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We used high-resolution tiling microarrays and 5� RNA sequencing to identify transcripts in Desulfovibrio
vulgaris Hildenborough, a model sulfate-reducing bacterium. We identified the first nucleotide position for
1,124 transcripts, including 54 proteins with leaderless transcripts and another 72 genes for which a major
transcript initiates within the upstream protein-coding gene, which confounds measurements of the upstream
gene’s expression. Sequence analysis of these promoters showed that D. vulgaris prefers �10 and �35 boxes
different from those preferred by Escherichia coli. A total of 549 transcripts ended at intrinsic (rho-indepen-
dent) terminators, but most of the other transcripts seemed to have variable ends. We found low-level antisense
expression of most genes, and the 5� ends of these transcripts mapped to promoter-like sequences. Because
antisense expression was reduced for highly expressed genes, we suspect that elongation of nonspecific antisense
transcripts is suppressed by transcription of the sense strand. Finally, we combined the transcript results with
comparative analysis and proteomics data to make 505 revisions to the original annotation of 3,531 proteins: we
removed 255 (7.5%) proteins, changed 123 (3.6%) start codons, and added 127 (3.7%) proteins that had been missed.
Tiling data had higher coverage than shotgun proteomics and hence led to most of the corrections, but many errors
probably remain. Our data are available at http://genomics.lbl.gov/supplemental/DvHtranscripts2011/.

Desulfovibrio vulgaris Hildenborough can obtain energy by
reducing sulfate to sulfide while oxidizing organic material
such as lactate or pyruvate. Such sulfate-reducing bacteria play
a major role in the global sulfur and carbon cycles and are key
drivers of biocorrosion (32). Sulfate-reducing bacteria are also
important in the bioremediation of heavy metal ions such as
uranyl, chromate, or zinc, which they can reduce to insoluble
forms (28, 32, 48). D. vulgaris Hildenborough has become a
model for the study of sulfate-reducing bacteria, as it was the
first sulfate-reducing bacterium sequenced (21), and there
have been many studies of the expression patterns of its
mRNAs and proteins, as well as computational efforts to identify
regulatory motifs (reviewed in reference 52). We are continu-
ing to analyze the response of D. vulgaris Hildenborough to
environmental stresses as part of ENIGMA—Ecosystems and
Networks Integrated with Genes and Molecular Assemblies—
which seeks to understand how environmental conditions af-
fect the bioremediation of heavy metals.

As D. vulgaris Hildenborough is quite distantly related to
well-studied bacteria such as Escherichia coli or Bacillus subti-

lis, relatively little is known about gene regulation in this or-
ganism. Tiling arrays and next-generation sequencing have
been used successfully to map transcripts in other prokaryotes
(47), so we undertook to characterize the transcripts of D.
vulgaris Hildenborough. This should reveal how genes are ex-
pressed and should help to infer their regulation. We used two
genome-wide methods to analyze D. vulgaris Hildenborough
transcripts: high-resolution tiling microarrays and 5� RNA-Seq
analysis. Whereas most microarray studies aim to quantify
gene expression, the goal of our tiling array experiments was to
identify transcripts and their 5� and 3� boundaries. We used an
array with 60-nucleotide (60-nt) probes spaced every 2 to 4
nucleotides on each strand, but even with such closely spaced
probes, we were able to identify transcript boundaries only to
within about 30 nucleotides. Thus, we used 5� RNA-Seq as
well. In 5� RNA-Seq, an RNA ligase tags the 5� ends of RNAs
followed by reverse transcription, amplification, and sequenc-
ing; thus, 5� RNA-Seq identifies 5� ends to the precise nucle-
otide (7, 49). To classify these 5� ends as transcript starts or
RNA degradation products, we used the tiling data and the
locations of promoter-like sequences. Finally, we did not de-
termine the precise 3� ends of the transcripts experimentally,
but we were able to infer many of them, because most of the
transcripts with clear 3� ends had putative rho-independent
terminators (25).

Preliminary analysis of our transcript data suggested that
there were many errors in the genome annotation (the list of
proteins predicted to be encoded by the genome). Although D.
vulgaris Hildenborough has been the subject of many proteom-
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ics studies, we are not aware of any efforts to use proteomics
data to correct its genome annotation. Thus, we combined the
transcript data with shotgun proteomics data and homology
evidence to revise the genome annotation. To illustrate our
approach, Fig. 1 shows the tiling data and the 5� RNA-Seq data
for a six-kilobase region of the genome, along with transcript
starts, rho-independent terminators, and revisions to the ge-
nome annotation.

MATERIALS AND METHODS

Strains and growth conditions. Experiments were conducted within a Coy
anaerobic chamber with an atmosphere of about 2% H and 5% CO, with the
remainder being N. Desulfovibrio vulgaris Hildenborough (ATCC 29579; a gift
from Terry Hazen’s group), which was inoculated from 10% glycerol stock and
grown in glass bottles with lactate-sulfate media at 30°C. Cells were collected at
an optical density of around 0.3. Tiling data were collected from cells grown
under two sets of conditions: one set used defined LS4D medium (30), and the
other set used LS4 medium, which is LS4D medium supplemented with 0.1%

(wt/vol) yeast extract. 5� RNA-Seq data were collected using the defined LS4D
medium.

RNA collection. Bacterial pellets were collected by centrifuging cultures for 10
min at 10,000 � g and 4°C in RNase-free 50-ml polypropylene tubes. Supernatant
was immediately poured off, and pellets were stored at �80°C. After thawing,
RNA was extracted using RNeasy miniprep columns (Qiagen) with the optional
on-column DNase treatment. RNA quality was confirmed with an Agilent Bio-
analyzer; only samples with an RNA integrity number of around 9 or better were
used. Ribosomal RNA (rRNA) was depleted using a MICROBExpress kit (Am-
bion), which uses magnetic beads coated with oligonucleotides that hybridize to
rRNA. Those mRNA-enriched samples were analyzed using tiling arrays or 5�

RNA-Seq.
Tiling experiments. First-strand cDNA was synthesized using random hexamer

primers and a SuperScript indirect cDNA labeling system (Invitrogen); the
reaction buffer was supplemented with actinomycin D to inhibit second-strand
synthesis (36). First-strand cDNA was labeled with Alexa 555. About 2 mg of
labeled first-strand cDNA was hybridized to a Nimblegen array. Nimblegen
slides were scanned on an Axon Gene Pix 4200A scanner with 100% gain and
analyzed with Nimblescan, with no local alignment and a border value of �1. For
rich media, we used the average of the log intensities from two independent

