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ABSTRACT
Mechanisms whereby acid reflux may accelerate the progres-
sion from Barrett’s esophagus (BE) to esophageal adenocarci-
noma (EA) are not fully understood. We have previously shown
that NADPH oxidase NOX5-S generates reactive oxygen spe-
cies (ROS) when Barrett’s metaplastic cells are exposed to
acid. Besides metaplastic cells, other H2O2-producing cells
(e.g., inflammatory cells) present in BE mucosa may produce
additional ROS, which may also affect metaplastic cells con-
tributing to esophageal tumorigenesis. In this study, we investi-
gate whether exogenous H2O2 stimulates cell proliferation by
increasing NOX5-S expression. Low dose (10�13 M) of H2O2
significantly increased thymidine incorporation, NOX5-S mRNA,
and protein expression in a Barrett’s EA cell line FLO. H2O2-
induced increase in NOX5-S expression was significantly inhibited
by knockdown of nuclear factor (NF)-�B1 p50 with p50 small
interfering RNA (siRNA) in EA cell lines FLO and OE33. H2O2

significantly increased p65 phosphorylation and the luciferase
activity in FLO cells transfected with a NF-�B activation reporter
plasmid pNF-�B-Luc. H2O2-induced increase in luciferase activity
in FLO cells was significantly decreased by knockdown of extra-
cellular signal-regulated kinase 2 (ERK2) mitogen-activated pro-
tein kinase (MAPK). Overexpression of p50 and p65 remarkably
increased the luciferase activity in FLO cells transfected with a
NOX5-S reporter plasmid NOX5-LP. In addition, H2O2-induced
thymidine incorporation in FLO cells was significantly decreased
by the MAPK kinase 1/2 inhibitor 2�-amino-3�methoxyflavone
(PD98059) and ERK2 siRNA but not by ERK1 siRNA. Likewise,
H2O2-induced increase in NOX5-S expression was significantly
decreased by ERK2 siRNA in FLO and OE33 cells. We conclude
that a low dose of H2O2 increases cell proliferation. H2O2-induced
increase in cell proliferation may depend on sequential activation
of ERK2 MAPK, NF-�B1 p50, and NOX5-S.

Introduction
Esophageal adenocarcinoma has increased in incidence at

a rate exceeding that of any other cancers (Blot and
McLaughlin, 1999; Howe et al., 2001; Pohl and Welch, 2005).
The major risk factor for esophageal adenocarcinoma is gas-
troesophageal reflux disease complicated by Barrett’s esoph-
agus (BE) (Lagergren et al., 1999). Approximately 10% of
gastroesophageal reflux disease patients develop BE where
esophageal squamous epithelium damaged by acid reflux is
replaced by a metaplastic, intestinal-type epithelium. The spe-
cialized intestinal metaplasia of BE is associated with a 30- to
125-fold increased risk for the development of esophageal ade-

nocarcinoma (Haggitt, 1994; Kim et al., 1997; Wild and Hardie,
2003). However, mechanisms of the progression from metapla-
sia (BE) to adenocarcinoma are not fully understood.

Reactive oxygen species (ROS) may be an important factor
mediating this progression because 1) high levels of ROS are
present in BE (Olyaee et al., 1995; Wetscher et al., 1997) and
in esophageal adenocarcinoma (Farhadi et al., 2002; Sihvo et
al., 2003) and 2) ROS may damage DNA, RNA, lipids, and
proteins, leading to increased mutation and altered functions
of enzymes and proteins (e.g., activation of oncogene products
and/or inhibition of tumor suppressor proteins) (Farhadi et
al., 2002; Ohshima et al., 2003). Besides metaplastic cells,
other cells (e.g., inflammatory cells) in BE mucosa may also
produce ROS and affect metaplastic cells.

