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Abstract
We consider stochastic matrix models for population driven by random environments which form
a Markov chain. The top Lyapunov exponent a, which describes the long-term growth rate,
depends smoothly on the demographic parameters (represented as matrix entries) and on the
parameters that define the stochastic matrix of the driving Markov chain. The derivatives of a —
the “stochastic elasticities” — with respect to changes in the demographic parameters were
derived by Tuljapurkar (1990). These results are here extended to a formula for the derivatives
with respect to changes in the Markov chain driving the environments. We supplement these
formulas with rigorous bounds on computational estimation errors, and with rigorous derivations
of both the new and the old formulas.

1 Introduction
Stochastic matrix models for structured populations are widely used in evolutionary biology,
demographic forecasting, ecology, and population viability analysis (e.g., Tuljapurkar
(1990); Lee and Tuljapurkar (1994); Morris and Doak (2002); Caswell (2001); Lande et al.
(2003)). In these models, a discrete-time stochastic process drives changes in environmental
conditions that determine the population's stage-transition rates (survival, fertility, growth,
regression and so on). Population dynamics are described by a product of randomly chosen
population projection matrices. In most biological situations the population's stage structure
converges to a time-varying but stable structure Cohen (1977), and in the long run the
population grows at a stochastic growth rate a that is not random and is the leading
Lyapunov exponent of the random product of population projection matrices Furstenberg
and Kesten (1960a); Cohen (1977); Lange (1979); Lange and Holmes (1981); Tuljapurkar
and Orzack (1980). This growth rate a is of considerable biological interest, as a fitness
measure for a stage-structured phenotype Tuljapurkar (1982), as a determinant of population
viability and persistence Tuljapurkar and Orzack (1980); Morris and Doak (2002); Lande et
al. (2003), and in a variety of invasion problems in evolution and epidemiology Metz et al.
(1992).
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The map between environments and projection matrices describes how pheno-type change
depends on the environment — the phenotypic norm of response — and we are often
interested in how populations respond to changes in, say, the mean or variance of the
projection matrix elements. Such questions are answered by computing the derivatives of a
with respect to changes in the projection matrices, using a formula derived by Tuljapurkar
(1990). Tuljapurkar et al. (2003) called these derivatives stochastic elasticities, to contrast
with the elasticity of the dominant eigenvalue of a fixed projection matrix to the elements of
that matrix (Caswell, 2001). Stochastic elasticity has been used to examine evolutionary
questions (Haridas and Tuljapurkar, 2005) and the effects of climate change (Morris et al.,
2008). At the same time, a is also a function of the stochastic process that drives
environments. Many processes, such as climate change (Boyce et al., 2006), will result in
changes in the frequencies of, or the probabilities of transition between, environmental
states. How is a affected by a change in the pattern and distribution of environments, rather
than by a change in the population projection matrices? To answer this question, we
consider a model in which the environment makes transitions among several discrete states,
according to a Markov chain. Then what we want is the derivative of a with respect to
changes in the transition probabilities of this Markov chain. This derivative exists (at least
away from the boundaries of the space of stochastic matrices), and in fact we know from
Peres (1992) that a is an analytic function of the parameters of both the projection matrices
and the parameters defining the stochastic matrix, in an open neighborhood of the set of
stochastic matrices. In deterministic models (Caswell, 2001), the growth rate is represented
as λ = er; then sensitivities are derivatives of the form (∂λ/∂x) with respect to a parameter x
whereas elasticities are proportional derivatives of the form (∂r/∂ log x). In stochastic
models we compute derivatives of a, and these can be used to compute elasticities (as in
Tuljapurkar et al. (2003)) or sensitivities.

Our first contribution here is a new formula for computing the derivative of a with respect to
changes in the transition probabilities of the environmental Markov chain, given in abstract
form as equation (40). To obtain this result we show how an initial environmental state
affects future growth, using coupling and importance sampling; this analysis may be of
independent interest. Even with a formula in hand we must compute derivatives of a by
numerical simulation which is subject to both sampling (Monte Carlo) error and bias. Our
second contribution here is to show how one can bound these estimation errors. Our third
contribution is a rigorous proof of the heuristically derived formula given by Tuljapurkar
(1990) for the derivatives of a to the elements of the population projection matrices.

In Section 2 of this paper we set out the model and assumptions, the approach to finding
derivatives, along with necessary facts about the convergence of population structures and
distributions. In Section 3 we discuss systematic and sampling errors and show how we can
bound them. We illustrate this approach in Section 4 by presenting bounds (in Theorem 1)
for simulation estimates of the stochastic growth rate a and (in Theorem 2) for the
derivatives of a with respect to projection matrix elements. In Section 5 we define a measure
of the effect of an initial environmental state on subsequent population growth and show
how to estimate this measure using coupling arguments. Section 6 presents (in Theorem 4)
the formula, algorithm, and error bounds for the derivative of a with respect to the elements
of the Markov chain that drives environments. We end by discussing how these theorems
can be applied and some related issues concerning parameter estimation in such models.
Proofs are in the Appendix.

2 The Model
We consider a population whose individuals exist in K different stages (these may be, for
example, ages, developmental stages or size classes). Newborns are in stage i = 1. The
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progression between stages occurs at discrete time intervals at rates that depend on the
environment in each time interval. The environment et in period t is in one of M possible
states; we denote the set of possible environments by  = {1, …, M}. Individuals in stage i
at time t move to stage j at a rate Xet+1(j, i). These rates are elements of a nonnegative
population projection matrix, and at time t when the environment is et this matrix is denoted
by Xet; there are M such matrices, one for each environmental state. We assume that
allocation of individuals to classes and the identification of environment states are certain.
We also assume that the total number of individuals in the population is large enough that
we can ignore sampling variation. Successive environments are chosen according to a

Markov process with transition matrix P whose elements are  and whose stationary

distribution is ν = {ν(e)}. We follow the standard convention for Markov chains, that 
represents the probability of a transition from state e to state ; note that this is the reverse of
the convention used in matrix population models.

