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Hijacking Cortical Motor Output with Repetitive

Microstimulation
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Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, and 2Unit of Physiology,

Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland

High-frequency repetitive microstimulation has been widely used as a method of investigating the properties of cortical motor output.
Despite its widespread use, few studies have investigated how activity evoked by high-frequency stimulation may interact with the
existing activity of cortical cells resulting from natural synaptic inputs. A reasonable assumption might be that the stimulus-evoked
activity sums with the existing natural activity. However, another possibility is that the stimulus-evoked firing of cortical neurons might
block and replace the natural activity. We refer to this latter possibility as “neural hijacking.” Evidence from analysis of EMG activity
evoked by repetitive microstimulation (200 Hz, 500 ms) of primary motor cortex in two rhesus monkeys during performance of a
reach-to-grasp task strongly supports the neural hijacking hypothesis.

Introduction

Repetitive intracortical microstimulation (ICMS) is a popular
and highly useful tool for studying the organization and function
of cortical motor areas (Asanuma and Rosén, 1972; Andersen et
al., 1975; Kwan et al., 1978; Macpherson et al., 1982; Weinrich
and Wise, 1982; Lemon et al., 1987; Sato and Tanji, 1989; Schmidt
and MclIntosh, 1990; Donoghue et al., 1992; Schieber and Deuel,
1997; Baker et al., 1998; Graziano et al., 2002; Schmidlin et al.,
2004; Dancause et al., 2006; Burish et al., 2008). It is suprathresh-
old and capable of evoking movements that can be easily detected
as muscle twitches or whole-limb movements. Repetitive ICMS
has traditionally been applied as a short-duration train (RS-
ICMS), typically consisting of 10 stimulus pulses at a frequency of
330 Hz, 30 ms duration (Asanuma and Rosén, 1972). This form
of repetitive ICMS has been used extensively to map the motor
output representation of motor cortex (Asanuma and Rosén,
1972; Andersen et al., 1975; Ethier et al., 2006; Burish et al., 2008).
The duration of this form of ICMS produces only brief joint
movements and muscle twitches.

To produce stimulus-evoked movements with durations
more closely matching natural movements, Graziano et al. (2002)
introduced repetitive long-duration ICMS (RL-ICMS) of cortical
motor areas. RL-ICMS typically consists of high-frequency trains
of stimuli (200 Hz) lasting 500 ms. An important characteristic of

Received Dec. 5, 2010; revised July 19, 2011; accepted July 25, 2011.

Author contributions: D.M.G. and P.D.C. designed research; D.M.G., H.M.H., A.B.-S., and P.D.C. performed re-
search; D.M.G., H.M.H., AB.-S., and P.D.C. analyzed data; D.M.G., H.M.H., A.B.-S., and P.D.C. wrote the paper.

This work was supported by NIH Grant NS051825 (P.D.C.), NIH Center Grant HD02528 (P.D.C.), and University of
Kansas Medical Center Biomedical Research Training Grant (D.M.G.). We thank lan Edwards for technical assistance.

Correspondence should be addressed to Dr. Paul D. Cheney, University of Kansas Medical Center, Department of
Molecularand Integrative Physiology, 3901 Rainbow Boulevard, Mailstop 3043, Kansas City, KS 66160-7336. E-mail:
pcheney@kumc.edu.

D. M. Griffin’s present address: Systems Neuroscience Institute, University of Pittsburgh School of Medicine,
Pittsburgh, PA 15261.

DOI:10.1523/JNEUR0SCI.6322-10.2011
Copyright © 2011 the authors  0270-6474/11/3113088-09%15.00/0

RL-ICMS-evoked movements is their common end-point posi-
tion regardless of the starting position of the arm (Graziano et al.,
2002, 2005). For example, for a particular cortical site, stimula-
tion may produce an arm movement ending with the hand in
front of the monkey’s torso regardless of the starting position of
the hand in the work space surrounding the monkey. Different
sites in motor cortex produce different end-point positions of the
hand.

Although ICMS methods are used extensively, the mechanism
underlying stimulus-evoked muscle activity is not understood in
terms of its interaction with natural background activity. One
logical possibility is that the stimulus-evoked activity of cortico-
spinal neurons sums with the natural, intrinsic activity. Because
corticospinal neurons have direct effects on the activity of mo-
toneurons, changes in their activity will be expressed as changes
in EMG activity. Accordingly, if stimulus-evoked cortical activity
sums with existing natural activity, then the stimulus-evoked
EMG activity would be expected to add to the active movement-
related background activity present at the time stimulation was
applied. However, our data demonstrate that this is not the case.
Here, we present evidence that ICMS-evoked EMG activity does
not sum with the existing background activity; rather, ICMS-
evoked activity eliminates the background EMG activity and sub-
stitutes a new level of EMG activity that is entirely stimulus driven
and independent of the existing level of voluntary activity. Our
data support a model in which repetitive ICMS blocks natural
afferent input to corticospinal neurons and replaces it with
stimulus-evoked activity. The results have important implica-
tions for the interpretation of experiments in which high-
frequency trains of stimulation are applied to cerebral cortex.

