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Abstract
Interferon-γ (IFN-γ) is a cytokine whose biological activity is conventionally associated with
cytostatic/cytotoxic and antitumor mechanisms during cell-mediated adaptive immune response. It
has been used clinically to treat a variety of malignancies, albeit with mixed results and side
effects that can be severe. Despite ample evidence implicating a role for IFN-γ in tumor immune
surveillance, there has been a steady flow of reports suggesting that it may also have pro-
tumorigenic effects under certain circumstances. We propose that in fact IFN-γ treatment is a
double-edged sword whose anti- and pro-tumorigenic activities are dependent on the cellular,
microenvironmental, and/or molecular context. As such, inhibition of the IFN-γ/IFNγR pathway
may prove to be a viable new therapeutic target for a subset of malignancies.

BACKGROUND
The canonical IFN-γ signaling pathway

Interferons (IFNs) are a group of pleiotropic cytokines that play important roles in
intercellular communication during innate and acquired immune responses and host defense
against viral and bacterial infections, as well as tumor surveillance (1). IFNs are divided into
two main categories in mammals – type I and type II – both of which differ substantially
with respect to the relative potencies of their immunomodulatory and cell-surface molecular
modification properties (2). The two major members of type I IFNs (IFN-α and IFN-β) are
ubiquitously expressed and signal through the type I receptor. IFN-γ is the lone member of
the type II IFN and is more restrictively expressed. It is structurally and functionally
different from the type I IFNs and has its own receptor, consisting of IFNγR1 and IFNγR2
subunits (3–4). The biologically active form of IFN-γ is an antiparallel dimer that interacts
with the extracellular domain of the receptor subunit IFNγR1 (3). Binding of the ligand
engages the IFNγR2 subunit, which is responsible for the intracellular transmission of the
signal. The intracellular carboxy termini of IFNγR1 and IFNγR2 carry the nonreceptor
tyrosine kinases JAK1 and JAK2, respectively, which phosphorylate the receptor upon
ligand binding (5–7). This phosphorylation creates binding sites for the signal transducer
and activator of transcription (STAT) proteins, primarily STAT1 (4, 8–9). Phosphorylation
leads to translocation of STAT1 homodimers into the nucleus, where they bind to GAS
(gamma-activated sequence) sites on the promoters of downstream target genes. One of the
major primary response genes transactivated by IFN-γ-activated JAK/STAT signaling is the
transcription factor interferon response factor 1 (IRF1). IRF1 in turn activates a large
number of secondary response genes (10). Figure 1 depicts a simplified canonical IFN-γ/
JAK/STAT1 pathway. Details of interferon signaling pathways have been reviewed
elsewhere (11).
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Regulatory features
IFN-γ/JAK/STAT signaling is regulated at several levels by positive and negative processes
(Figure 1). The STAT1 homodimers exist in the cytoplasm in the inactive antiparallel
configuration (12). Phosphorylation leads to a change into a parallel configuration, which
exposes a nuclear localization signal leading to nuclear translocation and binding to the
target GAS sequences (12–15). Intranuclear dephosphorylation by phosphatases such as
TCP45 inactivates the STAT1 homodimer and causes its exodus from the nucleus into the
cytoplasm (16). The activation of STAT1 is negatively regulated by lysine acetylation
through histone acetyltransferases (e.g., CBP), but deacetylation by histone deacetylases
(e.g., HDAC3) enhances activation (16–17). A major avenue of IFN-γ/JAK/STAT pathway
regulation is the negative feedback inhibition by the suppressor of cytokine signaling
(SOCS) molecules, which block the activity of JAKs (18–19). It has also been proposed that
the transcriptional activity of STAT1 is enhanced by kinases such as MAPK, PKC and
PI3K/AKT, which phosphorylate STAT1 in the transactivation domain (20). At the same
time, these kinases themselves are activated through IFN-γ-induced STAT1-independent
pathways. Although STAT1 is the primary transactivator immediately downstream of IFN-γ,
there is evidence that under certain circumstances some STAT1-independent transactivators
are also activated directly by IFN-γ-mediated signaling, including STAT3, STAT5, AP1 and
NFκB (21–22).