To guarantee demographic weak ergodicity (Cohen 1977) we assume that

(i) There exists some R > 0 such that any product Xe1 … XeR has all entries
positive. This implies, in particular, that each population projection matrix is
row-allowable and column-allowable. That is, every row and every column has
at least one positive entry.

(ii) The chain is ergodic (so transitive and aperiodic), and environments are in the
stationary distribution of P, which will also be denoted by ν(e).

The population in year t is represented by a vector .
The superscript T will always mean transpose; here it indicates that population vectors are
column vectors. (There may be population classes early on that have 0 members; condition
(ii) above forces all classes eventually to have positive membership, and so we assume
without loss of generality that we start with all population classes occupied.) The population
structure changes according to Nt+1 = Xet+1Nt, and

(1)

The normalized population structure Nt/(Σi Nt(i)) does not converge to a fixed limit (as it
would if the environment were constant) but it does converge in distribution.

At each stage i, we define

(2)

A fundamental result in this area of research is the Furstenberg-Kesten Theorem Furstenberg
and Kesten (1960b), which tells us that the long-run growth rate exists and is not random.
This a is called the “stochastic growth rate”. The proof of this fact is fairly straightforward,
within the framework of modern Markov chain theory. We present a version in section 3.1
and a proof in the appendix, both for the reader's convenience and because it illustrates some
of the important basic ideas that we draw on throughout this work.

The main result of this paper is formula (40), which represents the derivative of a with
respect to an incremental change in the probability of transitioning from e to . If we denote
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this derivative by , then the change corresponding to shifting P in the direction of a
matrix W is a linear functional

We note that, while the existence of such a derivative follows from the general theory of
Peres (1992), the computable formula is new.

Counting the K2 parameters in each matrix, there are at most (MK2 + M2) parameters. While
all parameters must be nonnegative, and all elements of the population projection matrices

but the birth rates must be ≤ 1, the only universal constraint is . (There may,
however, be further constraints imposed, as some transitions may be impossible. If we are
considering age-structured populations, the matrices are Leslie matrices, each with only 2K
− 1 potentially nonzero parameters.) The sensitivities we examine are derivatives of a with
respect to these parameters. We will define a one-dimensional family of population matrices
or environment transition matrices, and we refer to change “in the direction of” the
derivative of this family. This will be made precise in the analyses that follow.

3 Technical background
3.1 Contraction

We denote the K-dimensional column vector with 1's in all places by 1. By default we use

the L1 norm ∥x∥ := Σ |xi| when x is a vector in , and write  when X is a
K × K matrix. Note that ∥X∥ = ∥X1∥ when X is a nonnegative matrix. Our assumptions imply
that there are positive constants  and , such that for any environments e1, …, em,

(3)

We use the Hilbert projective metric ρ, described in Golubitsky et al. (1975) and in section
3.1 of Seneta (1981), defined by

(4)

This is a pseudometric on  that is a metric on  and Σx(i)
= 1}. The distance between two vectors is defined by the ray from the origin; that is, ρ(x, y)
= ρ(x/∥x∥, y/∥y∥). It is straightforward to show — cf. Bushell (1973) — that

for any x, y ∈ . (The upper bound is shown by Bushell with respect to the Euclidean norm,
but the same argument holds for any Lp norm.) Thus, convergence in the projective metric
implies that the projections onto  converge in the standard norms. It is also straightforward
to show that
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(5)

The Birkhoff contraction coefficient (cf. Seneta (1981)) is defined for nonnegative matrices
X as

(6)

It is clear that τB is sub-multiplicative (that is, τB(XY) ≤ τB(X)τB(Y)). We also have the
formula (Theorem 3.12 of Seneta (1981))

(7)

(This depends on the assumption that X is row-allowable. We will be applying this result
only to cases in which X is positive, so our bound on τB will be strictly less than 1.)

An immediate consequence is Lemma 3.1.

Lemma 3.1. For any fixed R, set . Then for any
,

(8)

where k1 := r1/R−1. In particular, if R is chosen so that every product XeR … Xe1 is positive,
then r < 1.

We also know that for any u, , and  any positive row vector,

Since the left-hand side is ≤ 0 and the right-hand side ≥ 0, so

(9)

Following Lemma 1 of Lange (1979), we define a compact subset  which is stable
under the transformations u → Xeu/∥Xeu∥ for any  and includes the vector 1/K, as well
as all vectors of the form XeR … Xe1 y/∥XeR … Xe1 y∥ where ; and a compact subset

 which is stable under the transformations vT → vT Xe/∥vT Xe∥, and includes the vector
1T/K as well as all vectors of the form yT XeR … Xe1/∥yT XeR … Xe1∥ where . Note that
we could take  to be any  defined to be the union of all products Xe1 … Xen . These
are a decreasing sequence of compact sets, with . whose limit  is in general
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a fractal set, which is the support of the stationary distribution π. For practicality we are
likely to work with a  which is a finite-stage approximation to .

Since  is a compact subset of , its diameter  is finite. Combining this
with Lemma 3.1, there is a constant k2 = k1Δ such that

(10)

(Cf. Theorem 2 of Lange and Holmes (1981).) Of course, the constants may be chosen so

that the same relation holds for the transposed matrices, with . We use then the
definition

(11)

We also define

(12)

Since for any positive vectors u, u′, u″ we have ρ(u+u′, u″) ≤ max {ρ(u, u″), ρ(u′, u″)}, the
maximum of ρ(u, u′) among vectors in a cone is taken between extreme points of the cone,

we can compute Δ as the maximum of all distances of the form ;

and distances of the form .