Lower levels of ROS, seen in nonphagocytic cells, were
thought to be byproducts of aerobic metabolism. More recently,
superoxide-generating homologs of phagocytic NADPH oxidase-
catalytic subunit gp91phox (NOX1, NOX3–NOX5, DUOX1, and
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DUOX2) and homologs of other subunits (p41phox or NOXO1,
p51phox, or NOXA1) have been found in several cell types
(Suh et al., 1999; Bánfi et al., 2000; Lambeth, 2004), suggest-
ing that ROS generated in these cells may have distinctive
cellular functions. We have shown that NOX5-S is the major
isoform of NADPH oxidase in FLO EA cells (Hong et al.,
2010b) and that the expression of NOX5-S is significantly
higher in BE with high-grade dysplasia than in BE without
dysplasia (Fu et al., 2006). The expression of NOX5-S is also
significantly higher in FLO cells than in esophageal squa-
mous epithelial cells (Hong et al., 2011). We have also shown
that acid-induced H2O2 production is mediated by the
NADPH oxidase NOX5-S (Hong et al., 2010c). Overproduc-
tion of ROS, derived from up-regulation of NOX5-S, increases
cycloxygenase-2-derived prostaglandin E2 production (Fu et
al., 2006) and down-regulates a tumor suppressor gene p16
(Hong et al., 2010c), thus increasing cell proliferation and
decreasing apoptosis. These changes may contribute to pro-
gression from BE to dysplasia and to adenocarcinoma. How-
ever, whether exogenous ROS increase cell proliferation via
up-regulation of NOX5-S in EA cells is not known. In the
present study, we find that H2O2 increases cell proliferation
by sequential activation of mitogen-activated protein kinase
(MAPK), NF-�B, and NOX5-S.

Materials and Methods
Cell Culture and H2O2 Treatment. Human Barrett’s adenocar-

cinoma cell line FLO was derived from human Barrett’s esophageal
adenocarcinoma (Hughes et al., 1997) and generously provided by
Dr. David Beer (University of Michigan, Ann Arbor, MI). These cells
were cultured in DMEM containing 10% fetal bovine serum and
antibiotics at 37°C in a 5% CO2 humidified atmosphere. Human EA
cell line OE33 was purchased from Sigma-Aldrich (St. Louis, MO)
and cultured in DMEM containing 10% fetal bovine serum and
antibiotics. The cell lines were cultured at 37°C in a 5% CO2-humid-
ified atmosphere.

For H2O2 treatment, FLO cells were incubated with different con-
centrations of H2O2 (10�5, 10�7, 10�9, 10�11, 10�13, 10�14, and 10�15M)
for 48 h. For inhibitor treatment, FLO cells were exposed to DMEM
plus H2O2 (10�13 M) in the absence or presence of MEK1 kinase inhib-
itor PD98059 (2�-amino-3�-methoxyflavone, 10�5 M) or cell-permeable
NF-�B inhibitor SN50 (AAVALLPAVLLALLAPVQRKRQKLMP, 10�5

M) for 24 h. The culture medium and cells were then collected for
measurement of H2O2 and NOX5-S mRNA level.

Small Interfering RNA and Plasmid Transfection. For small
interfering RNA (siRNA) transfection, at 40 to 50% confluence, cells
were trypsinized and diluted 1:5 with fresh medium without antibi-
otics (1–3 � 105 cells/ml) and transferred to 12-well plates (1 ml/
well). Transfection of siRNAs was carried out with Lipofectamine
2000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s
protocol. For each well, 60 pmol of siRNA duplex of NOX5, p50,
ERK2, ERK1, or control siRNAs formulated into liposomes were
applied; the final volume was 1.2 ml/well. Twenty-four hours later,
the transfectants were exposed to H2O2 (10�13 M) in fresh medium
for an additional 48 h. Finally, the culture medium and the trans-
fectants were collected for measuring NOX5-S mRNA and protein
level. Transfection efficiencies were determined by fluorescence mi-
croscopy after transfection of Block-it fluorescent oligo (Invitrogen)
and were approximately 90% at 48 h. Control siRNA is a scrambled
sequence that will not lead to the specific degradation of any known
cellular mRNA. For plasmid transfection, 0.5-�g plasmids (NOX5-LP,
pNF-�B-Luc, or pCDNA3.0) or 0.1-�g Renilla reniformis luciferase plas-
mid formulated into liposomes were applied. All other procedures were
similar to those described above.

RT-PCR. Total RNA was extracted by TRIzol reagent (Invitrogen)
according to the protocol of the manufacturer, and 1.0 �g of total
RNAs were reversely transcribed by use of the kit SUPERSCRIPT
First-Strand Synthesis System for RT-PCR (Invitrogen).