Materials and Methods

Behavioral tasks. RL-ICMS (100 biphasic stimulus pulses at 200 Hz, 500
ms train duration, 60 and 120 wA stimulus intensities) was applied to the
left M1 of two male rhesus monkeys (Macaca mulatta; ~10 kg, 9 years
old) while they performed four behavioral tasks. The tasks were as fol-
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Figure 1. Tasks used to study responses to RL-ICMS. A, Reaching task; circles depict hand
starting positions where RL-ICMS was applied. Starting hand positions were achieved either by
prompting the monkey to reach for peanuts (circles numbered 1-5) or by rewarding the mon-
key for grasping a handle attached to a 3-D positioning device (circles numbered 6-9). B,
Isometric wrist task depicting flexion and extension positions.

lows: (1) reaching with the right hand for a food reward, (2) reaching
with the right hand for a handle placed in various positions within the
workspace (Fig. 1 A), (3) a concentric wrist task in which position alter-
nated between flexion and extension targets, or (4) an isometric wrist
task in which the wrist was locked into place at two different positions
(Fig. 1 B). During each data collection session, the monkey was seated in
a custom-built primate chair inside a sound-attenuating chamber. The
left forearm was restrained during task performance. All tasks were per-
formed with the right arm/hand.

Hand starting positions of the reaching tasks are illustrated in Figure
1 A. Peanuts were offered in various positions around the monkey’s work
space (numbers 1-5; Fig. 1A). RL-ICMS was delivered as the monkey’s
hand entered the target starting position, but before the monkey grasped
the reward. Alternatively, RL-ICMS was delivered as the monkey gripped
ahandle positioned to serve as an indicator of starting hand position. The
handle was locked in place at up to four different positions within the
monkey’s work space (numbers 6-9; Fig. 1 A).

For the wrist tasks (Fig. 1 B), the monkey’s lower and upper arm were
restrained. The hand, with digits extended, was placed in a padded ma-
nipulandum that rotated around the wrist. The wrist was aligned with the
axis of rotation of the torque wheel to which the manipulandum was
attached. The monkey was required to make self-paced step tracking
movements of the wrist alternating between flexion and extension posi-
tion zones. Both position zones had an inner boundary of 20° and an
outer boundary of 40°. RL-ICMS was delivered at the beginning of the
target hold period. For the isometric wrist task, the manipulandum was
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locked in place at two different wrist positions, including 30° in flexion
and 30° in extension. The monkey was required to generate ramp and
hold trajectories of wrist torque alternately between flexion and exten-
sion target zones. The inner and outer boundaries of the torque window
were 0.025 N * m and 0.05 N * m, respectively, for flexion and 0.008 N + m
and 0.025 N * m, respectively, for extension. RL-ICMS was delivered at
the beginning of the target hold period and was limited to once every 3—4
trials to ensure successful completion of holding within the target zone
and delivery of an applesauce reward on a sufficient number of trials to
maintain the monkey’s interest.

Surgical procedures. After training, a 30 mm inside diameter titanium
chamber was stereotaxically centered over the forelimb area of M1 on the
left hemisphere of each monkey and anchored to the skull with 12 tita-
nium screws (Stryker Leibinger) and dental acrylic (Lux-it). Threaded
titanium nuts (Titanium Unlimited) were also attached over the occipital
aspect of the skull using 12 additional titanium screws and dental acrylic.
These nuts provided a point of attachment for a flexible head restraint
system used during data collection sessions. The chambers were centered
at anterior 16 mm, lateral 18 mm (Monkey V) and anterior 16 mm,
lateral 22 mm (Monkey A), at a 30° angle to the midsagittal plane.

EMG activity was recorded from 24 muscles of the contralateral fore-
limb with pairs of insulated, multistranded stainless steel wires (Cooner
Wire) implanted during an aseptic surgical procedure (Park et al., 2000).
Pairs of wires for each muscle were tunneled subcutaneously from an
opening above the elbow to their target muscles. The wires of each pair
were bared of insulation for ~ 2-3 mm at the tip and inserted into the
muscle belly with a separation of ~5 mm. Implant locations were con-
firmed by stimulation through the wire pair and observation of appro-
priate muscle twitches. EMG connector terminals (ITT Cannon) were
affixed to the upper arm using medical adhesive tape. Following surgery,
the monkeys wore Kevlar jackets (Lomir Biomedical) reinforced with
fine stainless steel mesh (Sperian Protection Americas) to protect the
implant. EMG activity was recorded from five shoulder muscles: pecto-
ralis major (PEC), anterior deltoid (ADE), posterior deltoid (PDE), teres
major (TMA]J), and latissimus dorsi (LAT); seven elbow muscles: biceps
short head (BIS), biceps long head (BIL), brachialis (BRA), brachioradia-
lis (BR), triceps long head (TLON), triceps lateral head (TLAT), and
dorsoepitrochlearis (DE); five wrist muscles: extensor carpi radialis
(ECR), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), flexor
carpi ulnaris (FCU), and palmaris longus (PL); five digit muscles: exten-
sor digitorum communis (EDC), extensor digitorum 2 and 3 (ED23),
extensor digitorum 4 and 5 (ED45), flexor digitorum superficialis (FDS),
and flexor digitorum profundus (FDP); and two intrinsic hand muscles:
abductor pollicis brevis (APB) and first dorsal interosseus (FDI).

All surgeries were performed under deep general anesthesia and asep-
tic conditions. Postoperatively, the monkeys were given an analgesic (bu-
prenorphine 0.5 mg/kg every 12 h for 3—4 d) and antibiotics (penicillin
G, benzathine/procaine combination, 40,000 TU/kg every 3 d). All pro-
cedures were in compliance with the guidelines from the Association for
Assessment and Accreditation of Laboratory Animal Care (AAALAC)
and the Guide for the Care and Use of Laboratory Animals, published by
the U.S. Department of Health and Human Services and the National
Institutes of Health.

