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A general method for controlling the genome-wide
type I error rate in linkage and association mapping
experiments in plants
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Control of the genome-wide type I error rate (GWER) is an
important issue in association mapping and linkage mapping
experiments. For the latter, different approaches, such as
permutation procedures or Bonferroni correction, were proposed.
The permutation test, however, cannot account for population
structure present in most association mapping populations.
This can lead to false positive associations. The Bonferroni
correction is applicable, but usually on the conservative side,
because correlation of tests cannot be exploited. Therefore,

a new approach is proposed, which controls the genome-
wide error rate, while accounting for population structure.
This approach is based on a simulation procedure that is
equally applicable in a linkage and an association-mapping
context. Using the parameter settings of three real data sets,
it is shown that the procedure provides control of the GWER
and the generalized genome-wide type I error rate (GWERk).
Heredity (2011) 106, 825–831; doi:10.1038/hdy.2010.125;
published online 20 October 2010
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Introduction

Of central importance for marker-assisted selection is the
estimation of positions and effects of quantitative trait
loci (QTL). Two of the most commonly used tools for
estimating the position of QTL are classical linkage
mapping (Lander and Botstein, 1989) and association
mapping (Bodmer, 1986; Thornsberry et al., 2001; Yu et al.,
2006; Sun et al., 2010). The difference between both
methods is that in linkage mapping, there are only a few
opportunities for recombination to occur within families
and pedigrees with known ancestry. This results in a
relatively low mapping resolution (Flint-Garcia et al.,
2003). By contrast, for association mapping, historical
recombination and natural genetic diversity of the
different populations lead to a higher mapping resolu-
tion (Ersoz et al., 2008; Zhu et al., 2008).

The resolution of association mapping depends on the
structure and degree of linkage disequilibrium across the
genome. Linkage disequilibrium caused by population
structure and familial relatedness lead to false positive
results if not controlled correctly in the statistical analysis
(Pritchard et al., 2000; Yu et al., 2006). Genetic and non-
genetic factors, like recombination, drift and selection,
affect the structure of linkage disequilibrium (Stich et al.,
2005). To overcome these problems and to reduce the
effect of the population structure, several procedures

have been proposed, including the logistic regression
ratio test (Q model) (Pritchard et al., 2000; Thornsberry
et al., 2001), linear mixed models with effects for
subpopulations (Breseghello and Sorrels, 2006) and a
unified mixed model approach (QK model) (Yu et al.,
2006). In the QK mixed model, Bayesian clustering
(Pritchard et al., 2000) is used to estimate probabilities for
subpopulation membership (matrix Q), which are used
to fit fixed effects, whereas random effects are fitted with
covariance proportional to the relative kinship matrix K
(Hardy and Vekemans, 2002). Both Q and K account for
population structure when scanning for marker trait
association (Yu et al., 2006).

One major concern in the context of both linkage and
association mapping studies is the statistical power and
the control of false positive associations (type I error
rate). A false positive association occurs when a
significant QTL is declared where none really exists. A
genome-wide type I error occurs if at least one false QTL
is declared. In both linkage and association mapping,
multiple testing needs to be accounted for to control the
genome-wide type I error rate (GWER).

Different methods were proposed for linkage mapping
to control the GWER. Traditionally, the type I error rate
has been controlled by a Bonferroni correction. This
correction is conservative and sacrifices statistical power
because it cannot exploit the correlation structure among
the multiple tests. Several alternative analytical methods
have been proposed (Davies, 1977; Lander and Botstein,
1989; Feingold et al., 1993; Rebai et al., 1994; Dupuis and
Siegmund, 1999; Piepho, 2001; Li and Ji, 2005) that
exploit the correlation structure of multiple tests on the
same chromosome.
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A further approach to control the GWER commonly
used in linkage mapping is the permutation test of
Churchill and Doerge (1994) and Doerge and Churchill
(1996). This approach depends on no distributional
assumption and is characterized by simplicity and
applicability to different experimental populations. In
this approach, the trait values are permutated relative to
the genotypic data. A disadvantage of the permutation
test procedure is the computational workload. To
compute a critical threshold for a GWER of 0.01, 10 000
permutations of the trait values are necessary, in which
for a GWER of 0.05, 1000 permutations are recommended
(Churchill and Doerge, 1994).