Quantitative Real-Time PCR. Gene expression and regulation
were measured using real-time PCR analysis. Random hexamers
were used for real-time PCR analysis performed in a 15-�l reac-
tion on a 96-well clear plate using Power SYBR Green RT-PCR
reagents kit (Applied Biosystems). The primers used were as
follows: NOX5-S sense (5�-AAGACTCCATCACGGGGCTGCA-3�),
NOX5-S antisense (5�-CCTTCAGCACCTTGGCCAGA-3�), 18S
sense (5�-CGGACAGGATTGACAGATTGATAGC-3�), and 18S an-
tisense (5�-TGCCAGAGTCTCGTTCGTTATCG-3�). Reactions
were carried out in an Applied Biosystems StepOnePlus real-time
PCR system for one cycle at 94°C for 5 min; 40 cycles at 94°C for
30 s, 59°C for 30 s, and 72°C for 30 s; 1 cycle at 94°C for 1 min; and
1 cycle at 55°C for 30 s. Fluorescence values of SYBR Green I dye,
representing the amount of product amplified at that point in the
reaction, were recorded in real time at both the annealing step and
the extension step of each cycle. The Ct, defined as the point at which
the fluorescence signal was statistically significant above back-
ground, was calculated for each amplicon in each experimental sam-
ple using a StepOne software. This value was then used to determine
the relative amount of amplification in each sample by interpolating
from the standard curve. The transcript level of each specific gene
was normalized to 18S amplification.

Luciferase Assay. FLO EA cells were seeded in 12-well plates for
24 h. R. reniformis luciferase (0.1 �g) and 0.5 �g of pCDNA3.0
(control) or NOX5-S luciferase reporter plasmid NOX5-LP contain-
ing the NOX5-S promoter fragment (�2501 to �1 from ATG) (Si et
al., 2007) or pNF-�B-Luc plasmid were transfected by using Lipo-
fectamine 2000 (Invitrogen). Luciferase activity was assayed 24 h
after transfection. Cell extracts were prepared by lysing the cells
with lysis buffer (Promega, Madison, WI). The lysate was centrifuged
at 13,000 rpm for 10 min to pellet the cell debris. The luciferase
activities in the cell lysates were measured by using a Packard
TopCount-NXT microplate scintillation and luminescence counter
(PerkinElmer Life and Analytical Sciences, Waltham, MA) according
to the protocol (Promega) and normalized to R. reniformis luciferase.
The number of experiments was indicated in figure legends, and
each experiment was performed in triplicate.

Western Blot Analysis. Cells was lysed in Triton X-100 lysis
buffer containing 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 50 mM
NaF, 5 mM EDTA, 1% (v/v) Triton X-100, 40 mM �-glycerol phos-
phate, 40 mM p-nitrophenylphosphate, 200 �M sodium orthovana-
date, 100 �M phenylmethylsulfonyl fluoride, 1 �g/ml leupeptin, 1
�g/ml pepstatin A, and 1 �g/ml aprotinin. The suspension was cen-
trifuged at 15,000g for 5 min, and the protein concentration in the
supernatant was determined. Western blot was done as described
previously (Cao et al., 2003; Fu et al., 2006). In brief, after these
supernatants were subjected to SDS-polyacrylamide gel electropho-
resis, the separated proteins were electrophoretically transferred to
a nitrocellulose membrane at 30 V overnight. The nitrocellulose
membranes were blocked in 5% nonfat dry milk and then incubated
with appropriate primary antibodies followed by a 60-min incubation
in horseradish peroxidase-conjugated secondary antibody (Santa
Cruz Biotechnologies, Santa Cruz, CA). Detection was achieved with
an enhanced chemiluminescence agent (GE Healthcare, Chalfont St.
Giles, Buckinghamshire, UK).

Primary antibodies used were human glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) antibody (1:1000), NOX5-S antibody (1:
1000), p-ERK1/2 antibody (1:1000), ERK2 antibody (1:1000), p-p65
antibody (1:1000), and p65 antibody (1:1000). NOX5 antibody
against a unique NOX5 peptide (NH2-CLQTRTQPGRPDWSKV-
COOH) was prepared by Sigma-Genosys (The Woodlands, TX) and
used at a dilution of 1:1000.

Protein Measurement. The amount of protein was determined
by colorimetric analysis using the protein assay kit from Bio-Rad
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Laboratories (Hercules, CA) according to the Bradford method
(Bradford, 1976).