Data collection. Sites in M1 were stimulated using glass and Mylar-
insulated platinum-iridium electrodes with impedances ranging from
0.5 to 1.5 M{) (Frederick Haer & Co.). The electrode was positioned
within the chamber using an x—y-coordinate manipulator and was ad-
vanced at approximately a right angle into the cortex with a manual
hydraulic microdrive (Frederick Haer & Co.). Rigid support for the elec-
trode was provided by a 22 gauge guide tube (Small Parts) inside of a
25-mm-long, 3-mm-diameter stainless steel post that touched the sur-
face of the dura.

During electrode penetrations, the first cortical unit activity was noted
and the electrode was lowered 1.5 mm below this point to layer V. Greater
depths were required when the electrode track was in the bank of the
precentral gyrus. To distinguish layer V from more superficial layers,
particularly in the bank of the precentral gyrus, neuronal activity was
evaluated for the presence of large action potentials that were modulated
with the task. Stimulus-triggered averages (StTAs) were also collected
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and evaluated for the presence of both clear and robust effects in averages
of EMG activity (15 wA stimulus intensity at 15 Hz). Individual stimuli
were symmetrical biphasic pulses: a 0.2 ms negative pulse followed by a
0.2 ms positive pulse. EMG activity was generally filtered from 30 Hz to 1
kHz, digitized at a rate of 4 kHz, and full-wave rectified.

StTAs were compiled over a 60 ms epoch, including 20 ms before the
trigger to 40 ms after the trigger. Mean baseline activity and the SD of
baseline EMG activity was measured from the pretrigger period typically
consisting of the first 12.5 ms of each average. StTAs were considered to
have a significant poststimulus facilitation (PStF) if the points of the
record crossed a level equivalent to 2 SD of the mean of the baseline EMG
for a period =0.75 ms (3 points) or more (Park et al., 2001). Note that an
effect with a width of 0.75 ms at the peak would typically have a much
longer duration, in the range of 3—4 ms, at its base. StTAs with clear and
robust effects typically had PStF peaks >4 SD of baseline mean activity.

Assessment of stimulus-triggered averages. StTAs were collected (15 nA
stimulus intensity at 15 Hz, symmetrical biphasic pulses) at identified
layer V sites in forelimb M1. The assessment of StTA effects was based on
averages of at least 500 trigger events. Segments of EMG activity associ-
ated with each stimulus were evaluated and accepted for averaging only
when the mean of all EMG data points over the entire 60 ms epoch was
=5% of full-scale input. This prevented averaging segments in which
EMG activity was minimal or absent (McKiernan et al., 1998). EMG
recordings were tested for cross talk by computing EMG-triggered aver-
ages (Cheney and Fetz, 1980). This procedure involved using the EMG
peaks from one muscle as triggers for compiling averages of rectified
EMG activity from that muscle and all other muscles. Most muscles
showed no evidence of cross talk. However, in muscles that did have
cross-talk peaks, we still accepted the effect as valid if the ratio of post-
stimulus facilitation (PStF) between the test and trigger muscles ex-
ceeded the ratio of their cross-talk peaks by a factor of two or more (Buys
et al., 1986). Based on this criterion, none of the effects obtained in this
study were eliminated.

RL-ICMS-evoked EMG activity. Layer V sites with clear and robust
StTA effects in forelimb muscles were identified and selected for data
collection with RL-ICMS. RL-ICMS consisted of a train of 100 symmet-
rical biphasic stimulus pulses at 200 Hz (500 ms train) using either 60 or
120 pA intensity. Although high relative to threshold for twitch re-
sponses, intensities in this range were necessary to produce complete
movements to consistent end-points. It should also be noted that these
intensities did not produce a “ceiling effect” in EMG activity because
further increases in intensity produced further increases in the level of
EMG activity.

The assessment of effects was based on averages of 4—8 stimulus trains.
Averages of RL-ICMS-evoked EMG activity were compiled over a 1.2 s
epoch, including 200 ms before the trigger to 1000 ms after the trigger.
Mean baseline activity was measured from the pretrigger period typically
consisting of the first 100 ms of each average. The first pulse of each train
was used as a trigger to compute averages of RL-ICMS-evoked EMG
activity. The magnitude of the EMG response was expressed as the mean
EMG level present from the onset to the termination of the response
identified as the points where the record crossed a level equal to 2 SD of
the baseline points.

Imaging. Structural MRIs were obtained from a 3 tesla Siemens Allegra
system. Images were obtained with the monkey’s head mounted in an
MRI compatible stereotaxic apparatus so the orientation and location of
the cortical recording chamber and electrode track penetrations could be
determined. Two-dimensional renderings of experimental sites were
constructed for each monkey. The method for flattening and unfolding
cortical layer V in the anterior bank of the central sulcus has been previously
described in detail (Park etal., 2001). Briefly, the cortex was unfolded and the
locations of experimental sites were mapped onto a two-dimensional corti-
cal sheet based on the electrode’s depth and x—y-coordinate, known archi-
tectural landmarks, MRI images and observations noted during the cortical
implant surgeries.