It follows (as in Lemma 2 of Lange and Holmes (1981)) that for any u,  and
environments e, e1, …, em,

(13)

The same relation holds when the matrices X are replaced by their transposes, with uT,

.

Since ∥X∥ = ∥X1∥, and 1/K is in , it immediately follows that if  are any other
environments,

(14)
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We note that the results in Lange and Holmes (1981) depend only on the set of matrices X
being compact, not on it being finite. In section 5 and beyond we will be letting the matrices
Xe and/or the transition matrix P depend smoothly on a parameter x, which will take values
either in [−x0, x0] or [0, x0]. We may then choose the sets  and  and constants k1, k2, r
such that the properties above — in particular, the stability of  and  and the bounds (10)
and (13) — hold simultaneously for all values of the parameter.

One slightly more complicated bound is proved in the appendix.

Lemma 3.2 Given v, , u, , and constants ku,  with  and

 we have

(15)

This condition is satisfied if

and

3.2 Time reversal and the stationary distribution
The transition matrix for the time-reversal of P will be denoted , and is given by

A standard result (for example, see Theorem 6.5.1 of Grimmett and Stirzaker (2001)) tells us
that if e1, e2, …, em form a stationary Markov chain with transition matrix P, for a fixed m,
the reversed sequence em, em−1, …, e1 is a Markov chain with transition matrix . (We use
the boldface e to represent a random environment — a random variable with values in  —
and e to represent a particular environment or a realisation of a random variable e.)

As described in Lange and Holmes (1981), if e1, e2, … forms a stationary Markov chain
with transition probabilities P, there is a unique distribution π on  which is stable
under the transformation (u, et) ↦ (Xetu/∥Xetu∥, et+1). That is, if the normalized population
structure Nt/∥Nt∥ paired with et+1 is chosen from the distribution π, then the pair (Nt+1/
∥Nt+1∥, et+2) will also be in the distribution π.

This Markov chain is naturally represented as an iterated function system; that is, a step in
the chain is made by choosing randomly from a collection of possible functions, and
applying it to the current position of the chain. In this case, the function is u ↦ Xeu/∥Xeu∥,
where e is the next random environment. Time reversal is a convenient approach for
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studying the asymptotic behavior of such systems, and more general random dynamical
systems. For applications, see Barnsley and Elton (1988); Elton (1990); Steinsaltz (1999).

To understand how this works, suppose we extend our Markov chain of environments
forward and backward in time to infinity: …, e−2, e−1, e0, e1, e2, …. Starting at any s,
positive or negative, moving forward we have a Markov chain with transition matrix P: es,
es+1, es+2, …. Moving backward, es, es−1, es−2, … is a Markov chain with transition matrix

. Choose any population vector , and define for s > t,

(16)

From (10), we know that for any t1, t2 ≥ m, we have the bound ρ(Us,−t1, Us−t2) ≤ k2rm+s,
which means that  is a Cauchy sequence. We may denote its limit by Us,−∞.

We note four important features of this backward iterated sequence:

(i) If the environments all shift one to the left, so that we start at es+1 instead of es,
the distribution remains exactly the same. Thus, the distribution of Us,−∞ is the
same for any s.

(ii) If we start our population Markov chain in the state (U0,−∞, e1), then the next
state will be

Thus, the distribution of (U0,−∞, e1) is a stationary distribution π for the chain.

(iii) For each fixed t, U0,−t has the same distribution as

(17)

which is a realization of the normalized population vector Nt/∥Nt∥, when it is
started at the vector u0. Thus, the population-environment Markov chain (Nt/
∥Nt∥) converges in distribution to the same stationary distribution π, no matter
what the initial condition.

(iv) We will use frequently the fact that (U0,−t, e1) may be considered an
approximate sample from the distribution π, with an error that is bounded by

which is straightforward to bound (cf. section 3.1), independent of any
information about U−t,−∞.

The same holds true, of course, if we reverse the matrix multiplication: Starting from any
nonnegative K-dimensional row vector , we define the sequence of row vectors
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Then V0,t converges pointwise to a vector V0,∞ := limt→∞ V0,t. We denote the distribution
of (V0,∞, e−1) by . As before,  is the stationary distribution for the Markov chain on

, defined by taking (vT, e−t) at time t to (vT Xe−t/∥vT Xe−t∥, e−(t+1)) at time t + 1.

We also define the regular conditional distributions πe on  as follows: pick (U, e) from the
distribution π, conditioned on e being e, and take πe to be the distribution of U. We define 
similarly. In the case of i.i.d. environments, of course, π and  would be simply products of
an independent population vector and the stationary environment with distribution ν.

4 Errors and How to Bound Them
A standard approach to estimating a — and a similar approach to the derivatives that we
describe later on — is to choose a fixed starting vector , simulate sequences e0(i),
e1(i), …, emi (i independently from the stationary Markov chain with transition probabilities
P (i = 1, …, J), and then compute

(18)

It is important not only to know what would be an appropriate approximation to a or its
derivatives in the sense of being asymptotically correct, but also to have rigorous bounds for
the error arising from any finite simulation procedure, such as (18). There are two sources of
error: systematic error, arising from the fact that (Xe0, u0) is not exactly a sample from the
distribution π, and sampling error, arising from the fact that we have estimated the
expectation by averaging over a random sample.