TRANSLATIONAL ASPECTS
Diverse biological functions

Through the activation of a panoply of downstream effector molecules, IFN-γ signaling
performs diverse biological functions, primarily related to host defense and immune
regulation, including anti-viral and anti-bacterial defense, cell cycle, apoptosis,
inflammation, and innate and acquired immunity (11). The most well-characterized function
of IFN-γ is the upregulation of the major histocompatibility (MHC) Class I molecules to aid
in the priming and presentation of antigens in the professional antigen presenting cells (23).
IFN-γ regulates the differentiation and function of many types of immune cells. It is
intimately involved in all aspects of Th1-mediated immune responses by regulating the
differentiation, activation and homeostasis of T cells; it inhibits Th2 cell development, but
promotes the development of regulatory T (Treg) cells (24). It also activates macrophages
and induces production of chemokines, which recruit specific effector cells to the site of
inflammation (25).

The profound immunomodulatory functions associated with IFN-γ quickly inspired clinical
applications in a variety of disease conditions, including chronic granulomatous disease,
fungal infections, autoimmune diseases such as rheumatoid arthritis, multiple sclerosis,
inflammatory bowel disease and lupus nephritis, as well as cancer (26). IFN-γ has long been
associated with cytostatic/cytotoxic and anti-tumor functions (27). Fibrosarcoma cell lines
refractory to IFN-γ signaling due to ectopic expression of dominant negative IFNγR1 were
shown to grow better and resist rejection in syngeneic mice, suggesting that IFN-γ plays an
important role in the detection and elimination of tumor cells (28). It was also suggested that
IFN-γ takes part in tumor surveillance functions by enhancing tumor cell immunogenicity,
as mice that were insensitive to IFN-γ (i.e., IFNγR−/− and Stat1−/− mice) exhibited enhanced
methylcolanthrene-induced tumor growth (29). This was supported by the finding that
approximately one-third of melanoma and lung adenocarcinoma cell lines had inactivating
mutations in the IFN-γ pathway components (29), which raised the possibility that tumor
insensitivity to IFN-γ may be a mechanism used by cancers to evade tumor surveillance. The
effects of IFN-γ were shown to involve upregulation of MHC Class I genes, which increase
tumor immunogenicity (30). This avenue of tumor surveillance was determined to involve
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recognition and elimination of tumor cells by cytotoxic T lymphocytes (CTLs) recruited to
the tumor mass via IFN-γ-induced chemokine signaling (31–32).

Recombinant IFN-γ was shown to be involved in anti-proliferative (33–35), anti-angiogenic
(36–38) and pro-apoptotic (39) effects against cancer cells. It was first clinically used to
treat chronic myelogenous leukemia, alone and in combination with recombinant IFN-α, but
failed to show any significant positive outcome (40–41). Since then, IFN-γ has been used in
the clinical management of a variety of malignancies, including bladder carcinoma,
colorectal cancer, ovarian cancer, and adult T cell leukemia; however, the results have been
mixed (reviewed in (26) ).

The first demonstration of the anti-proliferative effects of IFN-γ in melanoma cells was
reported by Fisher et al. (42). Subsequently, Brown et al. identified IFN-γ as one of the
growth inhibitory factors present in conditioned media of activated T cells (27). Kortylewski
et al. reported that IFN-γ had significant growth inhibitory activity on four different human
melanoma cell lines, although the extent of growth inhibition was inconsistent (43). The
growth inhibition was dependent on STAT1 activation. Curiously, however, although
STAT1 was activated by a low concentration of IFN-γ, the growth inhibition was only
evident at a much higher concentration, indicating the presence of complex and even
divergent signals emanating from the IFN-γ/STAT1 axis. Further support of this notion
comes from a study demonstrating that IFN-γ upregulates c-jun and c-myc in a Stat1-
independent manner (44).

The dark side of IFN-γ
At about the same time that IFN-γ was being touted as a promising anti-tumor agent, the
opposite was being reported as well. Taniguchi et al. showed that IFN-γ was a much more
potent enhancer of lung colonization of intravenously inoculated B16 melanoma cells than
either IFN-α or IFN-β (45). Low-dose IFN-γ treatment of B16 cells enhanced resistance to
NK cells and was accompanied by upregulated expression of MHC Class I molecules H-2Kb