FIG. 1. Data for a region of the genome. We show the tiling and 5� RNA-Seq data for kb 1719 to 1725 on the main chromosome, along with
gene annotations, transcript starts, and terminators. The top two panels show normalized log levels from tiling data, with each probe plotted at
its center. The genome-wide median value of 0 is shown as a horizontal black line, and vertical gray lines highlight the locations of key features
from other panels, namely, high-confidence starts and confirmed terminators. The third panel shows the number of reads starting at each location
across two 5� RNA-Seq libraries from minimal media; note the log y axis. The bottom panel shows annotated genes (arrows) and predicted intrinsic
terminators (25). For newly annotated genes we show which gene family they belong too, if any (DUF, domain of unknown function). Two of the
newly annotated DUF497 genes have leaderless promoters, the data for the start of the transcripts for DVU1638 and for DVU1639 are ambiguous,
DVU1645’s transcript starts 24 nucleotides upstream of its start codon, and there is an antisense transcript for DVU1645 (an arsR-like regulator).
The tiling data confirm the terminators for DUF497-copG and for tRNA-Pro-1.
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experiments, while for minimal media and the genomic control we did just one
experiment.

As a control, we also hybridized genomic DNA to the tiling array. We used
DNA from cells in the stationary phase to minimize copy number variations
across the chromosome. Genomic DNA was extracted using a DNeasy blood
tissue kit (Qiagen) and labeled using the Nimblegen comparative genomic hy-
bridization protocol. Briefly, genomic DNA was sonicated to a level of 200 to
1,000 bp and amplified using a Klenow fragment and Cy3-labeled random no-
namer primers.

To remove probes that might cross-hybridize, we mapped the probes to the
genome (NC_002937 and NC_005863) with BLAT (24) and we ignored any
probes whose second-best hit matched at a level of 50 or more nucleotides. We
computed normalized log levels by using the genomic control and by using each
probe’s nucleotide content, followed by setting the median value to 0. First, we
used linear regression to model the log intensity as a function of the log intensity
in the genomic control and the probe’s nucleotide content. To compute this
model, we used only probes within the sense strands of genes because of differ-
ences in nucleotide composition between coding and noncoding regions and even
between the coding and antisense strands of genes. The prediction of this model
reflects the expected bias of the probe, so we subtracted this from the (raw) log
intensity. We also removed the data for the 1% of probes with the lowest
intensities in the genomic control, as these probes gave poor discrimination
between coding and noncoding regions. Finally, we adjusted the normalized
values so that their median was 0.

5� RNA-Seq experiments. Given an mRNA-enriched sample, we converted
5�-triphosphate ends to 5�-monophosphate with tobacco acid pyrophophatase,
we blocked the 3� ends with sodium periodate, and we added a sequencing
adaptor (5�-ACACUCUUUCCCUACACGACGCUCUUCCGAUCU-3�) to
the 5� end with Ambion T4 RNA ligase (49). We used random hexamer primers
with a sequencing adaptor on the 5� end (5�-CAAGCAGAAGACGGCATAC
GAGCTCTTCCGATCTNNNNNN-3�) to obtain first-strand cDNA. We size-
selected products of 150 to 500 bases from an agarose gel. We subjected the library
to PCR amplification to enrich for products that contained both adaptors and to
complete the 5� adaptor by the use of primers 5�-AATGATACGGCGACCACCG
AGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3� and 5�-CAA
GCAGAAGACGGCATACGAGCTCTTCCGATCT-3�. We purified the PCR
products and removed unincorporated nucleotides, primers, and adaptor-only prod-
ucts with AMPure XP beads (Agencourt). We also made a second library in which
we used terminator 5�-phosphate-dependent exonuclease (Epicentre) to try to re-
move 5�-monophosphate (degraded) transcripts and then converted the 5�-triphos-
phate ends to 5�-monophosphate ends with RNA 5� polyphosphatase (Epicentre)
(7). Ligation and cDNA and PCR amplification conditions for the two libraries were
similar. After each enzymatic reaction was performed using the exonuclease library,
RNA was purified using Agencourt RNAClean XP beads. Molecules smaller than
100 nucleotides and unligated adaptors were mostly lost in these cleanup reactions.

For each library, the 32 nucleotides at the 5� end were sequenced with a lane
of Solexa by the University of California at Davis sequencing center and the
reads were mapped to the genome with Eland software. Using the first library,
7.5 million reads mapped uniquely to the genome; using the second library, 15.5
million reads mapped uniquely to the genome. (Reads from ribosomal RNAs
would not map uniquely, as D. vulgaris Hildenborough contains 5 to 6 nearly
identical copies of each rRNA.) The two libraries gave similar results (the
Spearman rank correlation coefficient of their counts was 0.67), and manual
examination suggested that the exonuclease treatment had little effect. So we
analyzed these libraries together and identified local peaks (within 50 nucleo-
tides) in the combined numbers of reads in the libraries. Peaks with at least 10
reads in each library were considered potential transcript starts. (For analysis of
nonspecific transcript starts, peaks with a total of 10 reads were considered.)

Identifying features in the tiling data. Transcribed regions were defined by
smoothing over 40 adjacent probes (roughly 150 nucleotides), using the moving
average, and requiring a smoothed value above 0.

We identified rises or drops, corresponding to potential transcript starts and
ends, based on “local correlation” to a step function (17). We used the data from
50 probes on either side of a potential rise or drop, and we investigated how
similar this pattern was to a step function by measuring the absolute value of the
correlation between this subset of the data and a series of �1 values followed by
an equal number of �1 values. We measured the local correlation around every
probe; to identify the center of the rise or drop, we used the local maximum of
the local correlation within 21 probes. For transcript ends, we required a local
correlation of at least 0.8 and also a 2-fold drop in intensity.

To identify a break in transcription within a potential operon or between a
transcript boundary and a gene, we smoothed the normalized log level over five
adjacent probes. If the minimum of the smoothed values was below 0, we

identified a break in the transcript under those conditions. To identify breaks in
putative operons, we also required a difference of at least 1 between the expres-
sion level of the upstream gene and that minimum.