Results

We obtained data from the left M 1 cortex in two rhesus monkeys.
RL-ICMS (100 biphasic stimulus pulses at 200 Hz, 500 ms train

Griffin et al. o ICMS Hijacks Cortical Motor Output

duration)-triggered averages of EMG activity were collected at a
total of 42 sites while the monkeys performed a whole-limb
reaching task or an isolated wrist movement task (Fig. 1). We
used stimulus intensities that produced consistent hand end-
point positions around the monkey’s workspace (60 and 120
1A). The data included 14 sites in monkey V and 28 sites in
monkey A. A total of 2736 RL-ICMS-triggered averages of EMG
activity were analyzed yielding 1615 averages in which RL-ICMS
had a significant effect on EMG activity. Most of these produced
an increase in the existing level of EMG activity regardless of the
initial active movement conditions (starting hand position).
However, 5% of effects (82/1615) were instances in which RL-
ICMS applied to the same cortical site appeared to produce op-
posite effects (suppression or excitation) depending on the initial
level of EMG activity. At starting hand positions where back-
ground EMG level was high, RL-ICMS reduced EMG activity.
While at other positions, where background EMG activity was
low, RL-ICMS increased EMG activity. Although data from all
sites are relevant, sites where ICMS produced opposite effects
depending on the prestimulus levels of EMG activity were partic-
ularly powerful in revealing a fundamental characteristic of
ICMS-evoked cortical activation.

RL-ICMS appears to produce opposing muscle responses
(suppression in one case and excitation in the other) depending
on the prestimulus level of voluntary EMG activity (records 1-4;
Fig.2). The monkey illustrations at the top of each panel show the
starting hand positions (also see Fig. 1) used to produce different
levels of background EMG activity. The examples were derived
from two cortical sites (50A1—upper panel, 41A1—lower panel)
and three muscles (LAT, DE, TLON). Column A illustrates the
condition in which RL-ICMS (shaded area) produced increases
in EMG activity from a relatively low initial prestimulus baseline
level. Column B illustrates the condition in which RL-ICMS pro-
duced decreases in EMG activity from a relatively high initial
prestimulus baseline level. Column C contains superimposed
EMG records from columns A and B. At the cortical site tested in
the upper panel, RL-ICMS consistently drove the hand to a final
end-point position near the monkey’s abdomen regardless of the
starting position. In this example, RL-ICMS produced small but
consistent increases in EMG activity of LAT and DE when the
hand was near the mouth (column A) and background (pre-
stimulus) EMG activity was low. In contrast, when RL-ICMS was
applied with the hand centered near the waist and background
EMG activity was high, stimulation produced what appears to
be a profound suppression of EMG activity. Clearly, stimulus-
evoked activity is not summing with the ongoing natural
movement-related activity. Rather, the data suggest that a process
of elimination and substitution is occurring. The large increase in
activity shortly following termination of the stimulus is resump-
tion of voluntary EMG activity. The lower example shows similar
results for another cortical site and two muscles. At this site,
RL-ICMS drove the hand to a final end-point position near the
monkey’s chest. RL-ICMS produced an increase in EMG activity
from baseline when the hand started at position 8 (column A)
and a decrease in activity when the hand started at position 7
(column B). However, in both examples, the overall mean level of
stimulus-driven EMG activation was very similar regardless of
starting hand position. For the cortical site in the upper panel, the
mean levels of EMG activity during stimulation at the two start-
ing hand positions differed by 9.7% for LAT and only 4% for DE.
For the lower panel, the mean differences were 26% for TLON
and 16% for DE. However, it is important to note that by the end
of the stimulus train, the two EMG records show identical levels
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Figure 2.  Examples illustrating “hijacking” of cortical output by high-frequency (200 Hz),
long-duration (500 ms) repetitive stimulation (RL-ICMS) at two cortical sites (upper panel: 120
A and lower panel: 60 wA). Gray shading represents the duration of the stimulus (Stim.) train
(500 ms). 4, RL-ICMS-evoked EMG activity when stimulation was applied in the presence of a
low level of prestimulus background (bkg.) EMG activity. B, RL-ICMS-evoked EMG activity when
stimulation was applied in the presence of a high level of prestimulus background EMG activity.
€, Superimposition of EMG records from Columns (Col.) A and B. See Figure 1 for starting hand
positions. Corresponding records in columns A and B are displayed at the same scale.

of activity. In fact, it is striking how similar the basic patterns of
stimulus-driven EMG activity are at the two different starting
positions, despite the fact that in one case the stimulus-evoked
activity falls from a high preexisting EMG level while in the other
case it rises from a low preexisting EMG level. This is evident in
column C, in which the EMG records corresponding to the two
starting positions are superimposed. For example, LAT (upper
panel) shows a ramp increase pattern during the stimulus train in
both EMG records. TLON (lower panel) shows a ramp decrease
pattern during the stimulus train in both EMG records. In the
records for DE (lower panel), the RL-ICMS-evoked activity pattern
remains tonic throughout the stimulus train. Most importantly, in
all cases the records are virtually superimposable, particularly near
the end of the stimulus train.

Based on the data in Figure 2, the effect of stimulation from
the same cortical site appears to be excitation at one hand posi-
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Figure3. Relationship between RL-ICMS-evoked mean EMG levels at two different starting
hand positions for 41 cortical site—muscle pairs that produced opposing effects on EMG activity.
The black line i the linear regression line. Dotted lines are 95% confidence intervals. The gray
line hasaslope = 1.The regression line slope, correlation coefficient ( R), and p value are given.
EMG activity is in arbitrary units.

tion and suppression at another hand position. However, in both
cases the same level of EMG activity was achieved during stimu-
lation, suggesting that the stimulus-evoked activity did not switch
between excitation and suppression depending on the starting
position of the hand, but rather that high-frequency stimulation
eliminated the natural movement-related activity of corticospi-
nal neurons and substituted activity that was solely stimulus
evoked. We refer to this as “hijacking” of cortical output.