[3H]Thymidine Incorporation. For PD98059 treatment, cells
were preincubated with PD98059 10�5 M for 1 h and then treated
without (control) or with H2O2 (10�13 M) in the absence (control) or
presence of PD98059 for 48 h. For siRNA transfection 24 h after
siRNAs of NOX5, p50, ERK2, ERK1, or control was introduced, cells
were treated without or with H2O2 (10�13 M) for 48 h, and then
incubated with methyl-[3H]thymidine (0.05 �Ci/ml) for 4 h. After
being washed three times with phosphate-buffered saline to remove
unincorporated radioactivity, cells were collected and homogenized
with a lysis buffer containing 50 mM HEPES, 50 mM NaCl, 1% Triton
X-100, 1% Nonidet P-40, 0.1 mM phenylmethylsulfonyl fluoride, and 1
mM dithiothreitol, pH 7.4. [methyl-3H]Thymidine uptake was mea-
sured in a TopCount-NXT microplate scintillation and luminescence
counter (Packard Bioscience Company). The level of protein in the
homogenates was also determined, and the level of [methyl-3H]thymi-
dine incorporation was normalized to protein content.

Amplex Red Hydrogen Peroxide Fluorescent Assay. Levels
of H2O2 in culture medium were determined by the Amplex Red
H2O2 assay kit (Invitrogen), according to the manufacturer’s instruc-

tion. This assay uses the Amplex Red reagent (10-acetyl-3,7-dihy-
droxyphenoxazine) to detect H2O2. In the presence of peroxidase, the
Amplex Red reagent reacts with H2O2 in a 1:1 stoichiometry to
produce the red-fluorescent oxidation product resorufin. Fluores-
cence is then measured with a fluorescence microplate reader with
an excitation at 540 nm and emission detection at 590 nm.

Materials. Human NOX5 siRNA was purchased from Applied
Biosystems (Foster City, CA). PD98059 and SN50 were bought from
Calbiochem (San Diego, CA); ERK2 antibody, GAPDH antibody, control
siRNA, ERK2 siRNA, ERK1 siRNA, and p50 siRNA were from Santa
Cruz Biotechnology; and phosphorylated MAPK antibody, phosphory-
lated p65 antibody, and p65 antibody were from Cell Signaling Tech-
nology (Danvers, MA). pNF-�B-Luc vector was purchased from
Clontech Laboratories, Inc. (Mountain View, CA). P50 plasmid
(Ballard et al., 1992) was from Addgene (Cambridge, MA). Triton
X-100, phenylmethylsulfonyl fluoride, DMEM, antibiotics, and
other reagents were purchased from Sigma-Aldrich.

Statistical Analysis. Data were expressed as means � S.E. Sta-
tistical differences between two groups were determined by Stu-
dent’s t test. Differences among multiple groups were tested by
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Fig. 1. H2O2 up-regulates NOX5-S expression in FLO cells. A, FLO cells were incubated with different concentrations of H2O2 (10�5, 10�7, 10�9, 10�11,
10�13, 10�14, 10�15 M) for 48 h and then incubated with methyl-[3H]thymidine (0.05 �Ci/ml) for 4 h. H2O2 (10�13 M) significantly increased thymidine
incorporation, whereas higher doses (10�5 and 10�7 M) slightly decreased thymidine incorporation. B, FLO cells were treated with H2O2 (10�13 M,
48 h) 24 h after NOX5 siRNA and control siRNA were introduced into FLO cells by Lipofectamine 2000. Knockdown of NOX5-S significantly decreased
thymidine incorporation at basal condition and in response to H2O2 treatment. C, FLO cells were treated with 10�13 M H2O2 for 48 h, and then NOX5-S
mRNA levels were measured by real-time PCR. H2O2 (10�13 M) significantly increased NOX5-S mRNA levels. D and E, a typical image of three
Western blot analyses (D) and summarized data (E) show that 10�13 M H2O2 significantly increased NOX5-S protein level. FLO cells were treated with
10�13 M H2O2 for 48 h. F, FLO cells were treated with 10�13 M H2O2 for 48 h, washed, and cultured for an additional 24 h. H2O2 levels in culture
medium were measured by using an Amplex Red H2O2 assay kit. A 48-h H2O2 treatment significantly increased H2O2 production (n � 3). t test, �, P 	
0.05, #, P 	 0.01; ANOVA, ��, P 	 0.01, compared with control or control siRNA group; ANOVA, ##, P 	 0.01, compared with control siRNA plus H2O2
group.
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ANOVA and checked for significance by Fisher’s protected least
significant difference test.

