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Autosomal recessive primary microcephaly (MCPH) is
a neural developmental disorder in which patients display
significantly reduced brain size. Mutations in Abnormal
Spindle Microcephaly (ASPM ) are the most common cause
of MCPH. Here, we investigate the underlying functions of
Aspm in brain development and find that Aspm expression
is critical for proper neurogenesis and neuronal migration.
The Wnt signaling pathway is known for its roles in em-
bryogenesis, and genome-wide siRNA screens indicate that
ASPM is a positive regulator of Wnt signaling. We dem-
onstrate that knockdown of Aspm results in decreased
Wnt-mediated transcription, and that expression of stabi-
lized b-catenin can rescue this deficit. Finally, coexpression
of stabilized b-catenin can rescue defects observed upon in
vivo knockdown of Aspm. Our findings provide an impetus
to further explore Aspm’s role in facilitating Wnt-mediated
neurogenesis programs, which may contribute to psychi-
atric illness etiology when perturbed.

Supplemental material is available for this article.
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Development of the mammalian cortex requires several
subprocesses, including progenitor cell proliferation, neu-
rogenesis, neuronal migration, and establishment and
refinement of synaptic connectivity. The Wnt pathway
plays a prominent role in establishing the forebrain
anterior–posterior axis (Fukuchi-Shimogori and Grove
2001) and promoting neural progenitor proliferation
(Chenn and Walsh 2002; Zhou et al. 2004; Woodhead
et al. 2006; Kim et al. 2009), dendritogenesis (Yu and
Malenka 2003; Rosso et al. 2005; Wayman et al. 2006),
axon establishment and guidance (Wang et al. 2002; Keeble
et al. 2006), and synaptogenesis (Freese et al. 2010).

Autosomal recessive primary microcephaly (MCPH)
is a disease characterized by an abnormally small head
circumference that manifests during prenatal develop-
ment (Aicardi 1992; Tunca et al. 2006). The underlying

micrencephaly has a pronounced effect upon forebrain
development and is accompanied by mental retardation
(Bond et al. 2002, 2003; Roberts et al. 2002). Mutations in
one of seven genes that localize to the centrosome are
known to underlie development of MCPH (Guernsey et al.
2010; Kaindl et al. 2010; Nicholas et al. 2010; Yu et al. 2010).
Abnormal Spindle Microcephaly (ASPM) harbors the
most numerous cohort of causative MCPH mutations
(Passemard et al. 2009). ASPM and its orthologs have been
implicated in spindle organization, spindle orientation,
mitotic progression, and cytokinesis (Fish et al. 2006;
Paramasivam et al. 2007; van der Voet et al. 2009; Higgins
et al. 2010). Aspm mutant mice display mild microceph-
aly without obvious increases in apoptosis, supporting
the notion that MCPH is caused by defects in embryonic
neural progenitor proliferation (Pulvers et al. 2010).

Recent work has identified ASPM as a positive regula-
tor of the Wnt signaling pathway, suggesting a potential
biological pathway through which ASPM may regulate
neurogenesis (Major et al. 2008). FoxO activity negatively
regulates Aspm expression while promoting expression
of Wnt pathway antagonists in neural progenitor cells,
suggesting a mechanism to link Aspm expression and Wnt
activity (Paik et al. 2009). Additionally, ASPM overexpres-
sion, like many Wnt-activating components, is associated
with increased cell proliferation and tumor development,
supporting a common effect on proliferation (Kouprina
et al. 2005; Hagemann et al. 2008; Klaus and Birchmeier
2008; Lin et al. 2008; Bikeye et al. 2010; Vulcani-Freitas
et al. 2011). On the other hand, decreased expression of the
schizophrenia risk gene Disc1 or its binding partner,
Dixdc1, results in diminished Wnt signaling activity with
accompanying deficits in embryonic and adult cortical
neurogenesis (Mao et al. 2009; Singh et al. 2010).

In this study, we explore the role of Aspm in cortical
development and examine the functional interaction of
Aspm with the Wnt signaling pathway. We report that in
vivo knockdown of Aspm in the developing mouse brain
results in defects in neurogenesis, neuronal migration,
and cortical layer formation. We also demonstrate that
Aspm promotes Wnt signaling activity, and that reduc-
tion of Aspm can be rescued by overexpression of the Wnt
signal transducer b-catenin. Finally, we demonstrate that
the in vivo overexpression of b-catenin can rescue defects
in neurogenesis but not neuronal migration defects
caused by Aspm reduction.