For obtaining an unbiased estimate there is no reason the sample Markov chain realizations
should need to be independent. For instance, a standard approach would be to take a single
realization of the chain e0; e1; e2,…, and take et(i) = et, with mi = B + i for some “burn-in
time” B. The problem with this approach is that it becomes more difficult to bound the
errors; in principle, the convergence could be extremely slow for these kinds of sums. We
leave the problem of bounding errors for these cumulative simulations to a future work.

4.1 Systematic error
By “systematic error” we mean the error in our estimate of a arising from the difference
between the distribution we are aiming for and the distribution we are actually sampling
from. The quantity we are trying to estimate may be represented as a = π[F], the expectation
of a certain function F with respect to the distribution π. If we can simulate Z1,…, ZJ from π,

then  is an unbiased estimator of π[F], and will be consistent under modest
Passumptions on F and the independence of the samples. Suppose, though that what we
have are not samples from π, but samples  from a “similar” distribution π*. Then we can
bound the error by
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(19)

Here the first term on the right-hand side is the sampling error, and the second term is the
bias, the expected value of systematic error. The problem is that the bounds we can obtain
for the bias are likely to be crude, absent good computational tools for the distribution π.
(And if we could compute analytically from π, we wouldn't need to be simulating).

An alternative is to couple the samples  from the approximate distribution π′ to exact
samples Zj from the distribution π, we can break up the error in a slightly di erent way:

(20)

Bounds for the sampling error in (19) will generally also be bounds for the first term in (20).
The second term in (20), on the other hand, which takes the place of the bias, is a random
variable, computed from the samples . Its expectation is still a bound on the bias. The
crucial fact is that the last line may be computable without knowing in detail what the “true”
sample Zj is.

A small disadvantage of this approach is that the systematic error varies with the sample. To
achieve a particular fixed error bound we need an adaptive approach, whereby we
successively extend our sequence of matrices until the error crosses the desired threshold.
We note here that this approach to estimating the systematic error in simulations is
essentially just a version of the Propp-Wilson algorithm (cf. Chapter 10 of Häggström
(2002)). Unlike standard applications, though, the space is continuous, so the systematic
error never reaches 0.

4.2 Sampling error
The sampling error is difficult to control with current techniques, because the distribution of
the samples is so poorly understood — the very reason why we resort to the Monte Carlo
approximation in the rst place. The best we can do for a rigorous bound is to use
Hoeffiding's inequality (see Hoeffding (1963)), relying on crude bounds on the terms in the
expectation. Hoeffding's inequality tells us that if X1,…,XJ are i.i.d. random variables such
that α ≤ Xi β almost surely, then for any z > 0,

(21)

This is essentially the same bound that we would estimate from the normal approximation if
the standard deviation of X were (β – α)/2. Generally we will want to fix p0, the con dence
level, and compute the corresponding z, which will be

(22)
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Of course, the standard deviation will be smaller than this, but we do not know how much

smaller. An alternative approach then would be to use the bound , where  is the
standard deviation of the simulated samples, and τ is the cumulative distribution function of
the Student t distribution with J – 1 degrees of freedom. This will be a smaller bound, in that
sense “better”, but not precisely true for finite samples, to the extent that the sample
distribution is not normal. The corresponding bound on the error, at probability level p0, is

(23)

where tp(J – 1) is the p quantile of the Student T distribution with J – 1 degrees of freedom;
that is, if T has this distribution then P{T > tp(J – 1) = p.

These asymptotic bounds are perfectly conventional in Markov chain Monte Carlo analysis
(see, for example, Asmussen and Glynn (2007)), and there is no reason particularly to
eschew them in this context. They are likely to be quite accurate, and superior to the
rigorous bounds, and might also be applied to the setting where the expectations are
estimated not from independent samples, but from a single run of the environment chain.
We have nonetheless emphasised the Hoeffding-based rigorous bounds in the statements of
our theorems for three reasons: First, they are likely to be less familiar, and the reader may
require more guidance in applying them to the individual cases; second, because some
residue of skepticism must remain for the asymptotic bounds, while these results may be
applied to calculations that are otherwise analytically precise; and third, as a spur to further
thought on the best ways to bound errors rigorously in these sorts of problems.

5 Growth Rate and Sensitivity to Projection Matrices
We present here extensions of two known results. In these cases (and in later results) we
start by defining an estimator that converges to the the quantity we desire, and follow that by
bounds on the systematic and sampling errors, as well as an error bound for estimates from a
simulation estimator. We state our results on error bounds in the form “The quantity Q may
be approximated by the expectation of A, with systematic error bounded by B and sampling
error bounded by C(J, p).” This means that if A1,…, AJ are independent realizations of A,
then the probability that the true value of Q is not in the interval J−1 ΣAi ± [B + C(J, p)] is no
bigger than p. When describing an adaptive bound on the systematic error, B will depend
upon the particular simulation result. Again, the sampling error may be bounded either by a
universally valid Hoeffding bound, based on known upper bounds on the samples, or by the
Student t distribution, using the standard deviation estimated from the sample, which
provides a generally much superior bound, but which can only be treated as an
approximation.

5.1 Computing a
The stochastic growth rate a is commonly estimated by numerical simulation but, as
discussed with examples by Caswell (2001), there is no general way to bound the errors in
the estimated values. The following result provides suitable bounds.

Theorem 5.1 Let u0 be any fixed element of , and Ym := Xem Xem–1 …Xe1, where e0; e1,
… form a Markov chain with transition rates P. The stochastic growth rate may be
approximated by the simulated expectation of
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(24)

with systematic error bounded by  and sampling error at level p on J samples bounded
by

(25)

When the simulated expectation is

we may also bound the systematic error by

(26)

where (u0) is de ned as in (12) and τB is defined as in (6).