Promoter sequence analysis. We began with a preliminary set of 1,618 mod-
erate-confidence transcription starts, based on a rise in rich media tiling data (a
local correlation of at least 0.6 and association with a transcribed region) occur-
ring within 30 nucleotides of a local peak in the 5� RNA-Seq data. We extracted
positions �40 to �1 relative to these putative promoters and analyzed only the
strand in the orientation of transcription. We used BioProspector (27) to search
for a bipartite motif with blocks of widths 10 and 8 separated by 10 to 18
nucleotides and kept the best of 12 runs of its Gibbs sampler. We used MEME
software (4) to search for ungapped motifs of 30 to 35 nucleotides under the
zero-or-one-occurrence-per-site model and found four significant motifs. We
used patser software (23) to scan the entire genome for hits to any of the four
MEME motifs and to correct for the high GC content of the D. vulgaris Hilden-
borough genome. For most analyses, we used only hits of 7 bits or above, which
across the four motifs gave a hit every 111 nucleotides on each strand of the
genome. We associated a motif hit with a 5� RNA-Seq peak in cases in which the
peak was within one nucleotide of the expected location.

Distinguishing transcription starts from RNA degradation products. We used
a semisupervised machine learning approach to classify local peaks in the 5�
RNA-Seq data as transcription starts or as “other.” For each local peak, we
computed four features: (i) the total number of 5� RNA-Seq reads mapped as
starting at that location; (ii) whether the 5� RNA-Seq peak was associated with
a transcribed region and with a rise in the rich media tiling data with a local
correlation of 0.6 or above, and if so, what the local correlation was; (iii) the
corresponding value for minimal media tiling data, but with a threshold of 0.7
and without consideration of whether it was associated with a transcribed region;
and (iv) b, the bit score of the best hit to any of the four MEME promoter motifs
that occurred within 1 nucleotide of the putative transcription start, if any (weak
hits of under 7 bits were ignored). For each feature, we inferred a model (a
log-odds score for any given value) by comparing the distributions of the feature
for transcription starts that represented results that were high or low confidence
according to the other features. Specifically, we inferred an appropriate model by
comparing starts with both a and b values to starts with neither. We inferred a
model for rmin using an analogous method. We inferred a model for b by
comparing starts with both rrich and rmin values to starts with neither. Finally, we
inferred a model for rrich and rmin values by comparing starts with a total log odds
score (from the other features) of above 4 to starts with a log odds score of under
�4 (e4 � 55, so these are about 55 times more likely to be genuine or false
starts).

Models were inferred using binned subsets of the data, pseudocounts, and
smoothing [see BinnedBinaryFit2() and BBFPredict() in utils.R at our website
http://genomics.lbl.gov/supplemental/DvHtranscripts2011/]. We summed the log
odds for each feature to get a final log odds score. This calculation is based on
the assumption that the features are independently distributed among the false
positives and among the true transcription starts, as in a naive Baysian classifier.
Values above 0 indicate that the transcription start resembles the high-confi-
dence transcription starts, and the magnitude of the log odds indicates the level
of confidence. We considered starts above a log odds value of 4 to represent
high-confidence starts. The distributions of the features for the high-confidence
starts and the other starts are shown in Fig. S1 in the supplemental material. To
estimate the false-positive rate, we used a randomized data set; we replaced the
locations of all 5� RNA-Seq peaks with random locations, we recomputed all
features, we shuffled the resulting values to eliminate the (biological) agreement
between them, and we applied the model.

Shotgun proteomics. Mass spectra were collected for peptides derived from a
variety of protein fractions from the ENIGMA project. We also used spectra
from previously published whole-cell proteomics experiments performed with D.
vulgaris Hildenborough grown under several sets of stress conditions (31, 42, 51).
All spectra were analyzed against the six-frame translation of the genome. For
protein fractions, spectra were analyzed with the Paragon algorithm in Protein-
Pilot 3.0 software (46), and peptides were considered confidently identified at a
posterior probability of 0.95, resulting in 22,503 different peptides for 1,866
reading frames. For complete-proteome experiments, reading frames were con-
sidered confidently identified when they had a Mascot search engine score of 32
or greater, resulting in 1,556 reading frames detected. To estimate the rate of
false-positive identification, we used proteins from the original annotation that
were unlikely to be genuine (i.e., those that were expressed at a level at least two
times higher on the antisense than on the sense strand and that lacked homology
support). Of the 106 proteins identified, just five were detected, each with one
peptide. Manual examination of the spectra suggested that these were false
positives (H. Liu and A. M. Redding-Johanson, personal communication). Thus,
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the automated protein identification had a false-positive rate of around 5%. To
prevent the possibility of annotation errors, spectra from proteins with a single
identified peptide were checked manually as necessary.

Correcting gene annotations. Annotated proteins that seemed inconsistent
with the transcript data were checked manually before being removed or
changed. We ignored genes not transcribed on either strand, as these could be
expressed under some other set of conditions. Similarly, we cannot rule out the
possibility that a transcript expressing the entire gene would have been seen
under some other set of growth conditions; thus, a few genes with clear homology
or proteomics support (using data presented above or from reference 33) were
retained even though transcription in those regions was not consistent with
expression of the predicted protein.

Data were viewed using Artemis software (43). Homology evidence for a given
protein was examined using the domains and homologs tools on the Microbes-
Online website (13); the results showed HMMer 3 (http://hmmer.janelia.org/) or
PSI-BLAST (44) hits to known families and FastBLAST (38) hits to other
proteins. Potentially missed proteins were identified by examining proteomics
data, by using CRITICA and RAST software, by using PSI-BLAST to search for
homology to conserved domains (29) in the six-frame translation of the genome,
by using blastx (16) to compare the six-frame translation of unannotated tran-
scribed regions to annotated proteins in other organisms, and by checking can-
didate open reading frames (ORFs) with a MicrobesOnline sequence search and
with the PFam website (http://pfam.janelia.org/). After initial changes to the
annotation, we examined genes with significant overlaps. In particular, in cases in
which a gene with homology or experimental support overlapped a gene without
support, we removed the unsupported protein.

We began our analysis with the RefSeq database annotation from 2007. As of
December 2010, the RefSeq annotation had changed (presumably based on
comparative genomics analyses). The RefSeq update included 95 of the 505
changes that we made and another 23 changes (mostly changes to start codons)
that are consistent with our data and with homology.