Results and Discussion

Aspm expression is necessary to maintain proliferation
of neural progenitors at early stages of corticogenesis

In order to examine the role of Aspm in brain develop-
ment, we screened small hairpins for Aspm knockdown
capacity. We found two different small hairpins (shA1 and
sha2) capable of knocking down levels of Aspm as assayed
by quantitative PCR (qPCR) (Control and shA1, n = 5;
shA2, n = 3) (Supplemental Fig. 1). We used these small
hairpins to examine the effect of Aspm knockdown on
neural progenitor cells at early stages of corticogenesis.
We performed in utero electroporation at embryonic day
12 (E12) using a combination of either nontargeting small
hairpin (control) or shASPM expression constructs and
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a GFP expression construct to mark electroporated cells.
Brains were harvested at E15 and examined for distribu-
tion across cortical zones (Fig. 1A). We found that
knockdown resulted in significantly fewer cells remain-
ing in the proliferative regions of the ventricular/subven-
tricular zones (VZ/SVZ) and significantly more cells
residing in the intermediate zone (IZ) compared with
controls (Control, n = 3; shA1, n = 5; shA2, n = 3) (Fig. 1B).
Additionally, there was a strong trend toward fewer cells
entering the cortical plate (CP) following Aspm knock-
down (P = .0627) (Fig. 1B).

The fact that fewer cells remained in the VZ/SVZ
following Aspm knockdown suggested defects in the
maintenance of cell proliferation and premature neuronal
differentiation. We examined these possibilities by look-
ing at the overlap of the GFP-positive (GFP+) cell pop-
ulation with Tuj1, a marker of differentiated neurons, at
E15 (Fig. 1A). We found a significant increase in the
fraction of GFP+ cells that overlapped with the Tuj1+

region of the cortex following Aspm knockdown (all
groups, n = 3) (Fig. 1C). We also observed a significant
decrease in mitotic activity at E15 based on phospho-
histone H3 (PHH3) staining (all groups, n = 4) (Fig. 1 D,E). To
examine the overall proliferative capacity of the control
and Aspm knockdown populations, we performed in
utero surgery at E12, followed by pulse labeling with
5-bromo-2-deoxyuridine (BrdU) at E14. Brains were har-
vested 24 h later (Fig. 1F). Quantification of BrdU labeling
in the GFP+ population showed a significant decrease
within the shA1/shA2-expressing samples compared
with controls (Control and shA1, n = 5; shA2, n = 6)
(Fig. 1G), indicating an overall decrease in cell prolifera-
tion. Conversely, there was a significant increase within
the GFP+, BrdU+ population of cells that no longer
expressed Ki67 at E15 following Aspm knockdown com-
pared with controls (Control and shA1, n = 5; shA2, n = 6)
(Fig. 1H). Aside from shA1 and shA2, we found an
additional small hairpin (shA3) that phenocopied shA1

and shA2 by all measured criteria following E12
electroporation (Supplemental Fig. 1B–G).

Aspm expression is necessary for proper
neuronal migration and cell fate acquisition
during later stages of corticogenesis

In order to gain a broader understanding of the role
of Aspm in corticogenesis, we performed in utero
knockdown of Aspm at E15 and analyzed distri-
bution of cells across cortical zones at E19 (Fig.
2A). We found a significant increase in the frac-
tion of GFP+ cells in the IZ and a significant
decrease in the fraction of GFP+ cells in the CP
compared with controls (all groups, n = 3) (Fig. 2B).
This suggested a severe defect in neuronal migra-
tion in the presence of reduced Aspm levels,
where cells became arrested in the IZ but failed
to complete migration into the CP. Additionally,
we noted a significant increase in the fraction of
cells arrested in the SVZ, also suggesting a migra-
tion defect (Fig. 2B). Interestingly, while we noted
an overall increase in the fraction of cells found in
the VZ/SVZ compartments overall, in knock-
down versus control samples, this shift could be
attributed mainly to the increase in GFP+ cells
found in the SVZ at this time point. We examined
the GFP+ population exclusive to the VZ and SVZ
and found that there was a significant decrease in
the fraction of cells found in the VZ and a signif-
icant increase in the fraction of cells in the SVZ
compared with controls (all groups, n = 3) (Fig.
2C). This shift from the VZ to the SVZ among
cells with reduced Aspm levels also suggested an
enduring deficit in neurogenesis at this stage of
development, since the VZ is mainly populated by
self-renewing radial glia, while the SVZ contains
a larger number of newly differentiated neurons
and basal progenitors with limited self-renewal
capacity (Englund et al. 2005).