and H-2Db. Human lymphocytes expressing low levels of IFNGR2 showed anti-apoptotic
and proliferative responses to IFN-γ, while those expressing high IFNGR2 levels
demonstrated a pro-apoptotic phenotype (46). Intratumoral expression of IFN-γ was shown
to be associated with expression of MHC Class II molecules and a more aggressive
phenotype in human melanomas (47). Garbe et al. reported that treatment of human
melanoma cells in culture induced characteristics of a biologically aggressive phenotype
(48). Gorbacheva et al. showed that IFN-γ accelerated the proliferation of NIH-3T3 cells by
upregulating guanylate-binding protein 2 (GBP2) (49). Autocrine IFN-γ signaling was
shown to enhance experimental metastatic ability of IFN-γ gene-transfected TS/A mammary
adenocarcinoma cells, and was attributed to increased resistance to NK cells (50).

Despite these early indications, IFN-γ was taken into clinical trials for melanoma. Early
small-scale clinical trials were largely inconclusive (51–54). However, due to moderate
success of recombinant IFN-α in melanoma clinical trials, IFN-γ was further tested in
relatively larger studies. Schiller et al. reported a phase II/III clinical trial of IFN-γ for good
prognosis melanoma patients (55). This study failed to detect any efficacious effects of IFN-
γ, as the response rate was only 5%, with significant side effects. Importantly, suppression
of helper T cells was observed (55). Yet another melanoma trial for adjuvant application of
IFN-γ had to be prematurely terminated as the IFN-γ-treated patients fared worse than the
untreated population (56–57).

These failed attempts to treat melanoma with recombinant IFN-γ, combined with the
occasional but conspicuous reports of its pro-growth activities, raises the possibility that
IFN-γ has, in fact, two faces; it can have cytostatic/cytotoxic as well as cytoproliferative
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effects depending on the context (Figure 2). Such a scenario is not a new concept.
Transforming growth factor (TGF)-β and tumor necrosis factor (TNF) are well-known
examples of secreted factors that display this kind of dual contrasting behavior (58–59).

Possible mechanisms underlying pro-tumorigenic IFN-γ
For the last three decades IFN-γ has established a reputation for being an immunological
guardian against neoplastic disease. Schreiber and colleagues have implicated IFN-γ as a
central player in their “immunoediting” model of the war between the immune defense
systems of the host (tumor surveillance) and the oncogenic machinery of the tumor bent on
escape (60–61). Their model suggests that while most oncogenic cells are recognized and
eliminated by the immune system, some evolve strategies to survive and live in a dormant
state where equilibrium with the immune system is achieved. Further accumulation of
capabilities (mutations) may push the tumor to the stage of complete evasion of the immune
system, leading to overt disease.

Several lines of evidence place IFN-γ at the elimination stage of the immunoediting
paradigm (62). However, there is now emerging evidence that IFN-γ may also be involved
at the equilibrium and/or evasion stages, roles that may be more pro-tumorigenic. If so,
under what conditions and by which mechanisms might IFN-γ behave as a “bad guy”? One
key may lie in the homeostatic functions of IFN-γ. While the well-known primary function
of IFN-γ is to enhance the inflammatory response, it also plays a crucial role in limiting the
destruction of tissues in the aftermath of inflammation. The IFN-γ-induced inflammatory
cascade summons a variety of immune-related cell types such as macrophages, NK cells and
CTLs that play a central role in tissue repair and remodeling at the site of inflammation. We
propose that the actions of IFN-γ can help protect normal cells from the collateral damage
associated with tissue remodeling and repair; however, these same mechanisms may allow
cells harboring oncogenic mutations to evade destruction, and exist in a state of equilibrium
until they become more fully transformed. This concept agrees with the model of tumor
immune privilege put forth by Mellor and Munn, in which localized inflammation may lead
to an immunosuppressive and tolerogenic tumor microenvironment (63).

Suppression of CTL- and NK cell-mediated immune responses is central to tumor immune
escape, and a number of studies have indicated that IFN-γ may be intimately involved in
these immunosuppressive mechanisms. It has been shown that IFN-γ upregulates the
development of Treg and suppresses CTLs by inducing the expression of indoleamine 2,3-
dioxygenase (IDO) in melanoma cells (64–66). IFN-γ attenuates infiltration of neutrophils
and myeloid cells into the tissue microenvironments (67–68). It activates constitutive
expression of CIITA in melanoma leading to upregulation of MHC Class II antigens, which
are associated with malignant progression and resistance to Fas-L+ T-cell-mediated
apoptosis (69–71). Two separate studies have shown that incubation of IGR39D, FO-1, and
MELA melanoma cell lines with IFN-γ decreases NK cell-mediated cytolysis, with or
without activation of MHC Class I antigens (72-73). Using the CT26 colon carcinoma tumor
model, Beatty et al. showed that IFN-γ enhanced the expression of MHC Class I molecules,
which led to reduced tumor recognition and CTL-mediated lysis (74). Morel et al. reported
that melanoma cell lines treated with IFN-γ lost Melan-A and gp100 tumor antigen
processing, enabling the tumor cells to evade CTL recognition (75).