We further plotted RL-ICMS-evoked EMG activity level at
one starting hand position against the EMG activity level at the
second hand position for all 41 cortical site—muscle pairs that
produced opposing qualitative effects (Fig. 3). The scatter plot
has a correlation coefficient of 0.92 (p < 0.001) and a regression
slope of 0.99, demonstrating that RL-ICMS evoked nearly the
same level of EMG activity regardless of the starting hand posi-
tion or the prestimulus level of EMG activity. RL-ICMS forced a
new level of EMG activity that was independent of background
EMG activity.

Cortical site—-muscle pairs in which stimulation evoked an
intermediate level of EMG activity, between lower and higher
voluntary levels (Fig. 2), provide the most compelling evidence
for RL-ICMS hijacking of cortical motor output. Although there
were only 41 of these cortical site—muscle pairs (Fig. 3), all 557
additional site—-muscle pairs demonstrate the same principle. As
with opposite stimulus-evoked responses, stimulation at these
additional sites evoked a level of EMG activity that did not sum
with the prestimulus active movement-related level of back-
ground EMG. Rather, stimulation produced the same level of
EMG activity regardless of the prestimulus level, even when there
was greater than a 100% difference between the two prestimulus
activity levels (Fig. 4). The data show effects of RL-ICMS on
forearm extensor (blue traces) and flexor (red traces) muscles at
one cortical site when stimulation was applied with the starting
position of the wrist in extension (Fig. 4 A) and flexion (Fig. 4 B).
Stimulation was applied during the period indicated by gray
shading. The black record is wrist position, which reflects a com-
bination of voluntary and RL-ICMS-generated forces. The wrist
position record shows a transient movement toward flexion after
the start of the stimulus train (Fig. 4A), which we attribute to a
dominant initial burst of flexor muscle activity while the wrist
was extended. However, for both starting wrist positions (30°
extension and 30° flexion), RL-ICMS either extended the wrist
(Fig. 4B) or maintained the wrist in extension (Fig. 4A). As ex-
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Figure4. RL-ICMS-evoked EMG levels in wrist muscles. Extensor (blue traces) and flexor (red
traces) muscle activity at a single cortical site obtained while the monkey performed a concen-
tric wrist movement task. The monkey drawings below each set of records show the position of
the wrist before RL-ICMS and at its termination. RL-ICMS was applied with wrist extended (ext.)
(A) and flexed (flex.) (B). Gray shading represents the 500 ms period where RL-ICMS (Stim.) was
applied. Wrist extensor EMG record is the sum of EDC, ED23, ED4S5, ECR, and ECU; the flexor EMG
record is the sum of FDS, FDP, FCR, FCU, and PL. The black trace is wrist position. EMG amplitude
is quantified as the percentage of maximum observed within each average record. However, to
facilitate comparison of EMG levels obtained under extension versus flexion, the absolute level
of EMG activity in microvolts is also given for the peak activity during stimulation.

pected, prestimulus wrist extensor muscle activity was relatively
high when the monkey was actively holding the wrist in an ex-
tended position (blue record; Fig. 4A) and low when holding in a
flexed position (blue record; Fig. 4B). Most importantly, RL-
ICMS drove extensor muscle activity to the same absolute level
during stimulation (827 wV) regardless of position-related dif-
ferences in the prestimulus level of activity (compare the peaks of
the blue records in Fig. 4A, B). The increase from baseline with
the wrist in extension was 532 wV (Fig. 4A) compared to 774 wV
with the wrist in flexion (Fig. 4 B). If stimulus-evoked activity had
simply summed with existing voluntary EMG activity, the EMG
level attained during stimulation should have been much larger
when prestimulus EMG was high (Fig. 4A) than when it was low
(Fig. 4B); but instead the final levels were nearly the same. The
same result was obtained for each of the individual extensor mus-
cles that were summed together to yield the blue records (Fig. 4).
These results demonstrate that the phenomenon of replacement
(hijacking) is a consistent feature of cortical activation with high-
frequency ICMS and is not limited to sites where ICMS produces
opposing responses depending on the prestimulus baseline
activity.

Flexor muscle activity (red trace; Fig. 4) responded oppositely
to stimulation relative to the prestimulus EMG level. This is an-
other example of the type of response illustrated previously (Fig.
2). When the wrist was in extension (Fig. 4A) and flexor EMG

Griffin et al. o ICMS Hijacks Cortical Motor Output

N
o

Median =21.5 ms

N
i

Number of EMG Effects
S o

(%]

0 IHO M o [y
0 20 40 60 80 100 120 140 160 180 200
Onset Latency (ms) T
Mininum
Voluntary
Reaction
Time

Figure5.  Distribution of stimulus-evoked EMG onset latencies. Onset latency was measured
relative to the stimulus train onset. Minimum voluntary reaction time to a somatosensory
stimulus is given as 180 ms (Nelson et al., 1990; Naito et al., 2000).

activity was low, stimulation produced a large increase in activity.
In contrast, when the wrist was in flexion and flexor activity was
high, stimulation decreased activity (Fig. 4 B). However, as with
previous examples (Fig. 2), the stimulus-driven level of activity
was very similar regardless of the starting conditions (358 wV in
Fig. 4A vs 383 wV in Fig. 4B). The stimulus-evoked level of ac-
tivity did not sum with prestimulus voluntary activity. Rather, a
new level of activity was attained during stimulation that was
independent of prestimulus conditions.

