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The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, limiting
their development as pharmaceutical compounds. Here, we describe an easy strategy to increase salt resistance
of antimicrobial peptides by replacing tryptophan or histidine residues with the bulky amino acids �-naph-
thylalanine and �-(4,4�-biphenyl)alanine. The activities of the salt-sensitive peptide P-113 were diminished at
high salt concentrations, whereas the activities of its �-naphthylalanine and �-(4,4�-biphenyl)alanine-substi-
tuted variant were less affected.

Antimicrobial peptides play important roles in the host in-
nate defense mechanism by interacting and permeabilizing mi-
crobial membranes (21). With an increase of antibiotic resis-
tance, the potential for the development of antimicrobial
peptides as novel therapeutic agents could overcome the prob-
lem of resistance (5).

The development of antimicrobial peptides has been hin-
dered by several problems. One of these problems is salt
sensitivity (13). The efficacy of human �-defensin-1 is greatly
reduced in the presence of high salt concentrations in bron-
chopulmonary fluids in cystic fibrosis patients (4). Similar
problems were observed in the clinically active histidine-rich
peptide P-113, indolicidins, gramicidins, bactenecins, and
magainins (12, 14, 17, 20). A number of studies have been
reported on the design of salt-resistant antimicrobial peptides.
However, most of them were focused on overall structure mod-
ifications, such as structure rigidity, helix stability, hydropho-
bicity, and amphipathicity (2, 3, 6, 12, 13, 15, 16).

Previously, we found that a novel Trp-rich peptide, Ac-
KWRRWVRWI-NH2, designated Pac-525, demonstrated im-
proved activity against both bacteria and fungi and showed
reduced hemolytic activity (18). Nal-Pac-525, with all of its
tryptophans replaced by the bulky amino acid �-naphthylala-
nine (7), was shown to have a higher antimicrobial activity than
Pac-525 (19). More importantly, unlike Pac-525, the antifungal
activity of Nal-Pac-525 against fluconazole-resistant fungal
pathogens was not blocked by high-salt incubation conditions
(17). However, Nal-Pac-525 has a high hemolytic activity that
prohibits its further clinical application (Fig. 1). Thus, the
advantages and disadvantages of bulky amino acid substitution
to salt-resistant antimicrobial peptides remain to be eluci-
dated. P-113 is a 12-amino-acid histidine-rich peptide derived
from the saliva protein histatin 5. The anti-Candida activity of
P-113 has been documented previously (14). Recently, a clin-

ical trial involving HIV patients showed that P-113 has a good
outcome for oral candidiasis therapy, but the activity of P-113
is restricted to a low-salt condition, limiting its application (8).

Based on the studies of Pac-525 and Nal-Pac-525, it is hy-
pothesized that the substitution of tryptophan residues by the
bulky amino acid �-naphthylalanine may generate a potent
peptide with improved antimicrobial activity and salt resis-
tance. �-Naphthylalanine residues may position themselves
deeper into the bacterial and fungal cell membranes, making
the peptide more efficient in disrupting the membranes, hence
compensating the competition from the cations to the nega-
tively charged microbial cell surface. However, the hemolytic
activity of Nal-Pac-525 increases dramatically with the �-naph-
thylalanine substitutions (Fig. 1). These observations lead to
the hypothesis that the replacement of the aromatic residues
with bulky aromatic amino acids of salt-sensitive and low-
hemolytic antimicrobial peptides may result in salt-resistant
peptides with slight increases of their hemolytic activities.

The histatin derivative P-113, AKRHHGYKRKFH-NH2, was
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FIG. 1. Hemolytic activities of P-113 (F), Phe-P-113 (�), Nal-P-
113 (}), Bip-P-113 (f), Pac-525 (�), and Nal-Pac-525 (‚). Melittin
(Œ) was used as a control.
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used to test this hypothesis. We have designed and synthesized
Nal-P-113, with His 4, 5, and 12 replaced by �-naphthylalanines
(19). Bacterial and fungal strains from ATCC and clinical isolates
(17) used in this study are listed in Tables 1, 2, and 3. The
antibacterial activities of P-113 and Nal-P-113 were determined
by the standard broth microdilution method of the National Com-
mittee for Clinical Laboratory Standards with Mueller-Hinton
(MH) broth and LYM broth (14). The anti-Candida activities of
fluconazole, P-113, and Nal-P-113 were determined in LYM
broth medium (14) with different salt concentrations. The MIC
value is the lowest concentration of peptide at which there was no
change in optical density. All tests were measured in triplicate.
The hemolytic activities of the peptides were determined from
hemolysis against human red blood cells (hRBC) (18). The MIC
values of Nal-P-113 were found to be more potent than those of
P-113 (Tables 1 and 2), with only a slight increase of hemolysis of
hRBCs (Fig. 1).

Several studies reported that the efficacy of P-113 is greatly
reduced in the presence of high salt concentrations (9–11). As can
be seen in Tables 1 and 2, P-113 demonstrates activities against
various bacterial strains in the LYM broth medium. However, the
activity of P-113 was reduced by the addition of 50 mM NaCl or
0.5 mM MgCl2 into the LYM medium and was further dimin-
ished by the addition of 200 mM NaCl or 1.5 mM MgCl2. On the
other hand, the MIC values of Nal-P-113 were found to be more
potent than P-113 in both Mueller-Hinton broth and modified
LYM broth medium. Nal-P-113 still retained its antibacterial ac-
tivities with 300 mM NaCl or 2.5 mM MgCl2 added.

The anti-Candida activities of fluconazole, P-113, and Nal-
P-113 were determined in LYM culture medium under differ-
ent salt conditions. There were six resistant strains with high
fluconazole MICs (�32 �g/ml). As expected, both P-113 and
Nal-P-113 had similar MICs in the LYM medium, ranging
from 3.1 to 12.5 �g/ml (Table 3). The activity of P-113 was
inhibited by the addition of 100 mM NaCl in the LYM medium
and was strongly blocked by the addition of 150 mM NaCl.
Again, Nal-P-113 retained its antifungal activities in the media
containing high salt concentrations (Table 3).

To compare if other bulky amino acids can achieve similar
results, we have synthesized Phe-P-113 and Bip-P-113 with His

4, 5, and 12 replaced by phenylalanine or the bulky amino acid
�-(4,4�-biphenyl)alanine (Bip) (7). As expected, the antimicro-
bial and hemolytic activities of Phe-P-113 are similar to those
of P-113, and its activities are diminished under high-salt con-
ditions (Tables 1 and 2). On the other hand, the MIC values of
Bip-P-113 are found to be more potent than those of P-113,
and Bip-P-113 still retains its antimicrobial activities under
high-salt conditions (Tables 1 and 2). Even though Bip-P-113
has slightly higher hemolytic activity than Nal-P-113 (Fig. 1), it
exhibits less than 5% hemolytic activity at its effective MICs.

Certain antimicrobial peptides containing potent and broad-
spectrum activities against various microbial pathogens are
already in clinical trials (5). However, the antimicrobial activ-
ities of some agents were found to diminish under physiological
and high-salt conditions (1, 15, 22). In this study, the �-naphthyl-
alanine and �-(4,4�-biphenyl)alanine-substituted peptides, Nal-P-
113 and Bip-P-113, have potent activity against microbial patho-
gens, including methicillin-, ampicillin-, and fluconazole-resistant
strains. Moreover, the antimicrobial activity is no longer hindered
by high salt concentrations.
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