5.2 Derivatives with respect to Projection Matrices
We need care in defining derivatives of a with respect to elements of the population
projection matrices. As discussed in Tuljapurkar and Horvitz (2003) we must define how the
matrix entries change, e.g., do we change fertility rates in a particular environment, or in all
possible environments? Although the main formula here is known, Tuljapurkar's (1990)
derivation did not justify a crucial exchange of limits (between taking the perturbation to
zero and time to infinity). We provide a rigorous proof (see Appendix) and of course the
error bounds here are new.

We will suppose that the matrices Xe depend smoothly on a parameter ε, so that we may
define X′e := ∂Xe/∂ε, and we define the base matrices to be at ε = 0. In some cases, the
parametrization will be defined only for ε ≥ 0, and in those cases we will understand the
partial derivatives to be one-sided derivatives, and the limits limε→0 will be the one-sided
likits limε↓0.

Theorem 5.2 Let Ue and Ve be independent random variables with distributions πe and 
(the conditional stationary distributions defined in section 3.2). Then

(27)

Each term may be approximated by averaging samples of the form

(28)
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where u0;  are any fixed elements of ,  respectively,  and
, e = ẽ0; ẽ1,…,ẽm form a sample from the Markov chain P̃, and e = e0, e1,

…, em form a sample from the Markov chain P. The systematic error may be bounded
uniformly by

(29)

while the sampling error at level p on J samples is bounded by

(30)

Suppose the simulated expectation is

where

and

Let

Then we may also bound the systematic error by

(31)
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Note that the bound (29) is given as a proportion of the unknown a…(0). It can be turned
into an explicit bound by using an upper bound on a…(0). We have the trivial bound

(32)

We recall that Δ and τB may be bounded according to the formulas given in section 3.1.

It may seem surprising that the vectors Ue and Ve are independent. If we think of the
environments as a doubly infinite sequence with e0 = e, then the vector Ue in equation (27)
depends only on the past (that is, ei with i < 0) and Ve depends only on the future (ei with i >
0). By the Markov property, these two are independent, when conditioned on e0 = e.

6 Environments and Coupling
Suppose we change the transition matrix P to a slightly different matrix P(ε), and want to
compare population growth along environmental sequences generated by the original and
the perturbed matrix. We expect that the perturbed environmental sequences will only
occasionally deviate from the environment that we “would have had” in the original
distribution of environments. Computing the derivative of a is then a matter of measuring
the cumulative deviations due to these changes. These may be split into two parts: First, the
process moves under P(ε) to a state  , different from the state e that it would have moved to
under P. Then there is a sequence of environments following on from  that is different from
the sequence that would have followed from e, until the Markov chain gradually “forgets”
its starting point. The change to a new sequence of matrices induces two separate changes
on the growing population: The new sequence accumulates a difference in magnitude on its
way to stationarity; and it produces a different stationary distribution of unit vectors
depending on the starting environment  rather than e.

In this section we examine the first effect. We fix the transition matrix P and compare the
growth of total population size when starting from environment e to the growth starting from
the stationary distribution ν. A standard method for doing this is coupling. For an outline of
coupling techniques in MCMC, see Kendall (2005) and Roberts and Rosenthal (2004). We
use coupling in two ways, corresponding to the two components of the Markov chain: the
environment and the population vector.

Fix environments e and  (possibly the same). We define sequences e0, e1, …; , , …; and

, , …: all three are Markov chains with transition probabilities P, but with e0 = e, 
and  having distribution ν (so that ( ) is stationary). We define the total population effect
of starting in state e rather than  as

(33)

This is one of the terms that will come into formula (40), the derivative of a with respect to
shifting transition probabilities from e to .
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Note that when the environments are i.i.d. — so  — we have

where VT has the distribution π.

Computing ζe depends on coupling the version of the Markov chain starting at e, to another
version starting in the distribution ν. We define the coupling time τ to be the first time such
that ; after this time the chains follow identical trajectories. If we know the distribution
of τ and of the sequences followed by the two chains from time 0 to τ, we can average the
diferences in (33) to nd ζ. The advantage of coupling is, first, that it reduces the variability
of the estimates, and second, that we know from the simulation when the coupling time has
been achieved, which gives bounds on the error. A suitable choice is Griffeath's maximal
coupling (Griffeath, 1975) which we will apply in Pitman's (Pitman, 1976) path-
decomposition representation. (The coupling is “maximal” in the sense of making the
coupling time, and hence the variance of the estimate, as small as possible.) However we
must be careful about sampling values of τ, because they may be large if the Markov chain
mixes slowly. To deal with this we overweight large coupling times that generate a large
contribution to ζ.

Beginning with a fixed environment e, the procedure is as follows:

(i) Define the sequence of vectors αt := Pt(e, ·) − ν(·). We also define  and  to
be the vectors of pointwise positive and negative parts respectively. Let C(t) be a

bound on , where the ei and  are any
environments. From (3) we know that  is a possible choice for C(t).

(ii) For pairs (t, e), where t is a positive integer and , define a probability
distribution

This is the distribution of the pair (τ, eτ) for the maximally coupled chain.
Define

and a probability distribution on 
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(iii) Average J independent realizations of the following random variable: Let (τ, e0)

be chosen from the distribution  on , and  independently from the

distribution ν. From these starting states e0 and , let (e0, …, eτ, …, em) and ( ,

…, , …, ) be realizations of the coupled pair of Markov chains with
transition probabilities P, conditioned on the coupling time being τ and

. These realizations are generated from independent inhomogeneous
Markov chains running backward, with transition probabilities

We extend the chain past τ, requiring  for t > τ, as a realization of the
Markov transition probabilities P, to obtain a total sample of predetermined
length m. The random variable is then

(Note that the realizations corresponding to τ = 0 are identically 0. The
possibility of τ = 0 has been included only to simplify the notation. In practice,
we are free to condition on τ > 0.)