Could the responses to stimulation include a voluntary reac-
tion to the stimulus? For instance, could the decrease in EMG
activity be due to the monkey “letting go” from the sensation of
the motor effects of the stimulus, and could the increase in EMG
activity be related to the monkey voluntarily increasing EMG
activity to oppose the effects of the stimulus (hand moving away
from the target)? Figure 5 is a summary of the stimulus-evoked
EMG activation onset latencies for all 41 cortical site—muscle
pairs in which stimulation produced opposing effects depending
on the prestimulus EMG level. Ninety-six percent of the latencies
are less than the expected minimum reaction time to a somato-
sensory stimulus (180 ms) (Nelson et al., 1990; Naito et al., 2000),
suggesting that changes in voluntary effort do not contribute to
the initial phase of the EMG response to stimulation and this is
not a viable alternative explanation to hijacking.

Events associated with the termination of the stimulus train
are also of interest. Is the voluntary active movement signal still
present when stimulation ends? The data show that, in fact, the
voluntary EMG signal (present before the stimulus train was ap-
plied) is not present at stimulus termination (Fig. 4). If it were,
the wrist extensor record should return to the level of EMG ac-
tivity present before the onset of stimulation (~295 uV; Fig. 4A)
and the wrist flexors should rise to ~466 wV (Fig. 4 B). However,
these prestimulus EMG levels were not achieved. Instead, at the
end of the stimulus train, both flexor and extensor muscle activity
drops to near zero over a period of 240 ms, suggesting that at
some point during the stimulus train, the internal motor pro-
gram for voluntary movement was terminated. It is also impor-
tant to note that aside from the decrease in EMG level at stimulus
onset, there were no decreases during stimulation that would
reflect an abrupt termination of voluntary effort. This result fur-
ther suggests that cortical activity related to voluntary effort is
being blocked by the stimulus beginning at stimulus onset and
continuing throughout the stimulus train. Because voluntary
effort-related activity is essentially masked by the effects of the
stimulus train, there is no change in EMG activity reflecting the
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termination of voluntary effort that must have occurred some-
where during the stimulus train.

Voluntary responses were reinitiated ~300 ms after stimulus
termination (Fig. 4). In one case (Fig. 4B), the new voluntary
response is in the same direction as the prestimulus response
(flexion) because a reward was not obtained on this trial. In the
other case (Fig. 4A), the new voluntary response (flexion) was
opposite the prestimulus response because the monkey did re-
ceive a reward for the extension trial. In both cases, a spring-like
load centered at zero position assists the new voluntary response
in moving the manipulandum in the flexion direction.

RL-ICMS typically hijacks cortical output within the first 50
ms of the stimulus train (Fig. 5). At that time, the limb starts to
move in response to the new levels of muscle activity (as evident
in the wrist position trace of Fig. 4). Is it possible that the spinal
cord interneuronal circuitry translates the descending, stimulus-
driven signal and modifies motoneuronal activity to produce dif-
ferent directions of movement necessary to achieve the same final
common hand position? The interneuronal circuitry of the spinal
cord could potentially modify the input to motoneurons based
on changing afferent input associated with different static limb
positions and with dynamically changing positions associated
with stimulus-evoked movement. If that were the case, one might
expect to see higher variability in EMG activity at the beginning of
the stimulus-evoked response because the initial limb position is
variable. On the other hand, one would expect to see lower vari-
ability at the end of the stimulus-evoked effect, because the limb
has achieved its final common end-point position. We investi-
gated this possibility using two measures. First, we compared the
SD of the first and last 100 ms of stimulus-driven EMG activity
across all the starting hand positions for 23 cortical site—muscle
pairs where it was possible to test four or more starting hand
positions with RL-ICMS. The first 100 ms of the stimulus-driven
EMG record was measured starting with a point in time when
activity stabilized after a brief transition period (~20—40 ms)
associated with the stimulus onset. This was not an issue with
stimulus termination because EMG changes related to termina-
tion were delayed from the end of stimulation. The SDs for the
first and last 100 ms of the EMG records could be derived for each
of the 23 sites because each site was tested with four or more hand
positions. The median SD for the dataset representing the first
100 ms of stimulus-evoked EMG activity measured across all 23
sites was 0.0998. The median SD for the final 100 ms of stimulus-
evoked muscle activity was 42% lower (0.0578), although this
difference did not achieve statistical significance (p = 0.15, Wil-
coxon signed rank test). We also examined this issue by calculat-
ing the variability in stimulus-evoked EMG responses for the first
and last 100 ms as a percentage of the mean EMG during each
period. The median variability in EMG responses for the first 100
ms expressed as a percentage of the mean was 35% compared to
23% for the last 100 ms of stimulation. This difference was statis-
tically significant (p < 0.01, Wilcoxon signed rank test). The
lower level of variability in EMG responses at the end of stimula-
tion compared to the beginning may reflect the actions of afferent
input not only on motoneurons directly but also on the spinal
cord interneuronal network. Afferent input should be less vari-
able at the end of movement because limb position was less vari-
able than at the onset of movement.