Although permutation testing is the standard
method in linkage mapping, it is not applicable in an
association mapping context because permutation would
destroy any correlations between trait and population
structure (Aulchencko et al., 2007). This would be
inappropriate because a valid test must control for any
such structure. Furthermore, analytical methods as
proposed for linkage mapping are not available for
association mapping.

Another error rate that has been used for linkage
mapping and association mapping is the false discovery
rate (FDR). Loosely speaking, FDR is the ratio of false
positives among detections. This approach was proposed
by Benjamini and Hochberg (1995) and for genome-wide
studies by Storey and Tibshirani (2003). The popularity
of the FDR stems from the fact that it leads to more
liberal thresholds than the GWER. Chen and Storey
(2006), however, have shown that it is difficult to
interpret the FDR when applied to genome-wide linkage
scans, because the FDR counts multiple true discoveries
as being distinct even though they are from the same
underlying gene (De Silva and Ball, 2007). As the marker
density applied for association mapping studies will
dramatically increase in the near future (Donnelly, 2008),
the FDR does not seem to be an appropriate error rate
concept for association studies. For this reason, we will
not consider it further.

Use of the GWER can lead to conservative tests, if
there are numerous QTL. Control of the GWER requires
that not a single false positive result occurs among all
tests, and it may be argued that this requirement is
too stringent in the presence of many QTL. Therefore,
Chen and Storey (2006) proposed to relax the defini-
tion of GWER by allowing a small number k40 of
false positives, the so-called generalized genome-wide
k-error rate (GWERk). The usual GWER corresponds
to k¼ 0.

In this study a new approach for controlling both
GWER and GWERk is proposed. This method, which is
based on simulation, is equally applicable in linkage and
association mapping. In the simulation procedure, S
random samples from the same multivariate normal
distribution are generated under the null hypothesis. For
each sample, the test statistic is calculated for each QTL.
The critical value, which is used as threshold for
controlling GWERk, is given by the a-quantile of the
simulated distribution of S values of the (kþ 1)th
smallest P-value. The simulation reflects both the
population structure and the correlation of tests.
The performance of the method is assessed for three
different real data sets regarding different GWERk (k¼ 0,
1, 2 and 5).

Materials and methods

Plant materials, phenotypic data and molecular markers
To assess the performance of our method, we used three
empirical data sets that were described in detail by Stich
et al. (2008) (winter wheat) and by Stich and Melchinger
(2009) (sugar beet and rapeseed).

Winter wheat: A total of 303 winter wheat genotypes
(Triticum aestivum) developed by KWS Lochow GmbH
(Bergen-Wohlde, Germany) was used for this study. The
entries were evaluated for grain yield in a series of five
breeding trials at four to six locations, with the number
of entries per trial ranging from 36 to 110. All 303 inbreds
were fingerprinted by KWS Lochow GmbH following
standard protocols with 36 simple sequence repeat
markers and one single nucleotide polymorphism
marker. The 37 marker loci were randomly distributed
across 19 of the 21 wheat chromosomes.

Sugar beet: A total of 178 sugar beet inbreds (Beta
vulgaris) of the pollen parent heterotic pool of the
KWS SAAT AG (Einbeck, Germany) were analyzed.
The test-cross progenies of these entries with an inbred
of the seed parent heterotic pool were evaluated in a
series of plant breeding trials. Data were recorded among
others for beet yield. All entries were fingerprinted
with 59 simple sequence repeat markers and 41 single
nucleotide polymorphism marker, both randomly distri-
buted across the sugar beet genome. The fingerprinting
was done by the KWS SAAT AG following standard
protocols.