Results
H2O2 Up-regulates NOX5-S Expression. To investigate

whether H2O2 affects cell proliferation, we obtained a H2O2

dose-response curve. Figure 1A shows that 10�13 M H2O2

significantly increased thymidine incorporation by 39.3 � 6.6%
in FLO cells, whereas higher doses (10�5 and 10�7 M) slightly
decreased thymidine incorporation. The data suggest that low
dose of H2O2 may increase cell proliferation in FLO cells.

We have shown that NOX5-S mediates acid-induced in-
crease in cell proliferation. Therefore, we studied whether
NOX5-S mediates exogenous H2O2-induced increase in cell
proliferation. We found that knockdown of NOX5-S with
NOX5 siRNA, which has been shown by us to effectively
knock down NOX5-S (Fu et al., 2006), significantly decreased
thymidine incorporation at basal condition as well as in re-
sponse to H2O2 treatment in FLO cells (Fig. 1B), suggesting

that NOX5-S may mediate H2O2-induced increase in cell
proliferation.

Next, we examined whether H2O2 up-regulates NOX5-S.
NOX5-S mRNA was measured by real-time PCR. H2O2

(10�13 M; 48-h treatment) significantly increased NOX5-S
mRNA level by 34.9 � 7.8% (ANOVA, P 	 0.05; Fig. 1C) and
protein level by 42.5 � 11.6% (ANOVA, P 	 0.05; Fig. 1, D–E)
in FLO cells. Likewise, H2O2 significantly increased the
NOX5-S mRNA level by 93.9 � 13.5% in an EA cell line OE33
(ANOVA, P 	 0.01; Fig. 2D). To examine whether up-regu-
lation of NOX5-S enhances H2O2 production, FLO cells were
incubated with 10�13 M H2O2 for 48 h, washed, and then
cultured in regular culture medium for additional 24 h. Cul-
ture medium was collected for measurement. Forty-eight-
hour treatment of H2O2 significantly increased H2O2 produc-
tion by 27.6 � 4.9% (t test, P 	 0.01; Fig. 1F).

Role of NF-�B in H2O2 Induced NOX5-S Expression.
To examine the role of NF-�B in H2O2-induced NOX5-S ex-
pression, we used p50 siRNA, which has been shown by us to
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effectively knock down p50 (Hong et al., 2010a). Figure 2, A,
B, and C, shows that knockdown of p50 significantly de-
creased NOX5-S mRNA levels from 140.7 � 6.8 to 116.6 �
7.2% (ANOVA, P 	 0.05) and NOX5-S protein expression
from 158.0 � 2.2 to 85.0 � 5.8% (ANOVA, P 	 0.05) in
response to H2O2 treatment in FLO cells. Likewise, the
knockdown of p50 significantly decreased NOX5-S mRNA
levels from 193.9 � 13.5 to 116.6 � 6.4% in OE33 cells
(ANOVA, P 	 0.01; Fig. 2D). In addition, knockdown of p50
significantly decreased H2O2-induced thymidine incorpora-
tion from 164.9 � 8.42 to 112.3 � 9.2% (ANOVA, P 	 0.05;
Fig. 2E).

The data suggest that NF-�B1 p50 may be involved in
H2O2-induced NOX5-S expression. To further confirm this
result, we transfected FLO cells with a NF-�B reporter plas-
mid pNF-�B-Luc. H2O2 (10�13 M) significantly increased the
luciferase activity by 36.0 � 10.0% (t test, P 	 0.05; Fig. 3A).
In addition, 10�13 M H2O2 (48-h treatment) significantly
increased p65 phosphorylation by 59.4 � 19.6% (ANOVA,
P 	 0.05; Fig. 3, D and E). These data suggest that H2O2 may
activate NF-�B.

To examine whether NF-�B activates NOX5-S promoter,
we transfected FLO cells with a NOX5-S reporter plasmid,
NOX5LP. Transfection with p65 or p50 expression plasmid

significantly increased luciferase activity to 124.1 � 3.6%
(Fig. 3B) and to 140.2 � 8.3% (Fig. 3C), respectively, suggest-
ing that NF-�B may activate NOX5-S promoter.