Much of our analysis so far has focused on cortical site—muscle
pairs where RL-ICMS evoked a decrease from baseline EMG at
one starting position and an increase from baseline at another
starting position. Although these were instances where the mon-
key was producing highly variable voluntary muscle activity as-
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Figure 6. Relationship between RL-ICMS-evoked mean EMG levels at two starting hand
positions associated with extremes of elbow flexion and extension. The solid line has a slope =
1. Gray dots represent elbow extensors (triceps) and white dots represent elbow flexors (bi-
ceps). EMG activity is in arbitrary units.

sociated with each starting hand position, these positions may
not have been those associated with the largest changes in joint
angle for each analyzed muscle. Does the hijacking principle of
consistent muscle activation independent of initial limb position
remain intact if positions associated with large changes in joint
angle are compared? For this analysis, we chose the elbow joint
because of the extremes of joint angle available in our dataset. We
then tested two starting hand positions that produced extremes
of elbow flexion (hand position 4 in Fig. 1) and elbow extension
(hand position 3 in Fig. 1). The cortical sites chosen were all ones
in which RL-ICMS drove the hand to a final position in front of
the monkey. We measured RL-ICMS-evoked effects from biceps
(BIS, BIL) and triceps (TLAT, TLON). We plotted mean RL-
ICMS-evoked EMG activity levels in elbow muscles with the el-
bow flexed against EMG levels with the elbow extended (Fig. 6).
As with other cases presented previously, RL-ICMS evoked sim-
ilar levels of activity at both extremes of elbow position. The
regression lines for both elbow flexors and extensors are very
close to the unity line (biceps regression slope = 0.90, triceps
regression slope = 0.98). The regression line for the biceps mus-
cles is slightly shifted to the right of unity, which reflects a few
instances where RL-ICMS evoked a higher level of activation
when the elbow was flexed.

Discussion

In this study, 41 cortical site-muscle pairs produced opposing
RL-ICMS-evoked EMG responses (increase in one case, decrease
in the other) depending on task conditions and the associated
prestimulus level of EMG activity. These opposing responses give
the appearance of excitation in one condition and suppression in
another condition. In other words, the output sign appears to
change based on limb posture or joint position (Graziano et al.,
2004). An alternative explanation, strongly supported by our
results, is that high-frequency repetitive stimulation takes
over (hijacks) cortical output by blocking the natural volun-
tary movement-related activity and replaces it with activity
that is driven solely by stimulation, independent of existing
behavioral conditions. This interpretation is supported by the
fact that at all sites tested, RL-ICMS drove EMG activity to the
same or nearly the same level regardless of the initial condi-
tions, including positions representing the extremes of joint
angle. If RL-ICMS evoked excitation at one limb posture/joint
position and suppression at another, it is highly improbable
that the level of EMG activity achieved under each condition
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Figure7. lllustration of proposed cortical “hijacking” mechanism of RL-ICMS evoked EMG activa-
tion. The dotted line represents the physical spread of current from the stimulating microelectrode.
Corticospinal neurons A and B are present within the sphere of activation along with GABA inhibitory
interneurons (—) and excitatory interneurons (). Stimulus-evoked spikes (heavy arrows) travel
orthodromically along descending axons and both orthodromically and antidromically along horizon-
tal axon collaterals. Antidromic spikes collide with and block naturally occurring orthodromic spikes
(light arrows) resulting in complete replacement of natural spikes with stimulus-evoked spikes de-
pending on the stimulus frequency. The cell bodies of corticospinal neurons Cand D are outside the
area of direct activation. One cortical neuron’s axon (D) is not activated antidromically by the stimulus,
but it does receive stimulus-driven orthodromic input. Stimulus-driven corticospinal output influ-
ences motoneurons directly and also through the spinal cord interneuronal network (IN-Net).

would be the same, especially for all 41 cortical sites that
yielded opposing responses.

Although this study focused on the 41 cortical site—-muscle
pairs that produced opposing responses (6% of total), the same
basic result also applies to the other 94% of cortical site—muscle
pairs studied. For example, for cortical site—muscle pairs that
showed only increases in stimulus-evoked activity, the final level
of EMG activity achieved was the same regardless of the initial
conditions, including the initial level of EMG activity. Therefore,
it appears that the lack of summation at the level of motoneuron
activity between stimulus-evoked activity and natural voluntary
activity is the rule rather than the exception for all cortical sites
where high-frequency stimulation was applied.

Our findings suggest that high-frequency ICMS hijacks natu-
ral cortical activity and replaces it with stimulus-evoked activity.
Possible mechanisms are illustrated in Figure 7. Four corticospi-
nal neurons (A-D) are represented. The sphere defined by the
dotted line represents the cortical volume containing neural ele-
ments directly activated by the stimulus. Neurons within the
sphere of activation are most likely activated by two mechanisms
(Stoney etal., 1968; Ranck, 1975; Asanuma et al., 1976; Marcus et
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al., 1979): (1) direct excitation at the cell’s initial segment, an
axon collateral, or the cell body itself, and (2) indirect, transsyn-
aptic excitation from stimulated afferent axons. In neurons di-
rectly activated by the stimulus (A and B), regardless of the
mechanism, spikes evoked will propagate orthodromically down
the axon and antidromically back into the cell body. If the stim-
ulus intensity is suprathreshold, the neuron will be depolarized to
firing threshold with every stimulus regardless of where the stim-
ulus occurs relative to naturally occurring spikes (other than the
absolute refractory period). We propose that replacement of the
natural activity of corticospinal output neurons with stimulus-
driven activity (hijacking) occurs when the frequency of stimula-
tion exceeds the frequency of naturally occurring spikes.