Rapeseed: A total of 136 rapeseed (Brassica napus)
inbreds of the Norddeutsche Pflanzenzucht Hans-Georg
Lembke KG (Holtsee, Germany) were studied. All entries
were evaluated in a series of field trials, in which data
were collected for thousand-kernel weight. Furthermore,
all entries were fingerprinted with 59 genome-wide
distributed simple sequence repeat markers by Saaten-
Union Resistenzlabor GmbH (Hovedissen, Germany)
following standard protocols.

Statistical analyses
Phenotypic data analyses: In the study of Stich et al.
(2008) the empirical type I error rates of association
mapping approaches, which were based on adjusted
entry means calculated by a two-step analysis, were only
slightly higher than that of approaches in which the
phenotypic data analysis and the association analysis
were performed in one step (one-step analysis) (also see
Möhring and Piepho, 2009). We therefore calculated
adjusted entry means (winter wheat and rapeseed) or
entry means (sugar beet) in the first step (for more
details, see Stich et al., 2008; Stich and Melchinger, 2009)
for each entry under consideration. These estimates were
then used in a second step for the association analyses.

Population structure analyses: For each of the three
above mentioned data sets, the kinship matrix K was
calculated based on the available marker data using the
software package SPAGeDi (Hardy and Vekemans, 2002),
in which negative kinship values between entries were
set to 0. We used the first p principal components of an
allele frequency matrix (PC-matrix) instead of the Q
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matrix of STRUCTURE (Pritchard et al., 2000), as
previous studies suggested that both methods are
comparable with respect to adherence to the nominal a
level, but the former requires much less computational
effort (Yu et al., 2006; Zhao et al., 2007). The explained
variance of the first p principal components was about
25% (Stich and Melchinger, 2009).

Method for controlling GWER
To scan the genome for QTL in linkage mapping or
association mapping, we use a mixed linear model to
represent the phenotypic data. At each putative QTL
position/marker, we test the null hypothesis of no
QTL effect. Under this hypothesis, the null model for
genotype means can be written as

y ¼ X0b0 þ e ð1Þ
where y0 ¼ (y1, y2,y, yG), yi is the mean of the i-th

genotype (i¼ 1,y,G), b0 is a vector of fixed effects, X0 is
the corresponding design matrix and e is a random
residual. In association mapping, X0 might represent the
probabilities of subpopulation membership (Q matrix) or
PC-matrix of allele frequencies and, possibly, cofactors
accounting for major background QTL, whereas e
models genetic correlation due to coancestry and
identically distributed noise, that is, var(e)¼V¼ 2AsA

2

þ Is2, where A is the numerator relationship matrix.
Alternatively, A could be replaced by the kinship matrix
K (Yu et al., 2006), which was done in this study. For the
rapeseed data set, e models var(e)¼V¼ Is2, because A
was similar to I and no changes were visible in the log
likelihoods when fitting the full model including A.

To test the null hypothesis at the qth putative position
(q¼ 1, 2, y, Z), we augment the null model by

Wqaq ð2Þ
where aq is the vector of fixed genetic effects at the qth
putative position and Wq is the associated design matrix.
Notably, the dimension of aq may vary among markers,
depending on the genetic model and the number of
alleles per marker. Furthermore, we need to cater for the
possibility that marker information may be missing,
especially in association mapping, in which imputation
is not straightforward. The approach taken in this study
is to simply discard records of individuals with missing
information at the qth marker when testing the qth
marker, meaning that different subsets of the data will be
used for different markers. We therefore add a subscript
q also to the data vector y, writing yq. Thus, yq contains
all records with complete data at the qth marker.
Consequently, the design matrix Wq will have rows only
for observations in yq. The marker-specific data vector
may be formally defined as follows. Let B be a G�Z
indicator matrix of zeros and ones, with rows corres-
ponding to genotypes and columns to markers, reflecting
the missing data pattern and let Dq be computed by
diag(bq), deleting all rows that have zeros only where bq

is the qth column of B. We then have

yq ¼ Dqy:

Dq selects from y all observations that have complete
data for the qth marker. The reduced data vector yq

has variance
varðyqÞ ¼ Vqq ¼ DqVD0q:

The full model can be written compactly as

yq ¼ Xqbq þ eq; ð3Þ
where Xq¼ (DqX0,Wq) and b0q¼ (b00,a0q). The null hypo-
thesis at the qth position can be stated as

H0 : Hqbq ¼ 0; ð4Þ
where Hq is a suitable matrix of known constants. The
size and form of Hq depend on the putative position q,
for example, on the number of marker alleles. Further-
more, the null hypothesis pertains to aq only, that is,
Hq¼ (0q H̃q), where 0q is a null matrix with number of
columns corresponding to those of DqX0 and H̃q states
the null hypothesis pertaining to aq. For example, when
H0 states equality of all additive allele effects at a locus,
then H̃q¼ (In(q), �1n(q)), where n(q) equals the number of
marker alleles minus one. Thus,

H0 : Hqbq ¼ ~Hqaq ¼ 0

When V is known, the Wald statistic

Tq ¼ b̂0qH0qðHqðX 0qV�1
qq XqÞ�H0qÞ

�1Hqb̂q; ð5Þ
where b̂q¼ (X0qV�1

qqXq)�X0qVqq
�1yq, has an exact central

v2-distribution with rank(Hq) degrees of freedom. In
practice, V needs to be estimated from the data based on
the null model (1). In this case, one may use the
Kenward–Roger method to approximate the distribution
of Tq. Provided the number of genotypes G is not small,
Equation (5) will have an approximate v2-distribution.
We expect the approximation to be very accurate in most
practical cases, so long as the number of genotypes is not
very small (for example, o50).

Simulation of the joint distribution of T1, T2, y, TZ

It is convenient to re-write Tq as

Tq ¼ ĉ0qM�1
qq ĉq; ð6Þ

where ĉq ¼ Hqb̂q and

Mqq ¼ varðĉqÞ ¼ HqðX 0qV�1
qq XqÞ�H0q ð7Þ

Under the global null hypothesis the joint distribution of

ĉ0 ¼ ĉ01; ĉ
0
2; :::; ĉ

0
Z

� �
ð8Þ

is multivariate normal with zero mean and variance–
covariance matrix

var ĉð Þ ¼

M11 M12 . . . M1Z

M21 M22 � � � M2Z

..

. ..
. . .

. ..
.

MZ1 MZ2 � � � MZZ

0
BBB@

1
CCCA; ð9Þ

where Mqq0 ¼ cov(ĉq , ĉq0)¼Hq(Xq
0 V�1

qqXq)�X0qV�1
qqVqq0Vq0q0

�1

Xq0(X
0
q0Vq0q0
�1 Xq0)�H0q0 (q,q0 ¼ 1,y,Z). This result is explained

in more detail in the Appendix. Notably, when q¼ q0,
then Equation (9) simplifies to Equation (7).

For simulating ĉsim, it is convenient to compute
Equation (9), obtain a decomposition varðĉÞ ¼ PP0, where
the number of columns in P equals the rank r of varðĉÞ,
store P in memory during iterations, and at each iteration
simulate ĉ as ĉsim ¼ Pusim, where usim is a vector of
r-independent standard normal deviates. We can use the
singular value decomposition

varðĉÞ ¼ UFU0;
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where F is a diagonal matrix, first diagonal elements
of which are the r non-zero singular values of varðĉÞ,
whereas the remaining ones are zero. We can then choose

P¼ (UOF)r, where (M)r is given by the first r columns
of M.

