on every simplex of the mesh, subject to the
constraints λi (vj) = δij.

• Primal Edges. The Whitney 1-form associated to an oriented edge σ1 ≔ [vi, vj] is
the vector-valued function

(A.1)

• Primal Faces. The Whitney 2-form associated to an oriented face σ2 ≔ [vi, vj, vk]
is the vector-valued function

(A.2)

• Primal Tetrahedra. 1 The Whitney 3-form associated to an oriented tetrahedron
σ3 is its characteristic function, scaled by the reciprocal of the volume σ3.
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Appendix B. Generalized Barycentric Functions
Let  be a top-dimensional cell of the dual mesh (i.e. a polygon in 2D or a polyhedron in
3D) with vertices v1, …, vN. A set of functions λ ̄i :  → ℝ, i = 1, …, N are called
barycentric coordinates on  if they satisfy two properties.

B1. Non-negative: λ ̄i ≥ 0.

B2. Linear Completeness: For any linear function L :  → ℝ,

A set of barycentric coordinates { λ ̄i} also satisfies these additional familiar properties:

B3. Partition of unity: 

B4. Linear precision: 

B5. Interpolation: λ ̄i (vj) = δij.

A proof that properties B3-B5 are implied by B1-B2 in the 2D case can be found in our
paper [16]. The 3D case is similar.

Three major approaches to defining generalized barycentric functions on 2D polygons have
emerged in the literature. The Wachspress functions [24, 13] are rational functions
constructed explicitly based on the areas of certain triangles within . The Sibson functions
[22], also called the natural neighbor or natural element coordinates [23], are also
constructed explicitly, but instead use the areas of Voronoi regions associated with the
vertices of . The Harmonic functions [26, 8] are defined as the solution to Laplace's
equation over  with certain piecewise linear boundary data.

We have shown in [16] that any of these functions suffice to give the optimal interpolation
estimate for the lowest order case in 2D, assuming some basic geometric quality criteria on
the dual mesh elements. For this paper, we have employed only the Sibson coordinates as

1Note that the σ3 definition has been simplified from a more general definition of Whitney forms [27] using the geometric identity

where the right side has sign −1 if an odd index was omitted from the scalar triple product and +1 otherwise. This reduces the sum in
the general formula to (1/|σ3|) Σi λi, which is simply 1/|σ3| due to the partition of unity formed by the barycentric functions.

Gillette and Bajaj Page 16

Comput Aided Des. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



they generalize easily to 3D, are reasonable to implement, and are more stable against bad
geometry than the Wachspress functions. A formal proof of their convergence properties in
3D will be the focus of a future work.
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Research Highlights

• In Section 3, we use the Sibson coordinate functions to construct dual Whitney-

like functions which define a novel sparse inverse discrete Hodge star .
We show how the choice of discrete Hodge star requires certain geometric
quality conditions of the primal and dual mesh elements. A specific example is
given showing how our dual formulation of the problem can result in a better
conditioned linear system than the primal formulations.

• In Section 4, we examine how our methodology applies to generic PDE
problems as well as to some specific applications employing mixed finite
element methods. We cast each into our common notational framework and
show how to formulate equivalent dual formulations of the problem from a
DEC-based analysis. The specific advantages of these dual formulations are
analyzed, including an ability to compare and contrast calculations on a primal
mesh with the analogous calculations on the dual mesh.
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Figure 1.
Primal simplices are shown in black in the top row: σ0 is a vertex, σ1 is an edge, and σ2 is a
face. Their corresponding dual cells for n = 2 are shown in red on bottom: ⋆σ2 is the
barycenter of σ2, ⋆σ1 is an edge between barycenters, and ⋆σ0 is a planar polygon with
barycenters as vertices. In three dimensions (n = 3), primal vertices have dual polytopes,
primal edges have dual polygonal facets, primal faces have dual edges, and primal volumes
have dual vertices.
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Figure 2.
The combined DEC and deRham diagram for a contractible domain in ℝ3. The top row
shows the L2 deRham diagram with continuous Hodge star maps between function spaces.
The middle and bottom rows show primal and dual cochain spaces, respectively, along with
the discrete exterior derivative and discrete Hodge star maps. The  and  maps are
interpolation (Whitney) and projection (deRham) maps.
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Figure 3.
Geometric calculation of a Sibson coordinate. Ci is the area of the Voronoi region associated
to vertex vi inside . D(x) is the area of the Voronoi region associated to x if it is added to
the vertex list. The quantity D(x) ∩ Ci is exactly D(x) if x = vi and decays to zero as x moves
away from vi, with value identically zero at all vertices besides vi. The bottom right figure
shows how the level sets of the Sibson coordinate associated to vi sit inside a single polygon.
More figures can be found in Milbradt and Pick [21]
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Figure 4.
The dual Whitney function associated to the lower right edge of a pentagon is shown on the
left. The magnified portion shows the vector field in the neighborhood of this edge. The
gradients were approximated in Matlab using a simple 2-point difference rule on a regular
grid laid over the pentagon.

Gillette and Bajaj Page 23

Comput Aided Des. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Sample computation of a dual Whitney function associated to a dual face ⋆σ1 with vertices
v̄i. By adding the centroid c̄, we have a canonical decomposition of ⋆σ1 into triangles τi. A
weighted sum of the primal Whitney function associated with each τi is constructed to define
the function for the face. As shown on the right, each τi, e.g. the shaded triangle, forms a
tetrahedron by connecting its vertices to the vertex of σ1 interior to the polyhedron. Note that
in general c̄ need not be the same as σ1 ∩ ⋆σ1.
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Figure 6.
The various discrete Hodge stars depend on different aspects of mesh geometry as shown in
this 2D examples. The diagonal Hodge star (left) computes ratios of sizes of primal-dual
element pairs. The Whitney Hodge star (middle) has entries of Whitney functions integrated
against each other. The support of a particular  function is shown in grey; the integral of
its projection to the bold edge has value 1. The Dual Hodge star (right) that we propose has
entries of dual Whitney functions integrated against each other. The support of a particular

 is shown in blue; the integral of its projection to the bold dual edge has value 1.
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Figure 7.
Examples illustrating how the measure of a primal simplex σk (black) and its dual ⋆σk (red)
need not be the same order of magnitude. (a) In this 2D example, the ratio |⋆ σ1|/|σ1| can be
made arbitrarily small by increasing the length of σ1. (b) The ratio |⋆ σ1|/|σ1| can be made
arbitrarily large by decreasing the length of σ1. (c) The ratio |⋆ σ2|/|σ2| can be made
arbitrarily large by decreasing the area of σ2. Thus, a discrete Hodge star involving terms of
the form |⋆ σk|/|σk| may have a bad condition number unless primal and dual mesh quality is
controlled.
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Figure 8.
Graded meshes also present a problem for discrete Hodge stars involving primal-dual size
ratios. The primal mesh shown here induces a wide variation in values of |⋆σk|/|σk| for k = 0,
1, 2. This can cause ill-conditioned k matrices, resulting in numerical instability.
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Figure 9.
Mesh used for sample calculation of 1 matrices. The vertices have coordinates v1 = (0, 0),

v2 = (0, 1), v3 = (P, ), v4 = (−P, ).
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Figure 10.
Portion of a generic DEC-deRham diagram (cf. Figure 2) showing the natural duality
between the variables and operators of systems (13) and (14). Discretizations of the
variables are written in place of the primal or dual cochain spaces to which they belong.
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Table 1

Comparison of condition numbers of different discrete Hodge stars for various values of P.

p

2 6.3 3.2 1.5

5 17.2 9.9 1.3

10 34.6 21.6 1.4
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