Stimulation of axon terminals will give rise to both ortho-
dromic (Hashimoto et al., 2003) and antidromic (Li et al., 2007)
spikes. Antidromic spikes in axon collaterals will propagate back
to branch points and then conduct orthodromically to targets
(neuron C in Fig. 7). This could result in direct activation of a
neuron even though the cell body lies some distance from the site
of stimulation (Histed et al., 2009). But once again, if the fre-
quency of stimulus-evoked spikes exceeds the frequency of nat-
urally occurring spikes, all of the naturally occurring spikes on
the afferent axon (light arrow) will be blocked by collision with
stimulus-evoked spikes (heavy arrow). Complete replacement of
voluntary EMG activity in a muscle with stimulus-driven activity
will occur when the stimulus intensity is sufficiently high that all
the corticospinal output neurons mediating a muscle’s natural activ-
ity have been hijacked. Accordingly, effective hijacking requires a
minimum combination of stimulus frequency and intensity.

Another factor that may contribute to the elimination of on-
going natural cortical activity is activation of cortical inhibitory
interneurons (GABA) and synaptic terminations (Fig. 7). The
presence of GABA neurons in motor cortex is well established
(Hendry and Jones, 1981). Moreover, GABA can exert a potent
inhibitory action on motor cortex neurons, in some cases pro-
ducing complete suppression of movement-related activity
(Matsumura et al., 1992).

The hijacking mechanism described above leads to some ad-
ditional interesting issues in the context of Figure 7. First, com-
plete replacement of natural activity was observed at relatively
high stimulus intensities (60—120 wA) when delivered at fre-
quencies of 200 Hz. With these parameters, the monkey seemed
unable to overcome the effects of stimulation and behavioral
performance was completely interrupted. Using even a minimal
value of k in the expression r = \V/i/k, where r is the radius of
effective activation of neuronal elements and 7 is the stimulus
current, at 120 pA the expected physical spread of excitatory
current would be a sphere of radius 0.69 mm, which yields a
cortical surface area of 1.5 mm? (Cheney and Fetz, 1985). In
comparison, the area of cortical representation for typical hand/
digit muscles is 15-20 mm* (Andersen et al., 1975; Park, 2002). In
view of this, how does RL-ICMS activation of neural elements
within a sphere of radius 0.69 mm hijack all the cortical neurons
that supply a particular motoneuron pool? One possibility is
based on the fact that corticospinal neurons with the same target
muscles are highly interconnected through axon collaterals and
branching afferent inputs (Jackson et al., 2003; Smith and Fetz,
2009a,b). As a result, even corticospinal neurons located some
distance from the site of stimulation could be hijacked and the
cortical area affected by stimulation could expand well beyond
the site of stimulation. Tolias et al. (2005) used fMRI to measure
the area of activation of visual cortex with microstimulation and
concluded that the activated area includes both a sphere of direct
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excitation and a broader region activated transsynaptically. At
current levels of 159-1651 A (100 Hz for 4 s), they reported
activation up to 4.5 mm from the electrode tip. Assuming a cir-
cular area of activation, this corresponds to a cortical area of 64
mm?, which in M1 cortex could encompass the entire represen-
tation of a digit muscle. Of course, the currents they used were
generally considerably greater than those applied in this study.
However, Seidemann et al. (2002), using optical imaging, re-
ported activation with microstimulation (50 nA, 500 Hz, 30 ms
train) of an area ~4.5 X 3.5 mm centered around a microelec-
trode in the frontal eye field. Slovin et al. (2003), also using optical
imaging methods in M1 cortex of awake monkeys, found that
single microstimuli ranging from 15 to 30 nA could produce 1.5-
to 3-mm-wide areas of activation. In layer 2/3 of cat visual cortex,
Histed et al. (2009) found neuronal activation up to 4 mm away
from the stimulating electrode with currents as low as 10 pA.
These relatively large areas of activation might occur by transmis-
sion over axon collaterals that have been shown to extend over
relatively large distances in the cortex from the cell bodies of
origin. Using both retrograde and anterograde tracer methods in
motor cortex, labeling at distances up to 7—8 mm from the site of
injection has been reported, although bouton density was great-
est within 1.0—1.5 mm of the injection site and decreased pro-
gressively with distance from the injection site (Huntley and
Jones, 1991; Keller, 1993; Keller and Asanuma, 1993; Capaday et
al., 2009). The concentration of intracortical connections within
aradius of 1.5 mm from a particular point is also consistent with
electrophysiological studies of synaptic interactions between
neurons revealed with cross-correlation methods (Hatsopoulos
et al., 1998; Jackson et al., 2003; Smith and Fetz, 2009a,b). Corti-
comotoneuronal cells with common target muscles show the
strongest synaptic interactions (Jackson et al., 2003; Smith and
Fetz, 2009a). Taking all of these findings into account and given
the stimulus parameters that we used, it seems possible that RL-
ICMS trains could have affected, either directly and/or transsyn-
aptically, not only the entire representation of an individual
forelimb muscle but potentially the entire M1 forelimb represen-
tation (Park et al., 2001).

Finally, it should be noted that the hijacking mechanism pro-
posed here for microstimulation in the cortex is similar to the
mechanism described by Garcia et al. (2003, 2005) to explain the
action of high-frequency stimulation (80—-185 Hz) of the subtha-
lamic nucleus used to treat Parkinson’s disease. They found that
high-frequency stimulation replaced the preexisting spontane-
ous neuronal activity with spikes that were time locked to indi-
vidual stimulus pulses.

To conclude, our results suggest that high-frequency ICMS
blocks naturally occurring spikes generated by the internal motor
program for the activation of corticospinal output neurons.
These natural signals are then replaced with output signals that
are driven solely by the applied stimulus train. In this sense, high-
frequency ICMS can be viewed as “hijacking” cortical output to
motoneurons.
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