Role of MAPK in H2O2-Induced NOX5-S Expression.
To examine the role of MAPK in H2O2-induced NOX5-S ex-
pression, we used the MAPK kinase 1 (MEK1) inhibitor
PD98059. Figure 4, A–C, shows that PD98059 significantly
decreased H2O2-induced NOX5 protein levels from 298.2 �
33.4 to 122.2 � 35.83% (ANOVA, P 	 0.05; Fig. 4, A and B)
and NOX5 mRNA levels from 186.5 � 26.8 to 28.3 � 12.2%
control (ANOVA, P 	 0.05; Fig. 4C). In addition, PD98059
significantly reduced thymidine incorporation from 163 � 9.9
to 94.7 � 2.1% control (ANOVA, P 	 0.01; Fig. 4D).

To determine which MAPKs mediate H2O2-induced
NOX5-S expression, we used ERK1 and ERK2 siRNAs that
have been shown by us to effectively knock down ERK1 and
ERK2 (Hong et al., 2010a), respectively. Figure 5, A–C,
shows that knockdown of ERK2 with ERK2 siRNA signifi-
cantly decreased NOX5 protein expression from 160.1 � 19.4
to 122.9 � 5.2% control (ANOVA, P 	 0.01; Fig. 5, A and B)
and NOX5 mRNA levels from 153.9 � 12 to 116.2 � 3.5%
control (ANOVA P 	 0.01; Fig. 5C) in FLO cells. Likewise, in
OE33 cells knockdown of ERK2 significantly reduced NOX5
mRNA levels from 169.4 � 5.7 to 114.3 � 4.6% control
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(ANOVA P 	 0.01; Fig. 5D). In addition, the knockdown of
ERK2 significantly reduced thymidine incorporation from
149.3 � 12.4 to 99.8 � 14.9% control in FLO cells (ANOVA,
P 	 0.01; Fig. 5E). In contrast, the knockdown of ERK1 with
ERK1 siRNA had no significant effect on NOX5 mRNA levels
(Fig. 6A) and thymidine incorporation (Fig. 6B) in FLO cells.
The data suggest that ERK2 MAPK may be involved in
H2O2-induced NOX5-S expression. To investigate whether
H2O2 activates ERK2 MAPK, we studied ERK2 MAPK phos-
phorylation. Figure 7, A and B, shows that H2O2 significantly
increased ERK2 MAPK phosphorylation, suggesting that
H2O2 may activate ERK2 MAPK. PD98059 significantly de-
creased ERK2 phosphorylation, suggesting that PD98059 ef-
fectively blocks MAPK pathway. However, NF-�B inhibitor
SN50 had no significant effect on ERK2 phosphorylation. The
knockdown of ERK2 with ERK2 siRNA significantly reduced
H2O2-induced increase in luciferase activity in FLO cells
transfected with pNF-�B-Luc (Fig. 7C), suggesting that
ERK2 MAPK may mediate H2O2-induced activation of
NF-�B.

Discussion
Gastroesophageal reflux disease complicated by BE is a

major risk factor for EA (Lagergren et al., 1999). Mechanisms
whereby acid reflux may accelerate the progression from BE
to EA are not fully understood. ROS have been reported to be
increased both in BE (Olyaee et al., 1995; Wetscher et al.,
1997) and esophageal adenocarcinoma (Farhadi et al., 2002;
Sihvo et al., 2003). We have previously shown that Barrett’s
metaplastic cells may be a source of ROS and that NADPH
oxidase NOX5-S is responsible for acid-induced H2O2 produc-
tion in Barrett’s and EA cells (Hong et al., 2010c). Besides
metaplastic cells, other cells in BE mucosa (e.g., inflam-

matory cells) may also produce ROS, which may affect
metaplastic cells and thereby contribute to esophageal tu-
morigenesis.

We have shown that H2O2 increases cell proliferation in
Barrett’s cell line BAR-T and EA cell line OE33 (Hong et al.,
2010c). Consistent with our previous findings, we found that
a low dose (10�13 M) of H2O2 significantly increased thymi-
dine incorporation, whereas higher doses (10�5 and 10�7 M)
slightly decreased thymidine incorporation in FLO cells. The
data suggest that low dose of H2O2 may increase cell prolif-
eration in FLO cells. However, mechanisms whereby ROS
increase cell proliferation are not fully understood.