The change from q to  is an example of importance sampling (cf. Chapter V.1 in Asmussen
and Glynn (2007)). We oversample the values of the random variable with high τ to reduce
the variability of the estimate. The importance sampling makes Z(j) a bounded random
variable, with bound A. Imagine that we had a source of perfect samples VT (j) from the
distribution , and define

Let Y(j) := Xem(j) ⋯ Xe0(j) and . Then

(34)

Since , we may use (22) to compute the bound

Steinsaltz et al. Page 16

Theor Popul Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(35)

Lemma 6.1 The limits defining the coefficients  and ζe exist and are finite. We may
approximate ζe by

(36)

If 0 < p0 ≤ 1, the probability is no more than p0 that the error in this estimation is larger than

(37)

It remains to bound A. From standard Markov chain theory, for any vector ,

(38)

Setting setting Q := P − 1νT,  is the e-th row of Qt, which may also be written as

where 1e is the column vector with 1 in place e and 0 elsewhere. Thus

If we use the bound , then

(39)

7 Derivatives with respect to Environmental Transitions
We are now ready to compute derivatives of a with respect to changes in the distribution of
environments, as determined by P. Complicating the notation slightly is the constraint

{  for each e}; thus, there can be no sense in speaking of the derivative with

respect to changes in  for some particular e, . Instead, we must compute directional

derivatives along the direction of some matrix W, in the plane .
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For the purposes of this result we write a(ε) = a(P(ε)), where P(ε) is a differentiable curve of
M × M matrices, where the parameter ε takes values either in a two-sided interval [−ε0, ε0],
or a one-sided interval [0, ε0]. Let W := ∂P(ε)/∂ε, an M × M matrix whose rows all sum to 0.
The perturbations are such that P(ε) retains the ergodicity and irreducibility of P. (The result
should be the same whether ε is positive or negative. If P is on the boundary of the set of
possible values, one or the other sign may be impossible. Some choices of W may be

impossible in both directions.) In the special case in which  and , with all
other entries 0, we are computing the derivative corresponding to a small increase in the rate
of transitioning from environment e to , and a decrease in the rate of transitioning to .

In this section the matrices X1, …, XM are assumed fixed.

Theorem 7.1 The derivative of the stochastic growth rate is

(40)

where ,  are independent random variables with distributions  and  respectively.

The quantities ζe may be approximated, with error bounds, according to the algorithm
described in section 6.

The other part of the expression may be approximated by averaging samples of the form

(41)

where

and

and e = e0, e1, …, em is a Markov chain with transition matrix P, and , , …,  is an
independent Markov chain with transition probabilities , and  and .

The systematic error may be bounded uniformly by 2k2rm∥(νT|W|)∥, while the sampling
error at level p on J samples bounded by

(42)
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Suppose the simulated expectation is

where

and

We may also bound the systematic error by

(43)

We note that expressions like (40) are examples of what Brémaud (1992) calls “ersatz
derivatives”. In a rather different class of applications Brémaud suggests applying maximal
coupling.

8 Discussion
Our results provide analytical formulas and simulation estimators for the derivatives of
stochastic growth rate with respect to the transition probability matrix or the population
projection matrices. We have concentrated here on the theoretical results; although this may
not be obvious, we have made considerable effort at brevity. Partly for this reason, we will
present elsewhere numerical applications of these results. We expect that our results should
carry over to integral population models (IPMs), given the strong parallels between the
stochastic ergodicity properties of IPMs and matrix models (Ellner and Rees, 2007).

Our results apply not only to stochastic structured populations but to any stochastic system
in which a Lyapunov exponent of a product of random matrices determines stability or other
dynamic properties. Examples include the net reproductive rate in epidemic models and
some models of network dynamics. An obvious application of our results is to the analysis
of optimal life histories, i.e., environment-to-projection matrix maps that maximize the
stochastic growth rate. As discussed by McNamara (1997), this optimization problem
translates into what is called an average reward problem in stochastic control theory, and so
our results may be more generally useful in such control problems.
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Appendix
Proofs of the theorems.

A.1 Proof of Lemma 3.2
We have

For some choice of i, j, let

Note that by (5),

(44)

Then we need to bound

(45)

where we have used the relation |log x| ≤ max{x, 1/x} − 1.

We now use the Taylor series expansion

where |C| ≤ max{ex, 1}. This turns the right-hand side of (45) into

Steinsaltz et al. Page 20

Theor Popul Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Applying the bounds (44) yields finally the upper bound in (15).

A.2 Estimating the stochastic growth rate
We prove here Theorem 5.1. The quantity we are trying to compute is

(46)

Let e0, e1, e2, … be a realization of the stationary Markov chain with transition matrix P. Let
Ym := XemXem−1 ⋯ Xe1. Choose , and let U be a random variable with distribution
πe0. Then , which may be approximated by

.

If we identify systematic error with bias, this is

since (YmU/∥YmU∥, em) also has the distribution π (if Ym and U are taken to be independent,
conditioned on e0). Thus

by (13). The corresponding bound on the sampling error may be computed from (22).

For a particular choice of of e1, …, em+1 and U we can also represent the random systematic
error as

which may be bounded by the summand in (26).

A.3 Estimating sensitivities: Matrix entries
We prove here Theorem 5.2. As discussed at the end of section 3.1, we may assume that the
compact sets  and  are stable and satisfy the bounds of section 3.1 simultaneously for all
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. The stationary distributions corresponding to products of the perturbed matrices are
denoted π(ε) and , and the corresponding regular conditional distributions are πe

(ε) and 

The derivative a′(0) may be written as

where

Here e0, e1, … is the stationary Markov chain with transition probabilities P, and , , … is
the reverse stationary Markov chain, with transition probabilities .