Revising operon structures. We classified adjacent pairs of genes on the same
strand based on whether there was a high-confidence “internal” transcript start
(that is, between the upstream gene’s start codon and the downstream gene’s
start codon) and whether there was a break in expression between the genes.
Simple operon pairs had neither an internal transcript start nor a 2-fold drop in
expression in the intergenic region. Nonoperon pairs showed a drop in expres-
sion of at least 2-fold to below a log level of 0 or had both an internal transcript
start and a confirmed terminator. However, we classified pairs as having attenu-
ators when they had a confirmed terminator but a log level of at least 0.25
throughout the intergenic region. If a pair had an internal promoter and no drop,
then it was classified as a complex operon pair. The various thresholds were
validated by manually examining the results.

Statistics. All statistical tests and regressions were conducted using R software
(http://www.r-project.org/).

RESULTS

We first discuss the reliability of the tiling data and the
correspondence between 3� ends of transcripts and rho-inde-
pendent terminators. Then, we use 5� RNA-Seq to identify
exact transcript starts and to identify the sequence motifs for
the sigma factors of D. vulgaris Hildenborough. Given the
transcript boundaries, we revise the gene models (while also
considering the proteomics data and homology evidence).
Given the transcript boundaries and corrected gene annota-
tions, we discuss the lengths of the 5� and 3� untranslated
transcribed regions (UTRs), and we revise the operon struc-
tures. Finally, we show that nonspecific transcription occurs
across much of the D. vulgaris Hildenborough genome and
discuss potential mechanisms that might control it.

Reliability of tiling data. We obtained tiling data for mRNA
from cells grown with lactate as the carbon source and sulfate
as the electron acceptor. We used both a defined minimal
medium (LS4D) and a rich medium supplemented with yeast
extract (LS4). We also hybridized an array to genomic DNA to
measure the strength of each probe. We used this genomic
control and the nucleotide content of the probes to normalize

the tiling data and to estimate the level of expression at each
probe. Log levels for rich and minimal media were quite sim-
ilar, with a linear correlation of 0.93 across 2.004 million
probes.

Probes for the coding regions of genes usually had higher
raw intensity than did antisense probes for the opposite strand
(Fig. 2A). To quantify the difference between the two distri-
butions, we used the Kolmogorov-Smirnov D statistic, a non-
parametric measure that ranges from 0 for two distributions
that are identical to 1 for those that do not overlap. The D
statistic improved upon normalization; for rich media, it im-
proved from 0.72 to 0.74. The overlap between the distribu-
tions is primarily due to poorly expressed genes rather than to
noise in individual probe measurements. For example, when
we use only the most highly expressed two-thirds of the genes,
then D improves to 0.95 for rich media. The poorly expressed
genes can be seen in the left shoulder of the coding distribution
(Fig. 2B) and at the left of Fig. 2C. Hundreds of genes exhib-
ited little expression or were expressed primarily on the anti-
sense (noncoding) strand, but genes that were expected to be
essential were well expressed. As discussed below, the annota-
tion of many of the poorly expressed regions as proteins seems
questionable.

Figure 2A also shows that expression of most antisense
probes was above that of control probes that did not match the
genome sequence. This might reflect nonspecific transcription
across the genome, as has been reported in studies of Esche-
richia coli (15, 45). We discuss nonspecific transcription in
more detail below. The presence of nonspecific transcripts
complicates the determination of a region as “expressed” or
not. However, if it is assumed that the entire genome is tran-
scribed at physiologically relevant levels on one strand or the
other, the median across both strands then represents the
boundary between expression and the absence of expression.
As our tiling data are normalized to a median of 0, we use 0 as
the threshold for expression (per the method described in
reference 19).

Transcript ends. If a transcript has a specific end, then the
log level should drop sharply. By examining the “local corre-
lation” to a step function (17) and how far the expression level
dropped, we identified 771 sharp drops in tiling data from rich
media and 483 sharp drops in tiling data from minimal media.
For comparison, on the basis of our updated operon predic-
tions (see below), we estimate that D. vulgaris Hildenborough
has about 1,200 transcript ends.

When we compared these drops to predictions for intrinsic
(rho-independent) terminators from TransTermHP (25), we
found that the majority of sharp drops were located at intrinsic
terminators (61% in rich media and 75% in minimal media).
As shown in Fig. 2D, the drop tends to be at about �30 relative
to the end of the terminator’s stem-loop. Because the probes
are 60 nucleotides long, this implies that the drop usually
occurs around a probe that ends near the termination site.
Overall, we confirmed 771 of 2,978 predicted terminators, but
the predicted terminators often overlapped. Combining the
overlapping predictions, we confirmed 549 distinct termina-
tors.

There were just 25 sharp drops that were found in both rich
and minimal media but were not predicted by TransTermHP.
We examined these manually and removed three questionable
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ones, leaving 22 unexplained terminators. There was a termi-
nator prediction on the corresponding strand for 13 of these,
and it appears that these terminators are bidirectional, leaving
just 9 unexplained sharp drops. To understand the termination
of the remaining transcripts that lacked sharp drops, we exam-
ined a random sample of 10 genes from 342 that were well
expressed under both sets of conditions (median log level of 1
or higher), were expected to be at the end of their operon
(based on revised predictions as described below), and lacked
confirmed terminators. For 6 of the 10 genes, transcription
downstream of the gene dropped gradually, without any spe-
cific end being apparent; 3 of the remaining 4 had weak drops
(below our threshold values) at putative intrinsic terminators.
Overall, intrinsic terminators account for virtually all of the
specific transcript ends, but a significant fraction of transcripts
had heterogeneous 3� ends.

The other major mechanism for terminating transcription in
bacteria involves the rho protein (reviewed in reference 8).

Although rho is not well understood, it could account for the
heterogeneous ends, and it is estimated to account for about
20% of termination in E. coli (37). However, we suspect that
rho activity is weaker in D. vulgaris Hildenborough than in E.
coli. First, we observed an operon which contains the antisense
strand of an entire protein-coding gene (gidB [DVU1250]; see
Fig. S2 in the supplemental material). Similar cases of operons
extending through the antisense portion of an entire gene have
been observed in B. subtilis, which has weak rho activity, but
not, as far as we know, in E. coli (14). Second, a transposon
mutagenesis project studying Desulfovibrio alaskensis G20 (for-
merly D. desulfuricans G20) found several insertions in rho,
which suggests that rho is not required for growth in Desulfo-
vibrios (A. Arkin laboratory, unpublished data). In contrast,
rho is essential in E. coli (5, 50). Finally, large numbers of
transcripts with heterogeneous 3� ends have been reported in
the archaeon Halobacterium salinarium (26) but not, as far as
we know, in other bacteria. Thus, we wonder whether D. vul-