We also asked whether Aspm knockdown af-
fected layer-specific differentiation of cells in the
CP. Electroporation of cells with our control small
hairpin at E15 resulted in scattered cells through-
out the deep layers of the cortex labeled by FoxP2
and a dense band of cells near the top of the cortex,
representing the immature layers II/III and IV (Fig.

Figure 1. Aspm knockdown decreases neural progenitor proliferation in the
developing cortex. (A) Images of E15 mouse cortices electroporated at E12 with
nontargeting (top panels, Control) or ASPM-directed small hairpin (bottom
panels, shASPM) and GFP expression plasmids. Images were stained for GFP and
either Hoechst (left) or Tuj1 (right). Dashed lines in the left panels represent the
CP/IZ (top) and IZ/ SVZ (bottom) borders. Bar, 50 mm. (B) Distribution of cells
across cortical zones 72 h post-electroporation at E15. (C) Fraction of GFP+ cells
that overlap with Tuj1 staining in slices. (D) Images of E15 cortices electroporated
with control small hairpin (left) or shASPM (right) plasmid. The left images in each
set (see panels i,v) show the full span of the cortex. The right images in each set
show GFP (panels ii,vi), PHH3 (panels iii,vii), or a merge of GFP and PHH3 (panels
iv,viii) from the boxed area on the left. Asterisks indicate GFP, PHH3 double-
positive cells. Bar, 25 mm. (E) Mitotic index of the GFP-positive cell population 72
h post-electroporation as measured by PHH3 staining. (F) Images of E15 cortices
electroporated with control (left) or shASPM (right) plasmid. (Left panels) GFP
staining. (Middle panels) Merge of BrdU (blue) and Ki67 (red). (Right panel) Merge
of GFP with BrdU and Ki67. Arrowheads mark GFP, BrdU double-positive cells.
Arrows mark GFP, BrdU, Ki67 triple-positive cells. Bar, 50 mm. (G) A 24-h BrdU
labeling index as measured at E15. (H) Cell cycle exit index measured at E15.
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2A). In the shASPM samples, significantly fewer cells
were found in the CP overall (Fig. 2B) and the majority
resides within the FoxP2+ region (Fig. 2A), suggesting an
alteration in production of layer-specific neurons follow-
ing Aspm knockdown. We quantified the fraction of GFP+

cells within the CP that were FoxP2+ and found that there
was a significant increase in this population following
knockdown of Aspm compared with control samples (Con-
trol and shA2, n = 5; shA1, n = 4) (Fig. 2D). Together, these
data suggest that few cells enter the CP due to migration
defects and that more of these come from the earlier cohort
of cells that give rise to deep layers of the cortex.

Expression of stabilized b-catenin rescues defects
in Wnt signaling and in vivo cortical cell distribution
caused by Aspm reduction

Aspm has recently been revealed as a positive regulator of
Wnt signaling activity (Major et al. 2008; Paik et al. 2009).
To better discern the role of Aspm in regulating the Wnt
pathway, we measured Wnt-activated transcription in the
presence of reduced Aspm levels. We transfected P19 cells
with our control or shA1 knockdown construct and a
luciferase reporter construct containing eight copies of
the TCF/LEF-binding site (8XSuperTOPFLASH), which
can be bound and activated by a core component of the
Wnt signaling pathway, b-catenin (Molenaar et al. 1996;

van de Wetering et al. 1997). We confirmed that shASPM
expression resulted in a significant decrease in Wnt-
mediated luciferase reporter activation compared with
controls (n = 6) (Fig. 3A). We then asked whether over-
expression of b-catenin could rescue dampened luciferase
activation by expressing a b-catenin construct containing
a stabilizing mutation (S37A). Expression of stabilized
b-catenin resulted in a doubling of luciferase reporter
activity compared with cells transfected with only vector
and our control small hairpin. In cells expressing de-
creased levels of Aspm, addition of b-catenin brought
luciferase reporter activity back to the level of control
small hairpin samples not expressing additional b-catenin
(Fig. 3A). Thus, b-catenin expression was able to res-
cue luciferase reporter activity in Aspm-reduced cells