By (13), for ∊ > 0 sufficiently small

where

If we define

then for m ≤ n,

We note by (10) that ρ(Us+1,m, Us+1,n) ≤ k2rm−s; and for ∊ > 0 sufficiently small and any
 we have
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It follows by Lemma 3.2 that

(47)

Putting these together, we get, for all n ≥ m,

By Lemma A.1 we may exchange the order of the limits, to see that

(48)

This limit is the same for any choice of u0, hence would also be the same if we replaced u0
by a random U, with any distribution on . We choose U to have the distribution πe0,
independent of the rest of the Markov chain. By the invariance property of the distributions
π,

(49)

where (Us−1, es) has distribution π.

For m ≥ s ≥ 1 define functions

where the denominator is understood to be 1 for s = m. The summand on the right of (49)
may be written as

(50)

By (13),
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for ∊ in a neighborhood of 0, so the Bounded Convergence Theorem turns (50) into

(51)

We have, by linearity of the matrix product and ∥ · ∥,

Combining this with (49) yields the telescoping sum

where in the last line (U, e0) has the distribution π. De ne .
Then  converges in distribution to V, with distribution  (conditioned on e0), and so

which is identical to (27).

Now we estimate the error. We use the representation

where U0 and  are assumed to have distributions  and  respectively. Then

(52)
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by (13). This implies the uniform bound on systematic error, and the bound on sampling
error (30) follows from applying (22) to a trivial bound on the terms in the average. The
simulated bound (31) also follows directly from (52).

Lemma A.1 Let A(m, ∊) be a two-dimensional array of real numbers, indexed by m ∈  and
∊ > 0, with A(m, 0) := lim∊↓0 A(m, ∊) existing for each m, and A(∞, ∊) := limm→∞ A(m, ∊)
existing for all ∊ sufficiently small (independent of m). Suppose A satisfies

(53)

Then the two limits

and

are equal; in particular, if one exists the other exists as well.

Proof. Suppose A* := lim∊↓0 A(∞, ∊) exists. Then we need to show that A* = limm→∞ A(m,
0).

Choose any δ > 0, and choose M such that

This means that we may find ∊0 > 0 such that |A(m, ∊) − A(n, ∊)| < 2δ when 0 < ∊ < ∊0 and
m, n < M, and such that also |A(∞, ∊) − A*| < 2δ for all 0 < ∊ < ∊0. It follows, in particular,
that |A(m, ∊) − A*| < 4δ when m > M and 0 < ∊ < ∊0. Thus |A(m, 0) − A*| < 4δ for m > M,
and consequently |lim supm→∞ A(m, 0) − A*| < 4δ. Since δ is arbitrary, it follows that
limm→∞ A(m, 0) = A*.

The converse result (starting from the assumption that limm→∞ A(m, 0) exists) follows
identically.

A.4 Estimating sensitivities: Markov environments
We derive here the formula (40) by a combination of the coupling method and importance
sampling. We use importance sampling for the actual computation, but coupling provides a
more direct path to validating the crucial exchange of limits. As in the proof of Theorem 5.2,
the error bounds are an obvious consequence of the formula (40) and the general formulas
for errors described in section 4.

Given two distributions q and q* on {1, …,M}, we define a standard coupling between q
and q*. Suppose we are given a uniform random variable ω on [0, 1]. Let 
and . Let . We define three random

variables  on ,  on , and  on , according to the following distributions:
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The joint distribution is irrelevant, but for definiteness we let them be independent. Then we
define the coupled pair (e, e*) to have the values

(54)

Then e has distribution q, e* has distribution q*, and e = e* with probability 1 − δ. This δ is
called the total-variation distance between q and q*.

We write  for the expectation with respect to the distribution that makes e0, …, em a
stationary Markov chain with transition matrix P. Define ν(∊) to be the stationary distribution
corresponding to P(∊), and define  to be the time-reversed chain of P(∊). We define

By the time-reversal property,

For ∊ > 0 we couple a sequence e0, …, em selected from the distribution  to a sequence

 selected from the distribution  as follows: We start by choosing 
according to the standard coupling of (ν, ν(∊). Assume now that we have produced sequences

of length i, ending in ei−1 and . We then produce  according to the standard

coupling of row ei−1 of  to row  of . (To simplify the typography in some places we

use e(i) and e(∊)(i) interchangeably with ei and .)

Let δ = δ(∊) be the maximum of the total variation distance between ν and ν(∊), and all of the
pairs of rows. It is easy to see that there is a constant c such that δ ≤ c∊ for ∊ sufficiently
small. Define ω1, ω2, … to be an i.i.d. sequence of uniform random variables on [0; 1], and
two sequences of random times as follows: T0 := S0 := −1, and
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Thus,  for all Si ≤ t < Ti+1. Define for any  the random vector

and define a version of g conditioned on T1 and T2

Then for any ,

(55)

We also define

We break up these expectations into their portion overlapping three different events:

(i) {T1 > m};

(ii) {T2 > m ≥ T1};

(iii) {m ≥ T2}.

On the event {T1 > m} we have g(m, ∊ u; T1, T2) = 0, and T1 − m is geometrically
distributed with parameter δ. By (13), γ is bounded by k2rT1−1.