To compute a critical threshold for the Wald tests
controlling the GWER at level a, we may generate S
random samples ĝsim from this same multivariate
normal distribution. For each sample, we compute the
corresponding test statistics Tq (q¼ 1,y,Z). As test
statistics Tq may involve hypotheses with differing
degrees of freedom for different q, we convert each
Tq to the point-wise P-value pq based on a w2 distribution
with degrees of freedom equal to rank(Hq). Conversion
to P-values allows us to use the same rejection region for
all QTL (Storey, 2002). Subsequently we determine the
minimum of pq across positions (pq(min)). The critical
value is given by the a-quantile of the simulated
distribution of S values of pmin.

The approach can be extended further using the
GWERk approach of Chen and Storey (2006), which
defines a genome-wide error to occur when more than k
point-wise tests are falsely declared significant. In this
more general case, the (kþ 1)th lowest pq across positions
is determined in each simulation run. Notably the
ordinary GWER corresponds to k¼ 0.

Simulation study
The performance of the above method is verified by
simulation. As the method for determining the threshold
is also based on simulation, there are two levels of simula-
tion: (1) an inner simulation that generates the thresholds
for a given data set, and (2) an outer simulation that
generates data to be analyzed by a mixed model.

The simulation scheme can be described as follows:
Do i¼ 1 to n (n¼number of outer loops)

(a) Generate a data set ysim from a multivariate
normal distribution with zero mean, using restricted
maximum likelihood estimates of V of a real data set.
(b) Determine threshold based on simulation with
S runs of the inner loops, using ysim and X0 and Wq

(q¼ 1, y, Z) from real data set.
(c) Evaluate significance tests for scan of ith
simulated data set ysim and determine the (kþ 1)th
ordered P-value across the positions.

End

Determine the threshold P-value for GWERk¼ a as the
a-quantile of the n(kþ 1)th ordered P-values.

To start a simulation, we analyze a real data set under
the global H0 based on model (1), obtain an estimate of V
and then compute its Cholesky decomposition according
to V¼LL0. In each run of the outer loop, we then
simulate data under the global H0 as

ysim ¼ Lv;

where v is a vector of independent standard normal
deviates. The same L is used in all iterations of the outer
loop, so L needs to be stored throughout the whole
simulation.

Results

The proposed method for controlling the GWERk (Chen
and Storey, 2006) was tested on three empirical data sets
of commercial plant-breeding programs.

The threshold computation and the analysis of the
PC-K mixed model were repeated 1000 times, meaning
there were 1000 inner simulations and 1000 outer
simulations. Notably, for a test to be declared significant,
the P-value had to remain below the threshold P-value.
At a nominal error rate of 5%, a 95% prediction interval
for the observed error rate has lower limit of 3.65% and
upper limit of 6.35% when 1000 runs converged. Thus,
an observed error rate should not exceed 64 cases or fall
below 36 cases of the 1000 simulations if tests control a
exactly. For the sugar beet data set only 978 outer
simulations converged. The 95% prediction interval
therefore has a lower limit of 3.63% and an upper limit
of 6.37%. We also computed Bonferroni-adjusted predic-
tion intervals based on the 12 cases studied (Table 1). For
1000 runs and for the 978 runs of the sugar beet data set,
the Bonferroni adjusted limits are 30 and 70, respectively.
The empirical error rates for the GWERk are given in
Table 1.