FIG. 2. Quality and coverage of data. (A) The distribution of raw log intensities, as a function of probe type, for a single array hybridized to
cDNA from rich LS4 media. Probes were classified as coding, antisense, or intergenic according to the original genome annotation; control probes
have random sequences that do not match the D. vulgaris Hildenborough genome but have about the same GC content (63%). (B) The distribution
of normalized log intensity for rich media (data represent averages of the results from two replicate experiments). The median value for the probes
(excluding the random control probes) is 0 and is shown with a dashed vertical line. (C) The median normalized expression level for the sense and
antisense strands of each protein-coding gene from the original annotation. The dashed line shows x � y. (D) The distribution of offsets between
drops in the tiling data and the end of the intrinsic terminator’s stem-loop. (E) The distribution of offsets between rises in the tiling data and peaks
in 5� RNA-Seq. (F) The proportions of different types of protein-coding genes that were detected by tiling or by shotgun proteomics. Genes were
considered detected by tiling when the corresponding smoothed intensity value was above 0 throughout. Genes with a single high-confidence
peptide were considered detected by proteomics. (A few removed “proteins” were detected, but manual examination showed that these were false
positives.)
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garis Hildenborough has another mechanism for nonspecific
termination. Further study of whether rho can be knocked out
in D. vulgaris Hildenborough and what effect this would have
might clarify this issue.

Inferring transcript starts from 5� RNA-Seq and tiling data.
We extracted mRNA from cells grown in minimal LS4D media
and used 5� RNA-Seq to map the 5� ends of the RNAs (7, 49).
As shown in Fig. 1, the numbers of 5� RNA-Seq reads show
steep peaks (note the log scale). Sometimes we saw a large
number of reads at one position and a much smaller number of
reads at locations within 1 to 2 nucleotides; those could reflect
variations in the initiation of transcription from the “same”
promoter, or they might have arisen from minor errors in
mapping the 5� ends of the transcripts. In any case, each local
peak corresponds to a potential transcription start. Some of
these peaks may reflect degradation products rather than gen-
uine transcription starts, but peaks in 5� RNA-Seq that corre-
spond to sharp rises in the tiling data should represent genuine
transcription starts. Just 2.2% of 5� RNA-Seq peaks with 20 to
500 reads lie within 30 nucleotides of a sharp rise, while 32%
of peaks with over 500 reads do. (We defined a sharp rise as
having a local correlation of 0.8 or above in tiling data from
rich media.) Most of the peaks with many reads but no corre-
sponding rise in the tiling data lie within highly expressed
regions and probably reflect degradation products. In some

cases, there are multiple 5� RNA-Seq peaks near each other
and the tiling data show a more complicated or gradual rise,
which might reflect multiple start sites, but we cannot rule out
the possibility that they represent degradation products.

We combined our 5� RNA-Seq data with the sharp rises in
rich media to obtain a preliminary set of 1,618 transcription
starts that were likely to be genuine. (For comparison, based
on the revised operon predictions below, there should be
around 1,900 transcript starts in D. vulgaris Hildenborough.)
We searched upstream of these starts for promoter motifs. As
shown in Fig. 3, we were able to reconstruct the motifs for �70,
rpoN (also known as �54) and fliA (also known as �28). Fur-
thermore, we found a site at two-thirds of these locations,
which is the same rate as seen in a compilation of transcript
starts in E. coli (22). Thus, the transcript starts that we iden-
tified arose primarily from the initiation of transcription and
not from RNA degradation. The D. vulgaris Hildenborough
genome contains one other sigma factor, rpoH, but we were
unable to detect this motif, and we did not detect transcription
starts at predicted rpoH-dependent promoters (6, 34), so we
suspect that rpoH does not have significant activity under our
growth conditions.

To predict which of the 5� RNA-Seq peaks correspond to
genuine transcription starts, we used a machine-learning ap-
proach that took into account the number of reads, the corre-

FIG. 3. Promoter motifs. We show motifs from analyses of the �40 to �1 regions of 1,618 moderate-confidence D. vulgaris Hildenborough
transcription starts as determined using BioProspector (27) (A) and MEME (4) (B, C, E, and G). For comparison, we also show a motif determined
by analysis of 370 known promoters in E. coli K-12 (22) with BioProspector (D) and motifs from RegPrecise (34) (F and H) for alternative
Desulfovibrio sigma factors that were inferred by comparative genomics. Each motif is shown as a sequence logo; at each position, the height of
a nucleotide is proportional to its information content in bits (11).
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spondence with tiling data, and the presence of a promoter-like
sequence. Because we did not have any known promoters with
which to train our predictor, we used high- and low-confidence
subsets of the data, according to the other features, to train a
model for each feature. We then combined the models into a
naive Bayesian classifier. The classifier selected 1,124 of the
13,822 peaks as high-confidence transcription starts with a log
odds ratio of 4 or higher (e4 � 55). When we randomized the
data, the same model predicted just 31 promoters, so we esti-
mate that 3% (31/1,124) of these transcription starts represent
false positives.

When we compared the locations of these high-confidence
transcription starts in the 5� RNA-Seq data and the tiling data,
the 5� RNA-Seq peak tended to be at �20 relative to the
center of the rise in the tiling data (Fig. 2E). The central
tendency confirms that most of the transcription starts are
genuine. If 60 nucleotides of hybridization were required for a
strong signal, we would expect a overlap of �30, so the location

at �20 suggests that hybridization of 50 of 60 nt suffices for a
signal.

Revising gene models. The tiling data suggested that there
were numerous errors in the genome annotation, as 246 puta-
tive proteins from the original annotation were expressed on
the wrong strand and lacked homology to other proteins (see,
e.g., DVU1640 and DVU1642 in Fig. 1). Furthermore, we
sometimes found open reading frames with homology support
on the expressed strand (see, e.g., the DUF497 genes in Fig. 1).
We found other suspicious patterns in the tiling data as well,
such as strong terminators within putative genes, genes that
were expressed only near their 3� ends, and genes whose tran-
scripts began downstream of their annotated start codons (Fig.
4). Together, these results showed that we needed to recon-
sider the genome annotation.