On the event {T2 > m ≥ T1}: We have e(∊)(i) = e(i) for i < T1 and for S1 ≤ i ≤ m. If S1 ≤ m,

Thus we may write where

where  if S1 ≤ m; otherwise
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On the event {T2 ≤ m}: The above approach shows that

(57)

Combining these bounds, we obtain

(58)

Taking the expectation with respect to the distribution of T1 and T2, using the fact that T1
and T2 − S1 are independent with distribution geometric with parameter δ, we obtain

(59)

Since δ is bounded by a constant times |∊|, we may find a constant C such that (by the
triangle inequality) for all ∊, positive integers m, and ,

(60)

This bound allows us to exchange the limits in (55):

(61)

Now we apply the method of importance sampling. We may assume without loss of
generality that W (e, e′) = 0 whenever P (e, e′) = 0 (using the analyticity of a, and the fact
that the formula (40) is nonsingular on the nonnegative orthant). For any function

,

where F is the Radon-Nikodym derivative
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This allows us to rewrite

(62)

For any fixed m, there is an upper bound on ∊−1(F(∊ e0, …, em) −1), so we may move the
differentiation inside the expectation, to obtain

(63)

The first limit is 0. To see this, rewrite it as a sum over possible values of e0:

Since ν(∊) is a probability distribution, it must be that . Thus, the expression in
the limit becomes 0 if we replace the expectation by a constant, independent of e. By
Lemma A.2 it follows that the limit is 0.

To compute the other limit, we sum over all possible pairs (ei, ei+1) = . The summand
becomes

(64)

In order to analyze this, we need to consider the distribution of e0, …, em, conditioned on
 and ei+1 = e. By the Markov property, this splits into two independent Markov chains: e

= ei+1, …, em is a Markov chain of length m − i, with transition probabilities P and starting
point e, while , ei−1, …, e0 is a Markov chain of length i + 1 with transition probabilities

 and starting point . Define two independent infinite sequences , , … and e0e1, …,
which are Markov chains with transitions  and P respectively, beginning in  and ei+1 =

e. Define for  with , and 

with . Also define
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Since ∥u∥ = 1T u for any nonnegative column vector u, the expression (63) becomes

(65)

In the last line we have used the fact that , which means that

 as well, since  is independent of e. The same

reasoning implies that if we define  to be the version of  started in the stationary

distribution — for instance, starting from realizations of , define  to be equal to

 with probability νe — then . The first term on the
right-hand side of (65) may then be written as

(66)

To compute the second term, we note that  exists, with distribution ,
and ; similarly,  exists, with distribution ,
and . Thus

We break up the sum on the right-hand side of (65) into three pieces:

The first sum telescopes to

applying the fact that , so that . Applying (9), the
second and third sums are bounded by
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Thus

(67)

completing the proof of Theorem 7.1.

Lemma A.2. For any u,  and e, , if we let e0, e1, … and , … be realisations
of the Markov chain P starting at e0 = e and  respectively. Then

(68)

where ξ and D are the constants that satisfy (38).

Proof. Using the maximal coupling, we create coupled versions of (ei, ), such that the
coupling time τ satisfies

Define

Then by the bound (13),

A.5 A version of the Furstenberg-Kesten Theorem
Theorem A.3 (Furstenberg-Kesten) The limit defined in (2) exists almost surely, and is
deterministic, given by (46).

Steinsaltz et al. Page 31

Theor Popul Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proof. Let e1, e2,… be a stationary Markov chain with transition matrix P. If we choose
, this induces a Markov chain Yt := (Nt–1/∥Nt–1∥, et) with state space . We

extend the Hilbert metric to  by ρ((u, e), (u*, e*)) = ρ(u, u*) + 1{e≠e*}.

If we define the function F :  by

then

If (Yi) were a chain on a finite space, we would invoke the law of large numbers for Markov
chains, also known as the pathwise Individual Ergodic Theorem (cf. Theorem 1.10.2 of
Norris (1998)) to see that

where π is the unique stationary distribution. The same would be true for a positive recurrent
Markov chain on a countable state space.

On a more general state space, the pathwise ergodic theorem still holds as long as the
Markov chain is uniquely ergodic; that is, it has a unique stationary distribution π (see
Theorem 6.1 of Hernández-Lerma and Lasserre (1998), or Chapter 6 of Walters (1982)), and
π is ergodic.

We first show the existence of π. Choose , and let …, e−1, e0, e1, e2, … be a
stationary Markov chain on  with transitions P, infinite in both directions (as in section
3.2). Then

implying that  is always a Cauchy sequence, hence converges to a random
variable . Define π to be the distribution of the pair (U−1,−,∞, e0).

Now, conditioned on starting at Y0 = (U−1,−∞, e0), the next step Y1 is (Xe0U−1,−∞/
∥Xe0U−1,−∞∥ e1). Notice that

has the same distribution as U−1,−∞, so that π is a stationary distribution for (Yt).
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It remains to show that π is uniquely ergodic. Suppose that we start the chain in an

alternative distribution μ. Define Y0 = (U, e1) to have distribution π and  to have
distribution μ. Let e1, e2, … and  … be coupled versions of the environment chain,
started in e1 and  respectively. For definiteness, we say that they are independent up to the
first time τ when  — and then  for i ≥ 0. Then

are both realisations of the Markov chain Y, with initial distribution of π and μ respectively.
We write μm for the distribution of . We see that

Thus, μm → π weakly. By Theorem 6.12 of Walters (1982), it follows that π is ergodic (in
fact, strong mixing). Furthermore, if μ were an invariant distribution then μm = μ, so the
convergence implies μ = π. Therefore, π is uniquely ergodic.
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Highlights

> We analyse the growth rate a in matrix population models driven by Markov
environments.

> We derive formulas for derivatives of a with respect to changes in the
Markov parameters.

> We prove known formulas for the derivatives with respect to demographic
parameters.
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