The nominal GWER could be maintained for the
winter wheat data set of KWS Lochow. For GWERk¼ 0

in 6.0% of simulations, the critical threshold was higher
than the P-values of the PC-K mixed models. The
threshold for GWERk¼ 0 was 0.00139, which is higher
than the Bonferroni-corrected threshold (0.00135). The
extension of Chen and Storey (2006) led to further
reduction of times the critical threshold was higher than
the P-values of the PC-K mixed models. The critical

Table 1 Empirical levels in counts and percent of converged cases for the GWERk (k¼ 0, 1, 2, and 5) at nominal level of 5% for the three
different data sets and the prediction interval of upper and lower limit

Data set GWERk Empirical level
(absolute count)

Empirical
level (in %)

Prediction interval (95%) for
absolute rejection frequency (in %)

Bonferroni-adjusted prediction interval (95%)
for absolute rejection frequency (in %)

Wheat 0 60 6.0 3.649–6.351 3.027–6.973
Wheat 1 49 4.9 3.649–6.351 3.027–6.973
Wheat 2 36 3.6 3.649–6.351 3.027–6.973
Wheat 5 29 2.9 3.649–6.351 3.027–6.973
Sugar 0 60 6.1 3.634–6.366 3.006–6.993
Sugar 1 53 5.4 3.634–6.366 3.006–6.993
Sugar 2 46 4.7 3.634–6.366 3.006–6.993
Sugar 5 23 2.4 3.634–6.366 3.006–6.993
Rapeseed 0 63 6.3 3.649–6.351 3.027–6.973
Rapeseed 1 50 5.0 3.649–6.351 3.027–6.973
Rapeseed 2 33 3.3 3.649–6.351 3.027–6.973
Rapeseed 5 27 2.7 3.649–6.351 3.027–6.973
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threshold was passed for GWERk¼ 1 in 4.9% of the
simulations, for GWERk¼ 2 in 3.6%, and for the
GWERk¼ 5 in 2.2% of the simulations (Table 1).

For the sugar beet data set of KWS, the nominal GWER
could be kept. In 6.1% of the simulations for GWERk¼ 0,
the threshold was higher than the P-values of the PC-K
mixed model. The threshold for GWERk¼ 0 was 0.00052
and therefore higher than the threshold corrected by
the Bonferroni method (0.00050). Furthermore, for the
modified GWERk with k¼ 1, 2 and 5 the nominal rate
of 5% could be maintained. In 5.4% of the simulations,
a type I error occurred for GWERk¼ 1, in 4.7% of the
simulations for the GWERk¼ 2 and in 2.4% of the
simulations for the GWERk¼ 5 (Table 1).

Our method could also satisfactorily control the
nominal GWER for the third data set. For the rapeseed
data set of Norddeutsche Pflanzenzucht, the threshold
for the GWERk¼ 0 was higher than the P-values of the
PC-K mixed model in 6.3% of the simulations. The
threshold for GWERk¼ 0 was 0.000937 and therefore also
higher than the Bonferroni-corrected threshold that had
the value 0.000847. For the GWERk¼ 1, the empirical error
rate was 5.0%; for GWERk¼ 2 it was 3.3%. The empirical
GWERk¼ 5 was 2.7% (Table 1).

Discussion

Error rates for controlling the multiple testing in linkage
and association mapping experiments include the FDR,
which was proposed by Benjamini and Hochberg (1995)
and Storey and Tibshirani (2003), and the GWER and its
extension GWERk, which was proposed by Chen and
Storey (2006). For linkage mapping, different approaches
were proposed, which control the GWER, like the
Bonferroni correction, the permutation procedure
(Churchill and Doerge, 1994; Doerge and Churchill,
1996) and several analytical methods for specific popula-
tion structures (Davies, 1977; Lander and Botstein, 1989;
Feingold et al., 1993; Rebai et al., 1994; Dupuis and
Siegmund, 1999; Piepho, 2001). Thus, at present there do
not seem to be tailor-made methods for controlling
GWER for association mapping experiments. This
study has proposed a simulation-based approach
for controlling the type I error rate, which includes the
information of the population structure. The approach is
akin to that proposed by Edwards and Berry (1987) in
the context of multiple mean comparisons in linear
models, and it is also similar in spirit to the method of
Zou et al. (2004) in the context of linkage mapping. The
simulation approach can also be regarded as a para-
metric bootstrap procedure (Efron and Tibshirani, 1993).
The simulations of the proposed method based on the
three commercial plant breeding data sets have shown
that the calculated thresholds provide reasonable,
slightly conservative control of the genome-wide type I
error rate.

