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The genome of Paenibacillus polymyxa M-1 consisted of a 5.8-Mb chromosome and a 360-kb plasmid. Nine
sites were dedicated to nonribosomal synthesis of lipopeptides and polyketides. Eight of them were located at
the chromosome, while one gene cluster predicted to encode an unknown secondary metabolite was present on
the plasmid.

Plant growth-promoting rhizobacteria (PGPR) have been
applied as environmentally friendly alternatives to agrochemi-
cals to improve crop yield and quality (16). The PGPR strains
belonging to Paenibacillus polymyxa (1) promote plant growth
by producing indole-3-acetic acid (IAA) (9) and volatile com-
pounds (14). They are also known to suppress fungal phyto-
pathogens (2, 5–7, 13, 31, 34) and plant-parasitic nematodes
(12, 29). Due to its action as a biocontrol agent, P. polymyxa
produces several peptide antibiotics (3, 8, 10, 11, 15, 18, 20,
22–24, 26–28, 32) which might be important in control of plant
pathogens (25).

Strain M-1, isolated from surface-sterilized wheat root tis-
sues, was identified by 16S rRNA gene sequencing and by
physiological and biochemical analysis as being P. polymyxa
(33). It is capable of colonizing root surfaces of wheat, pro-
moting wheat growth, and suppressing wheat sharp eyespot
disease. In addition, it acts antagonistically against several phy-
topathogens in vitro by producing antibiotics, including fusari-
cidin and polymyxin, and by secreting hydrolytic enzymes, for
example, endo-�-1,3-glucanase.

Genomic DNA prepared from M-1 was used for construc-
tion of a 3-kb-long paired-end library with a GS FLX library
preparation kit in combination with GS FLX paired-end
adaptors (both from Roche, Mannheim, Germany) accord-
ing to the manufacturer’s protocol. The reads were assem-
bled using the GS De Novo Assembler software program,
and the resulting scaffolds were oriented based on the oc-
currence of unique single nucleotide polymorphisms (SNPs)
in the repetitive rRNA (RRN) contigs. In total, 869,907

reads, including 312,451 paired reads, were assembled with
a total of 185,008,620 bp. Utilization of the paired-end in-
formation allowed scaffolding of the 55 contigs larger than
500 bp into 16 scaffolds containing 45 contigs. Gap closure
was done by long-range PCR (using Phusion polymerase;
New England BioLabs, Frankfurt [Main], Germany) and
subsequent Sanger sequencing (IIT Biotech, Bielefeld, Ger-
many). Prediction of protein-encoding sequences was ini-
tially accomplished with the REGANOR server (17). Man-
ual and automatic annotation was done using the annotation
software program GenDB 2.4 (19).

The complete genome sequence of M-1 consisted of a cir-
cular 5,864,546-bp chromosome and a 366,576-bp plasmid,
with G�C values of 54.58% and 37.61%, respectively. Five
thousand sixty-one genes (CDS), 14 rRNA operons, and 110
tRNAs resided in the chromosome, while 345 genes were lo-
cated on the plasmid. Many important genes were found to be
plasmid linked, such as those encoding ribosomal proteins and
genes involved in replication, repair and methylation, tran-
scription, translation initiation, metabolism of amino acids and
carbohydrates, transport, and drug resistance. In addition, sev-
eral genes related to transposases, phage proteins, and conju-
gation indicated events of horizontal gene transfer in the rep-
licons (4).

Nine sites involved in nonribosomal synthesis of secondary
metabolites were identified. One gene cluster, 38 kb in size,
resided on the plasmid, while the others were present in the
chromosome. About 4.5% of the whole M-1 genome was de-
voted to nonribosomal synthesis of secondary metabolites, in-
cluding polymyxin and fusaricidin. This is similar to findings for
Bacillus subtilis (30) but lower than the percentages for Bacillus
amyloliquefaciens FZB42 and Streptomyces avermitilis, reported
as being 8.5% and 6.4%, respectively (4, 21).

Nucleotide sequence accession numbers. The complete se-
quences of the Paenibacillus polymyxa M-1 main chromosome
and of the Paenibacillus polymyxa M-1 plasmid pPPM1a have
been deposited in EMBL (accession numbers HE577054 and
HE577055, respectively).
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