To complement the transcript data, we used peptide spectra
for D. vulgaris Hildenborough from shotgun proteomics deter-
minations within the ENIGMA project. As shown in Fig. 2F,

FIG. 4. Examples of modified protein annotations. We show data and modifications to the annotation for three regions of the genome. Dashed
vertical lines show the extents of the original gene annotations; the other plotting symbols are as described for Fig. 1. The left panel shows that
DVU1473 contains a terminator, while an ORF in another reading frame is expressed from start to stop. That ORF does not belong to a known
family but is homologous to other proteins, so it replaced DVU1473 in our annotation. The middle panel shows that only the C-terminal part of
DVU1966 is transcribed; the upstream-most start codon that is consistent with the data shown would reduce the ORF to just 22 amino acids, so
we removed it from our annotation. The right panel shows that DVU1344, as originally annotated (horizontal dotted line), begins upstream of its
promoter; we selected a new start codon downstream of the promoter.
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most genes from known families were detected in the tiling
data, and a majority of the genes from known families were
also detected by proteomics. The other genes, which are harder
to annotate, were much more likely to be detected by tiling
than by proteomics, probably because the proteins encoded by
those genes tend to be less highly expressed and shorter, which
reduced the number of peptides that could be detected. We
also reexamined the annotation of the genome by homology, as
additional genomes from the (rather broad) genus of Desulfo-
vibrio have been sequenced since the original annotation and
as there have also been improvements to the gene family da-
tabases. We used two automated gene finders that consider
homology information (CRITICA [3] and RAST [2]) as well as
several types of BLAST.

Overall, we made 505 corrections to the genome annotation.
We removed 255 putative proteins: 154 were expressed pri-
marily on the wrong strand, 44 were expressed (in the tiling
data) only for a small 3�-terminal portion, 31 had internal
terminators, and 26 were replaced by overlapping ORFs in
another reading frame that had homology or proteomics sup-
port. Proteins with suspicious transcript structures were re-
tained if they were detected by proteomics or had homology
support, but this was not common. For example, of the putative
protein-coding genes that were expressed primarily on the
wrong strand, just 22% had homology support (compared to
90% of other proteins) and just 6% were detected by proteom-
ics (compared to 55% of other proteins). As shown in Fig. 5A,
most of the removed proteins were relatively short, with a
median length of 54 amino acids, but we removed 43 putative
proteins of 100 or more amino acids. We added 128 proteins,
including 62 that were identified by both CRITICA and RAST.
Of the new proteins, 32 (including 9 signaling or regulatory
proteins, 3 stress resistance proteins, and 2 enzymes) had in-
formative annotations. A total of 13 of the new proteins were
not identified by any gene calling program or were originally
annotated as pseudogenes; 4 of the 13 were detected by pro-
teomics and their spectra were validated by inspection (Liu and
Redding-Johanson, personal communication), and the other 9
had strong homology support. Finally, we changed 123 start
codons. We moved 35 of them upstream, mostly due to pro-

teomics. A few start codons were moved well upstream after
examining genes with long gaps between the transcript start
and the start codon and checking for conservation of the in-
tervening sequence. We moved 88 start codons downstream,
usually because the gene’s transcript started downstream of the
original start codon. As shown in Fig. 5B, many of the changes
to the start codon were quite large, with a median absolute
difference of 37 amino acids. Overall, 80% of proteins in our
revised annotation were covered from start codon to stop
codon by transcripts in the tiling data, and 54% of proteins
were detected in the proteomics data.

We were surprised at extent of these corrections and the lack
of agreement between the two automated tools. CRITICA
missed 12% of genes in our revised annotation, and RAST
missed 7% of genes in our revised annotation. Among the
genes predicted by both tools, the start codons differed 32% of
the time. Conversely, 0.9% of CRITICA calls and 5.6% of
RAST calls were not included in our revised annotation and
are likely to represent false positives. As we were rarely able to
correct start codons that were too far downstream, we expect
that many of the start codons in our revised annotation are still
erroneous. An accurate annotation would require proteomics
with higher coverage or targeting to N-terminal peptides (1).

Leaders and UTRs. We identified 5� and 3� untranslated
transcribed regions (UTRs) by checking whether the entire
region between a transcript’s boundary and the nearest gene
was expressed. As discussed above, many transcripts showed
nonspecific ends, which made defining the 3� UTR problem-
atic, so we analyzed only the 3� UTRs for transcripts with
intrinsic terminators. We defined 983 5� UTRs and 494 3�
UTRs.

One surprise was the presence of “leaderless” promoters,
where the transcript began at the first nucleotide of the start
codon. Leaderless transcripts were first identified in archaea,
but they have been identified in genome-wide studies in vari-
ous bacteria, including Geobacter sulfurreducens PCA, which,
like D. vulgaris Hildenborough, is a deltaproteobacterium (41).
However, given the high rate of error in start codon annota-
tions, we wondered whether the leaderless promoters in D.
vulgaris Hildenborough were genuine. We checked the start

FIG. 5. Lengths of proteins. (A) The distribution of lengths of unchanged, removed proteins, and added proteins. Values above 400 are shown
in the rightmost bin at 400. (B) The distribution of changes in length for the 123 proteins whose start codons were modified.
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codons for candidate leaderless promoters from a preliminary
version of our analysis by asking whether homology extended
to the very N-terminal end of the annotation. Of 49 of our
preliminary candidates, 43 were confirmed by BLASTp and 21
of those were further confirmed by alignments to known fam-
ilies. The remaining 6 N-terminal regions were not conserved
and might be erroneous, but most of the leaderless promoters
must be genuine. Our final analysis gave 54 proteins with
leaderless promoters out of the 954 proteins corresponding to
the beginnings of transcripts with clearly defined starts.

As shown in Fig. 6A, the median length of the 5� UTR is 55
nucleotides, but some genes have very long 5� UTRs. Two
operons that are central to sulfate reduction have particularly
long 5� UTRs: dsrABD, which encodes three subunits of the
dissimilatory sulfite reductase, has a 5� UTR of 289 nucleo-
tides, and apsB, which encodes a subunit of adenylylsulfate
reductase, has a 5� UTR of 208 nucleotides. However, in gen-
eral, we could not find a clear pattern for which types of genes
had long 5� UTRs. Among 5� UTRs of over 100 nucleotides for
genes on the main chromosome, about half (106/208) had
some conservation in another strain, D. vulgaris Miyazaki B,
according to the results of a genome alignment (12). (The
Miyazaki B strain is sufficiently divergent from D. vulgaris
Hildenborough that there should be no neutral conservation of
nonfunctional DNA.) This suggests that many of those 5�
UTRs contain functional elements; however, we cannot be
certain that they function as RNA elements rather than as
alternative promoters.