Figure 2. Aspm knockdown perturbs neuronal migration at late
stages of corticogenesis. (A) Images of E19 cortices electroporated at
E15 with control (top panels) or shASPM (middle and bottom panels)
and GFP expression plasmids. Images were stained for GFP (left) and
either Hoechst (middle) or FoxP2 (right). Dashed lines (middle)
represent the CP/IZ (top) and IZ/ SVZ (bottom) borders. Bar, 100 mm.
(B) Distribution of electroporated cells across cortical zones at E19. (C)
Distribution of electroporated cells within the VZ and SVZ at E19.
Upward-facing error bars and black stars denote significant differences
in fraction of SVZ cells. Downward-facing error bars and red stars
denote significant differences in fraction of VZ cells. (D) Percent of
electroporated cells that overlap with FoxP2 staining in slices at E19.

Figure 3. Expression of stabilized b-catenin rescues defects caused
by Aspm knockdown. (A) Fold Wnt-mediated luciferase expression
over control (Ctl, non-Wnt-containing medium) in P19 cells trans-
fected with a combination of control (Ctl) or ASPM (shA) small
hairpin expression constructs and vector (vector) or stabilized b-catenin
(S37A mutant, bcat) expression constructs following exposure to Wnt-
containing medium (Wnt). (B) Images of E16 cortices after electro-
poration at E13 with either control or shASPM, pCAGIG vector or
pCAG-b-catenin, and GFP expression plasmids. (Left panels) GFP
alone. (Right panels) GFP and Hoechst. Dashed lines in the right
panels indicate the CP/IZ border (top) and IZ/SVZ border (bottom).
Bar, 50 mm. (C) Distribution of electroporated cells across cortical
zones at E16. (D) Fraction of GFP+ cells found in the upper half of the
CP. (E) Images of E19 cortices showing the distribution of GFP+ cells
following electroporation of control or shASPM and either pNeuroD
vector or pNeuroD-b-catenin. (Left panels) GFP alone. (Right panels)
GFP and Hoechst stain. Bar, 100 mm. (F) Distribution of electro-
porated cells across cortical zones at E19.
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to levels seen in the presence of Wnt ligand-containing
medium alone.

Given that Aspm can act as a positive regulator of Wnt-
mediated transcription activity and that modulation of
a Wnt component can compensate for deficits in Aspm-
mediated Wnt activity in vitro, we asked whether in-
creased Wnt pathway activity can rescue defects in
corticogenesis caused by in vivo knockdown of Aspm.
We performed in utero electroporation at E13 and har-
vested brains at E16, electroporating our control or shA2
small hairpin construct and either an empty GFP expres-
sion vector (pCAGIG) or the same vector encoding a stabi-
lized b-catenin cDNA upstream of an IRES and the GFP
cDNA (pCAG-b-catenin). We observed a significant shift of
GFP+ cells from the VZ/SVZ to the IZ when we compared
samples electroporated with control or shA2 and pCAGIG
(Control + pCAGIG, n = 3; shASPM + pCAGIG, n = 6;
shASPM + pCAG-b-catenin, n = 4) (Fig. 3B,C). When we
expressed stabilized b-catenin in samples concomitant
with ASPM knockdown (shASPM + pCAG-b-catenin),
the significant shift in cells from the VZ/SVZ was abol-
ished compared with controls. However, we still observed
a significant increase in the fraction of cells localized to the
IZ in the presence of b-catenin overexpression. Compared
with Aspm knockdown samples, there was a slight but
significant decrease in the fraction of cells localized to the
IZ in the presence of b-catenin overexpression (Fig. 3C).

At E16, we did not observe any obvious deficit in
neuronal migration into the CP, although the large in-
crease in the IZ population following Aspm knockdown
in the absence or presence of b-catenin overexpression
hinted at such a possibility (Fig. 3C). To address whether
there was a more subtle defect in neuronal migration
caused by Aspm knockdown at this stage, we divided the
CP in half and separately counted the fraction of cells
in the upper and lower regions. We found that Aspm
knockdown caused a significant decrease in the fraction
of cells that reached the upper CP, regardless of b-catenin
expression (Control + pCAGIG, n = 3; shASPM + pCAGIG,
n = 6; shASPM + pCAG-b-catenin, n = 4) (Fig. 3D). These
data illustrate a subtle neuronal migration defect following
early reduction of Aspm. It also demonstrates that while
Wnt signaling may contribute to maintenance of prolifer-
ative activity in the absence of Aspm, it does not appear to
exert a significant role in facilitating neuronal migration
within the early CP. As further proof of this, restricting
b-catenin overexpression to post-mitotic neurons between
E15 and E19 also did not rescue the migration defect (all
groups, n = 2) (Fig. 3E,F).