In this study, we investigated whether exogenous H2O2

affects cell proliferation in a Barrett’s EA cell line FLO by
stimulating NOX5-S expression. We found that NOX5-S may
mediate H2O2-induced increase in cell proliferation because
10�13 M H2O2 significantly increased NOX5-S mRNA level in
FLO and OE33 cells as well as protein level and H2O2 pro-
duction in FLO cells, whereas knockdown of NOX5-S blocked
H2O2-induced increase in thymidine incorporation in FLO
cells.

ROS have been reported to activate NF-�B (Flohé et al.,
1997). We have also shown that NOX5-S-derived ROS acti-
vates NF-�B in BE cell line BAR-T (Si et al., 2007). NF-�B, a
transcription factor, is known to function as tumor promoter
(Pikarsky et al., 2004; Karin, 2006) and plays a key role in
the development of colitis-associated cancer (Greten et al.,
2004) and cholestatic hepatitis-associated hepatocellular car-
cinoma (Pikarsky et al., 2004). NF-�B is thought to be a
member of a family of Rel domain-containing proteins, in-
cluding Rel A (also called p65), Rel B, c-Rel, NF-�B1 (p105/
p50), and NF-�B2 (p100/p52). p105 and p100 are larger pre-
cursor proteins containing I�B (an inhibitor of �B)-like
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ankyrin repeat sequences in their carboxyl termini. Because
of their I�B-like ankyrin repeat sequences, these precursors
are retained in the cytoplasm and require proteolytic process-
ing to generate their mature DNA-binding proteins p50 and
p52, respectively (Karin et al., 2002). In the cytoplasm,
NF-�B is in an inactive state, and three pathways regulate
its activity. In the first pathway, a heterotrimer composed of
p50, p65, and I�B is degraded in a ubiquitin-dependent re-
action, leading to the translocation of the p65-p50 dimers to
the nucleus (Karin et al., 2002). In the second pathway, the
dimers consisting of p100 and Rel B undergo proteolytic
removal of the I�B-like C-terminal domain of p100, allowing
Rel B-p52 dimers to translocate to nucleus. In the third
pathway, p50 (or p52), homodimers enter the nucleus where
NF-�B activates gene transcription (Karin et al., 2002; De
Bosscher et al., 2006). p50 plays an important role in lym-
phoid organogenesis and inflammation, whereas p52 is
mainly involved in lymphoid organogenesis (Shih et al.,
2011). Therefore, we focused on the role of p50 in NOX5-S
expression.

We found that knockdown of p50 with p50 siRNA signif-
icantly decreased cell proliferation in FLO cells and inhib-
ited H2O2-induced increase in NOX5-S expression in OE33
and FLO cells, suggesting that NF-�B1 p50 may be in-
volved in H2O2-induced NOX5-S expression in FLO and
OE33 cells. This result is further supported by the follow-
ing findings: 1) H2O2 significantly increased p65 phosphor-
ylation and the luciferase activity in FLO cells transfected
with a reporter plasmid pNF-�B-Luc, suggesting that
H2O2 may activate NF-�B; 2) transfection with p50 or p65
expression plasmid significantly increased a NOX5-S re-
porter plasmid NOX5-LP, suggesting that NF-�B may ac-
tivate NOX5-S promoter.

ROS have been shown to activate MAPKs (Kumar et al.,

2008). ERK1 and ERK2 are isoforms of the “classic”
MAPK. Both ERK1 and ERK2 are activated by MAPK
kinase (MEK) 1/2. MEK1/2 phosphorylates threonine and
tyrosine residues in the Thr–Glu–Tyr (TEY) sequence of
ERK1/2, resulting in the activation of ERK1/2. The ERK1/2
MAPK pathway is involved in various cellular functions, includ-
ing cell proliferation, differentiation, and migration (Nishimoto
and Nishida, 2006). This pathway is constitutively active in
human tumors (Gioeli et al., 1999; Hoshino et al., 1999;
Tanaka et al., 2003) and is known to be involved in acid-
induced increase in cell proliferation in EA cells (Souza et al.,
2002, 2004). It is also known to be involved in acid-induced
increase in cell proliferation and in MAPK phosphorylation
in SEG1 cells (Souza et al., 2002, 2004), suggesting that
ERK1/2 MAPKs are activated by acid treatment. However,
whether MAPKs contribute to H2O2-induced expression of
NOX5-S by up-regulation of NF-�B and increase in cell pro-
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liferation is not known. We found that MEK1 kinase inhibi-
tor PD98059 and knockdown of ERK2 significantly decreased
H2O2-induced increase in NOX5-S protein and mRNA levels
and in thymidine incorporation in EA cells, whereas knock-
down of ERK1 had no effect. In addition, H2O2 significantly
increased ERK2 MAPK phosphorylation, suggesting that
H2O2 may activate ERK2 MAPK. These data suggest that
ERK2 MAPK, but not ERK1, may be involved in H2O2-
induced NOX5-S expression.