The presence of monocytic and granulocytic myeloid-derived suppressor cells (MDSCs) in
the tumor microenvironment, both of which are dependent on IFN-γ, cause suppression of T
cell response (76). Non-classical MHC Class I molecules (e.g., HLA-G and HLA-E) are
IFN-γ-regulated genes that are implicated in resistance to CTL and NK cell responses, and
in immune escape in a variety of cancers (77–78). Recently, Cho et al. attributed the clinical
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failure of melanoma peptide vaccines to IFN-γ-driven expression of non-classical MHC
Class I molecules, which enable melanoma cells to evade CTL-mediated cytolysis (79).

We ourselves have provided evidence that a substantial proportion of human melanomas
harbor IFN-γ-producing macrophages, consistent with the proposed role for infiltrating
macrophages in the IFN-γ-driven pro-tumorigenic microenvironment created in UVB-
irradiated skin (80-81). Although strong data implicate lymphocytic infiltration in primary
melanoma as a favorable prognostic marker (82–83), little is known about the prognostic
significance of macrophage infiltration. The prospect of validating IFN-γ+ macrophages as a
new and simple cellular marker of poor prognosis deserves further investigation. It is also
noteworthy that the presence of IFN-γ in serum has already been implicated as an
independent prognostic indicator for disease recurrence in melanoma patients (84).

In conclusion, recent advances have provided evidence for the existence of a dark side of
IFN-γ. IFN-γ appears capable of driving novel cellular and molecular inflammatory
mechanisms that may underlie tumor initiation, immunoevasion, survival and/or outgrowth.
Which side wins the tussle between the anti- and pro-tumorigenic functions of IFN-γ seems
to be dependent on the contexts of tumor specificity, microenvironmental factors, and
signaling intensity (Figure 2). Despite the frequent, albeit typically ineffective, use of high
dose type I interferons as conventional chemotherapy (85), we believe there is now a case to
be made for exploring a paradigm-shifting strategy in which IFN-γ/IFNγR and/or
downstream pathway members become viable therapeutic targets for at least a subset of
melanomas, and perhaps other cancers as well.
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Figure 1.
The canonical IFN-γ/JAK/STAT pathway. Binding of IFN-γ dimers to the extracellular
domain of the IFNγR1 receptor subunit leads to engagement of the IFNγR2 subunit, which
causes JAK1 and JAK2 to cross-phosphorylate each other and the receptor subunits. The
parallel STAT1 homodimers are then recruited to the receptors, and their phosphorylation
converts the homodimers into an antiparallel configuration. The reoriented STAT1
homodimers translocate to the nucleus, where they bind to gamma activated sequence
(GAS) sites on the primary response genes including IRF1. IRF1 subsequently activates a
large number of secondary response genes, which carry out a range of immunomodulatory
functions. The SOCS proteins serve as the major negative regulators of the IFN-γ pathway
by inhibiting the phosphorylation of JAKs and STAT1. Dephosphorylation and acetylation
of STAT1 homodimers revert them to parallel configuration and causes their exit from the
nucleus.
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Figure 2.
The two faces of IFN-γ. IFN-γ exhibits both anti-tumor and pro-tumor activities. Under both
scenarios, IFN-γ influences the tumor cells directly as well as the development, recruitment
and/or activation of immune response cells. The anti-tumor effects result in direct inhibition
of tumor cell growth, and recognition and elimination of the tumor cells by the immune
response cells. On the other hand, the pro-tumor functions of IFN-γ involve proliferative and
anti-apoptotic signals, as well as escape of the tumor cells from recognition and cytolysis by
CTLs and NK cells. Which face is ultimately displayed may depend on the contexts of
tumor specificity, microenvironmental factors, and signaling intensity.
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