Our study is the first to examine the effect of Aspm
knockdown on multiple stages of brain development.
Previous work has implicated Aspm function in neuro-
genesis within the context of mouse brain corticogenesis
(Fish et al. 2006; Pulvers et al. 2010). We expand on this
role by demonstrating that acute knockdown of Aspm
results in depletion of neural progenitors, decreased
mitotic activity, and premature neuronal differentiation
(Figs. 1, 2). Moreover, at relatively late stages of neuro-
genesis (E19), knockdown also results in redistribution of
cells between the VZ and SVZ (Fig. 2). This result further
suggests an enduring role for Aspm in the maintenance of
the apical progenitor pool during all stages of neuro-
genesis. While we observed a modest reduction of Aspm
in P19 cells by qPCR (Supplemental Fig. 1A), we were
unable to assess knockdown in vivo due to a lack of

reagents. We suspect that in vivo knockdown was stron-
ger than our in vitro observation and note that acute
knockdown can result in more pronounced effects than
are observed in animal models that lack individual gene
expression altogether (Bai et al. 2003).

Our study also uncovers a previously unappreciated
role for Aspm in neuronal migration (Figs. 1, 2). This
result is most pronounced at later stages of cortical
development, when neurons must travel longer distances
to reach their final destination in the CP. However, our
study shows a significant effect of Aspm knockdown
upon neuronal migration as early as E16 (Fig. 3D). It is
interesting to note that while stabilized b-catenin expres-
sion can compensate for the effect of Aspm knockdown
on deficits in neurogenesis at this stage, no such com-
pensation is observed in terms of neuronal migration.
This is consistent with previous observations that knock-
down of positive regulators of Wnt signaling impinges on
both neurogenesis and neuronal migration, but that only
deficits in neurogenesis can be rescued via increased Wnt-
mediated activity (Brandon et al. 2009; Mao et al. 2009).

Recent work has demonstrated that the schizophrenia
risk gene Disc1 is a positive regulator of Wnt signaling,
and that decreased Disc1 expression results in impaired
adult neurogenesis and behavioral defects (Mao et al.
2009). This study demonstrates that overexpression of
stabilized b-catenin can rescue deficits in neurogenesis
caused by Aspm reduction, hinting at the possibility that
ASPM function could play a role in regulating pathways
and processes that contribute to manifestation of schizo-
phrenia. While our study uncovers a functional interac-
tion between Aspm and b-catenin, further studies will be
necessary to elucidate the molecular mechanisms that
allow Aspm to influence neurogenesis and the Wnt path-
way. Importantly, both decreased brain size and deficits in
adult neurogenesis are associated with schizophrenia (Ward
et al. 1996; Reif et al. 2007; Crespi and Badcock 2008).
While a plethora of ASPM mutations are associated with
MCPH, it will be interesting to determine whether subtle
alterations in ASPM expression can contribute to deficits in
adult neurogenesis and neuropsychiatric disorders.

Materials and methods

In utero electroporation

In utero electroporation was performed as described elsewhere (Xie et al.

2007). Electroporations were performed at E12, E13, or E15, and brains

were harvested at E15, E16, or E19, respectively.

DNA constructs and sequences

Aspm small hairpin sequences and cDNA expression constructs used in

this study are described in the Supplemental Material.

Antibodies

All antibodies used in this study are listed in the Supplemental Material.

Luciferase assays

Luciferase assays were performed as described in Mao et al. (2009).

qPCR

qPCR was performed using material collected from P19 carcinoma cells

transfected with small hairpin expression plasmids. Methods are de-

scribed in detail in the Supplemental Material.
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Statistical analysis

In all bar graphs, analysis was carried out using one-way analysis of

variance followed by Newman-Keuls multiple comparison test; (ns)

P > .05; (*) P < .05; (**) P < .01; (***) P < .001.
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