An advantage of our proposed method over the
permutation procedure of Churchill and Doerge (1994)
is that the information of the population structure is
accounted for in our threshold computation. The
associations between trait and population structure are
not destroyed like for the permutations procedure.
Aulchenko et al., 2007 proposed an approach, in which
residuals from a mixed model fit ignoring markers, but
corrected for family effects are used for the permutations

test. The method was developed in an animal breeding
context for genetically homogeneous populations, but its
principles could be applied to the more general setting
considered here. Residuals from a mixed model fit will
typically display correlation and heteroscedasticity aris-
ing from the estimation of model effects, which may
affect the performance of the method. Our procedure
does not have these limitations, because the null
distribution is simulated rather than computed from
permutations.

Li and Ji (2005), Seaman and Müller-Myhsok (2005)
and Conneely and Boehnke (2007) suggested methods to
adjust the P-value regarding the correlation structure of
the markers. These approaches are therefore similar to
our approach; but they do not account for population
structure. Moreover, the approaches of Seaman and
Müller-Myhsok (2005) and Conneely and Boehnke
(2007) need imputation, if there are missing values in
the marker data. The occurrence of missing values can be
handled without imputation by our proposed method.

For the three data sets used in this study, the
computation time for one approximate threshold was
1 min and 23 s for the rapeseed data set up to 9 min and
20 s for the sugar beet data set (Intel Pentium Dual
central processing unit, 2.20 GHZ, 1.95 GB random access
memory). The computational time depends on the
number of markers and on the number of genotypes.
The computational time increases mainly due to the
generation of the matrix M, if there are more markers.
Furthermore, the computational time is increased by the
number of genotypes because mixed model analysis
takes longer time. The computational time could be
reduced, if necessary, by performing threshold computa-
tion separately for each chromosome and using a
Bonferroni correction across chromosomes (Piepho,
2001). Moreover, when the number of markers by far
exceeds the number of genotypes, it will be computa-
tionally more efficient to simulate data y instead of test
statistics Tq (Supplementary Information).
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Appendix

Let yq¼Dqy and yq0 ¼Dq0y. Then

var
Dq

Dq0

� �
y

� �
¼ Dq

Dq0

� �
V D0q D0q0
� �

¼ Vqq Vqq0

Vq0q Vq0q0

� �
;

where

Vqq0 ¼ covðyq; yq0 Þ ¼ DqVD0q0 :

Similarly, noting that ĉq ¼ Cqyq with
Cq¼Hq(X0qV�1

qqXq)�X0qV�1
qq, we have

ĉq

ĉq0

� �
¼ Cq 0

0 Cq0

� �
yq

yq0

� �
¼ Cq 0

0 Cq0

� �
Dq

Dq0

� �
y

and

var
ĉq

ĉq0

 !
¼

Cq 0

0 Cq0

� �
Dq

Dq0

� �
V D0q D0q0
� � C0q 0

0 C0q0

� �

¼
Mqq Mqq0

Mq0q Mq0q0

� �
;
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where Mqq0 ¼CqVqq0Cq
0 0. Inserting the expression for Cq

we find

Mqq ¼ CqVqqC0q

¼ HqðX 0qV�1
qq XqÞ�X 0qV�1

qq VqqV�1
qq XqðX 0qV�1

qq XqÞ�H0q

¼ HqðX 0qV�1
qq XqÞ�H0q

and

Mqq0 ¼ CqVqq0C
0
q0

¼ HqðX 0qV�1
qq XqÞ�X 0qV�1

qq Vqq0V
�1
q0q0Xq0

� ðX 0q0V�1
q0q0Xq0 Þ�H0q0 :
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