For the 494 genes with a confirmed terminator downstream,
the median length of the 3� UTR was 68 nucleotides (Fig. 6B).
Of 147 3� UTRs of over 100 nt, just 16 contained segments that
were conserved in D. vulgaris Miyazaki B; thus, we predict that
few of those 3� UTRs contain functional sequences.

Finally, we found little evidence of transcribed regions that
are not associated with annotated genes. We found just 26
unannotated transcribed regions with high-confidence promot-
ers, and after removal of the antisense transcripts, this number
dropped to just 4. However, both our experimental protocols
and our analysis methods are probably biased against RNAs of
under 100 nucleotides, so this does not imply that D. vulgaris
Hildenborough lacks small RNAs.

Revising operon structures. Before we began this project,
we had predicted operons from the distances between genes on
the chromosome, how conserved the proximity of the genes
was, whether the genes had similar expression patterns across
a large collection of microarray experiments, and whether they
were likely to have related functions (13, 39). Here, we used
the transcript data to update the operon predictions. We clas-
sified each adjacent pair of genes on the same strand as a
simple operon pair, as a complex operon pair with an internal
operon or internal attenuator, or as a nonoperon pair. (Exam-
ples of operons with internal attenuators or internal promoters
are shown in Fig. S3 in the supplemental material.) We began
with our original predictions (which were intended to deter-
mine whether pairs are ever cotranscribed or not) and reclas-
sified pairs with clear signals in our data. Ambiguous examples
occurred in cases in which there was a weak drop and then a
high-confidence transcription start just downstream of the
drop—this could represent a genuine terminator followed by a
promoter (but the tiling data lack the resolution to distinguish
the drop clearly) or it could represent noise in the tiling data.

Relative to our original predictions, which included 1,558
operon pairs and 838 nonoperon pairs, we reclassified 188
nonoperon pairs as simple operons; we reclassified 14 operon
pairs as nonoperons; we identified 169 complex operon pairs
with internal promoters, about half of which were originally
classified as operons; and we identified 17 complex operon
pairs with internal attenuators, 12 of which were originally
classified as operons. We were surprised at the number of pairs
that were reclassified from nonoperons to simple operons.
These tended to be widely spaced (median separation of 108
nucleotides) and moderately coexpressed (median Pearson
correlation coefficient of 0.19), which explains why they were
classified as nonoperon pairs in our original predictions. The
wide spacing and the moderate coexpression also suggested
that these might contain internal promoters that were missed
by our automated analysis. However, only 30 of these 188 pairs
had potential internal transcript starts, according to our clas-
sifier (log odds values of 0 to 4). Manual examination of 10
randomly selected cases found potential internal promoters for
just 2 of the 10. The weak coexpression could have been due to
internal promoters that are not active under our growth con-

FIG. 6. Lengths of 5� and 3� untranslated regions.
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ditions or to noise in the expression compendium. Compari-
sons of tiling data from a wide range of growth conditions (26)
would be one way to distinguish these alternatives.

Genes that are cotranscribed but also have an intergenic
promoter between them show little coexpression (see Fig. S4 in
the supplemental material). We suspect that this is because we
can identify internal promoters with high confidence only when
they are stronger than the upstream promoter so that the
upstream gene is transcribed only from the upstream promoter
and the downstream gene is transcribed primarily from the
intergenic promoter. When there is an internal promoter that
is within the upstream gene, however, we see much stronger
coexpression (P 	 10�4 [Wilcoxon rank-sum test]). Because
the expression data were collected with 1 to 2 probes per gene
and thus lack spatial resolution, we suspect that this coexpres-
sion is an experimental artifact resulting from the fact that the
probe for the upstream gene hybridizes to the internal tran-
script, which does not include the upstream gene’s start codon
and cannot lead to its expression. Thus, the gene expression
data for the upstream gene are misleading. Knowledge of tran-
script structures would allow better design of gene expression
arrays.

Nonspecific antisense transcription. As mentioned above,
the tiling data suggested weak and potentially nonspecific ex-
pression of the antisense strand of most genes. The 5� RNA-
Seq data confirmed the nonspecific transcription: 1.4% of the
mapped reads began at 3,983 locations within coding regions
on the antisense strand of genes in our updated annotation.
(For comparison, 33% of the reads corresponded to high-
confidence promoters and 15% of the reads began within cod-
ing regions on the sense strand.) We then asked whether these
3,983 antisense transcript starts were located at promoter-like
signals, as would be expected if they were genuine transcripts
and not experimental artifacts (as seen in reference 15). We
considered a weak hit (4 bits or more) to any of the four
promoter motifs to represent a promoter-like site. A total of
35% of the antisense starts, but only 12% of random locations,
were at promoter-like sites (P 	 10�15 [Fisher exact test]). In
contrast, putative starts within the sense strand of coding re-
gions exhibited little enrichment in promoter signals, which
suggests that most of them represent degradation products.

Given that we can detect nonspecific antisense transcription,
we wondered how it differs across genes. Tiling data showed
less antisense expression of genes that are more highly ex-
pressed on this sense strand (Fig. 2C; r � �0.40 [the rank
correlation gave similar results]). If we consider only genes that
are expected to be essential, then the correlation is �0.60 (P 	
10�15), which shows that the effect is not due to misannotated
genes or to genes that are not expressed at all. In contrast, 5�
RNA-Seq analysis showed no effect of sense expression (as
quantified by tiling) on the rate of antisense transcript starts in
reads per kilobase (r � �0.02; P 
 0.2).

To investigate this discrepancy, we looked at the density of
promoter-like sequences. In most prokaryotes, promoter-like
sequences within genes are selected against and occur a bit less
frequently than would expected by chance (18), and we hy-
pothesized that promoter-like sequences would be selected
against more strongly for more highly expressed genes. To
avoid artifacts due to annotation errors or the edges of genes,
we considered only longer genes (300 nucleotides or longer)

that belong to known families. We found that highly expressed
genes contained fewer internal promoter-like sites per kilobase
on the sense strand (Spearman’s rank correlation coefficient;
r � �0.23 [P 	 10�15]). However, expression levels had little
effect on the rate of occurrence of promoter-like sequences on
the antisense strand (r � �0.04; P � 0.06), which is consistent
with the pattern determined by 5� RNA-Seq analysis. Because
the rate of promoter-like sequences on either strand is strongly
correlated with GC content, we also tested the relationship
using partial correlations; the effect of expression levels on
sense-strand promoter motifs remained after controlling for
GC content (partial r � �0.09; P 	 10�15).