We examined the relationship next between ERK2
MAPK and NF-�B. We found that ERK2 MAPK activates
NF-�B because 1) knockdown of ERK2 significantly re-
duced H2O2-induced increase in luciferase activity in FLO
cells transfected with pNF-�B-Luc and 2) NF-�B inhibitor
SN50 had no significant effect on ERK2 phosphorylation.
This result is consistent with the findings in a Citrobacter
rodentium-induced transmissible murine colonic hyperpla-
sia model (Chandrakesan et al., 2010).

Mechanisms of NOX5-S-mediated increase in cell prolifer-
ation are not fully understood. We have shown two possible
mechanisms: 1) NOX5-S-derived ROS activate cyclooxygen-
ase 2, increase prostaglandin E2 production, and thereby
enhance cell proliferation (Si et al., 2007) and 2) NOX5-S-
derived ROS also cause p16 promoter hypermethylation,
down-regulate p16 expression, and thus, stimulate cell pro-
liferation (Hong et al., 2010c).

In conclusion, low doses of H2O2 increase cell prolifera-
tion. H2O2-induced increase in cell proliferation may de-
pend on sequential activation of ERK2 MAPK and NF-�B
and thus up-regulate NOX5-S expression (Fig. 8). It is
possible that in Barrett’s esophagus ROS produced by Bar-
rett’s cells, inflammatory cells, and other parenchymal
cells may activate ERK2 MAPK and NF-�B and cause
up-regulation of NOX5-S, which further enhances produc-
tion of ROS (a positive feedback) and increases cell prolif-
eration and DNA damage, thereby contributing to the
esophageal tumorigenesis.
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canonical and non-canonical signaling. Cell Res 21:86–102.

Si J, Fu X, Behar J, Wands J, Beer DG, Souza RF, Spechler SJ, Lambeth D, and Cao
W (2007) NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 ex-
pression via activation of NF-kappaB in Barrett’s esophageal adenocarcinoma
cells. J Biol Chem 282:16244–16255.

Sihvo EI, Ruohtula T, Auvinen MI, Koivistoinen A, Harjula AL, and Salo JA
(2003) Simultaneous progression of oxidative stress and angiogenesis in ma-
lignant transformation of Barrett esophagus. J Thorac Cardiovasc Surg 126:
1952–1957.

Souza RF, Shewmake K, Pearson S, Sarosi GA Jr, Feagins LA, Ramirez RD, Terada
LS, and Spechler SJ (2004) Acid increases proliferation via ERK and p38 MAPK-
mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells. Am J
Physiol Gastrointest Liver Physiol 287:G743–G748.

Souza RF, Shewmake K, Terada LS, and Spechler SJ (2002) Acid exposure activates
the mitogen-activated protein kinase pathways in Barrett’s esophagus. Gastroen-
terology 122:299–307.

226 Zhou et al.



Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK,
and Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase
Mox1. Nature 401:79–82.

Tanaka S, Chu S, Hirokawa M, Montrose MH, and Kaunitz JD (2003) Direct
measurement of acid permeation into rat oesophagus. Gut 52:775–783.

Wetscher GJ, Hinder RA, Klingler P, Gadenstatter M, Perdikis G, and Hinder PR
(1997) Reflux esophagitis in humans is a free radical event. Dis Esophagus 10:
29–32; discussion 33.

Wild CP and Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma:
burning questions. Nat Rev Cancer 3:676–684.

Address correspondence to: Dr. Weibiao Cao, Department of Pathology and
Medicine, The Warren Alpert Medical School of Brown University and Rhode
Island Hospital, 55 Claverick St, Room 337, Providence, RI 02903. E-mail:
wcao@hotmail.com

H2O2 and NOX5-S 227