We propose that promoter-like sequences on the sense
strand are selected against to prevent expression of truncated
proteins, while transcription on the antisense strand is sup-
pressed by transcription on the sense strand. Because we see
antisense suppression in the tiling data but not in the 5� RNA-
Seq data, it appears that elongation, rather than initiation, is
suppressed. Although a promoter on one strand can suppress
transcription intiation from the opposite strand, that seems to
rely on a specific site where the RNA polymerase pauses (35)
and would not occur in most situations. We do not know what
suppresses the elongation of antisense transcripts for highly
expressed genes. One possibility is that elongation of antisense
transcripts is suppressed because the RNA polymerase back-
tracks when it collides with RNA polymerase on the sense
strand (10). Such collisions would occur more frequently for
highly expressed genes, and the RNA polymerase on the sense
strand might “win” these collisions because translating ribo-
somes occur closely behind the RNA polymerase on the sense
strand and prevent the RNA polymerase from backtracking
(40).

DISCUSSION

Evidence-based annotation of proteins. We identified 505
changes to the protein annotation (corresponding to 15% of
proteins), which were far more than we had expected. We have
also collected transcript data for Desulfovibrio alaskensis G20
and found a similar number of errors in the original annotation
for that species as well (Arkin laboratory, unpublished data;
see also reference 20). For comparison, the annotation of Geo-
bacter sulfurreducens PCA was updated recently using tran-
script data and shotgun proteomics; the updating resulted in
only 144 changes (41). Desulfovibrio genomes are rich in GC,
which increases the number of spurious long reading frames,
and there are relatively few genome sequences for Desulfovib-
rios, which makes comparative gene-finding tools such as
CRITICA less effective, but both of these challenges apply to
G. sulfurreducens as well. Our preliminary analysis suggests
that many plausible corrections to the G. sulfurreducens anno-
tation remain: we found 39 protein-coding genes in the up-
dated annotation that lack homology support, were not in the
proteomics data, and were expressed only on the “wrong”
strand. Nine of these “genes” mask unannotated proteins with
homology support on the opposite strand. As the tiling and
RNA-Seq experiments described in this paper cost less than
sequencing a genome did a few years ago, transcriptomics
could be used broadly to improve genome annotation, but new
tools are needed to automate this process.
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We were also surprised at the number of changes we made
based on the tiling data that, in retrospect, could have been
made based on homology alone. There were 24 proteins that
we removed because they lacked homology support and a
conflicting frame had homology support, and there were 10
proteins with homology support that were missed in the orig-
inal annotation and by both RAST and CRITICA. Neither
RAST nor CRITICA uses the full range of approaches to
detecting protein homology; RAST relies primarily on pairwise
protein comparisons to representatives of known families, and
CRITICA relies on nucleotide BLAST hits. We found addi-
tional proteins by comparing sequences to those of families
with PSI-BLAST (44) or HMMer (http://hmmer.janelia.org/),
which can find highly diverged members of known families, and
also by comparisons to hypothetical proteins that were anno-
tated in other organisms. Faster tools (e.g., HMMer 3 [http:
//hmmer.janelia.org/] and FastBLAST [38]) should allow more
exhaustive searches and hence more accurate automated an-
notation.

Experimental design. We used very-high-resolution mi-
croarrays, with probes every 2 to 4 nucleotides. We had hoped
that such a high density would let us place promoters and
terminators very accurately, but this was not possible because
of non-full-length hybridization to 60-mer probes. The high
density of the arrays was still beneficial, as nearby probes
represent a form of replicates, so that replicate arrays are not
necessary. Still, it would be more cost-effective to use arrays
with probes every 6 to 10 nucleotides. The savings would allow
analysis of samples from more sets of conditions, which should
make it much easier to identify alternate promoters (26) and
would allow the detection of additional transcripts (perhaps a
few percent more transcripts per additional condition) (7).

Another key issue is how best to define precise transcript
boundaries. We found that untargeted RNA-Seq had too much
bias to be useful (data not shown). In contrast, although our 5�
RNA-Seq protocols returned a mixture of true transcript starts
and likely degradation products, we were able to identify 1,124
genuine transcription starts at a false-positive rate of a few
percent by combining the reads with tiling data and sequence
analysis. It is not clear how to identify the precise 3� ends of
bacterial transcripts experimentally, but RNA-Seq protocols
are evolving rapidly.

Implications for analyzing gene regulation. Our revisions to
operon structures, along with the 1,124 transcript starts that we
identified at nucleotide resolution, should aid the elucidation
of gene regulation in D. vulgaris Hildenborough. First, the
transcript structures tell us which promoter(s) controls the
expression of most genes. Second, transcript starts tell us ex-
actly where to look for sigma factor binding sites, and our data
have been used to expand the regulons of the sigma factors
rpoN and fliA (http://regprecise.lbl.gov/RegPrecise/). Third,
because repressing sites tend to overlap the region from �35 to
�1, while activating sites tend to be upstream of the �35 box
(9), promoter locations would help to interpret transcription
factor binding sites. For example, a preliminary analysis of
computationally identified regulatory sites from RegPrecise
suggested that several uncharacterized motifs act as repressors.
We have also used the transcript starts to help us interpret data
on where transcription factors bind in the genome (L. Rajeev
and A. Mukhopadhyay, unpublished data)—these methods

identify broad regions around the binding site, and knowing
where the promoter is helps to focus the search for the motif.

Conclusions. We combined tiling microarrays, 5� RNA-Seq,
and proteomics to reannotate the genes and transcripts of D.
vulgaris Hildenborough. We corrected hundreds of errors in
the genome annotation, but many more errors probably re-
main, particularly in the identification of start codons. We
identified 1,124 transcription starts at nucleotide resolution
and found that D. vulgaris Hildenborough prefers a motif dif-
ferent from that preferred by its E. coli counterpart. Many
transcripts appear to have nonspecific 3� ends. Finally, we
found nonspecific transcription of the antisense strands of pro-
tein-coding genes in both the tiling and the 5� RNA-Seq data;
elongation of these nonspecific antisense transcripts seems to
be suppressed by transcription of the sense strand. All of our
results, including raw data, processed results, modifications to
the annotation, and source code, are available at our website
(http://genomics.lbl.gov/supplemental/DvHtranscripts2011/);
the data are also available at the Gene Expression Omnibus
database (GSE29560).
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