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ABSTRACT

Motivation: While biological systems operated from a common
genome can be conserved in various ways, they can also manifest
highly diverse dynamics and functions. This is because the same
set of genes can interact differentially across specific molecular
contexts. For example, differential gene interactions give rise to
various stages of morphogenesis during cerebellar development.
However, after over a decade of efforts toward reverse engineering
biological networks from high-throughput omic data, gene networks
of most organisms remain sketchy. This hindrance has motivated
us to develop comparative modeling to highlight conserved and
differential gene interactions across experimental conditions, without
reconstructing complete gene networks first.
Results: We established a comparative dynamical system modeling
(CDSM) approach to identify conserved and differential interactions
across molecular contexts. In CDSM, interactions are represented
by ordinary differential equations and compared across conditions
through statistical heterogeneity and homogeneity tests. CDSM
demonstrated a consistent superiority over differential correlation
and reconstruct-then-compare in simulation studies. We exploited
CDSM to elucidate gene interactions important for cellular processes
poorly understood during mouse cerebellar development. We
generated hypotheses on 66 differential genetic interactions
involved in expansion of the external granule layer. These
interactions are implicated in cell cycle, differentiation, apoptosis and
morphogenesis. Additional 1639 differential interactions among gene
clusters were also identified when we compared gene interactions
during the presence of Rhombic lip versus the presence of
distinct internal granule layer. Moreover, compared with differential
correlation and reconstruct-then-compare, CDSM makes fewer
assumptions on data and thus is applicable to a wider range of
biological assays.
Availability: Source code in C++ and R is available for non-
commercial organizations upon request from the corresponding
author. The cerebellum gene expression dataset used in this article is
available upon request from the Goldowitz lab (dang@cmmt.ubc.ca,
http://grits.dglab.org/).
Contact: joemsong@cs.nmsu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Biological systems encoded by a common genome can manifest
highly diverse dynamics, because the same set of genes can
interact differentially across specific molecular contexts (Califano,
2011). Such differential gene interactions give rise to cell
differentiation in development, divergent cellular types and
differences between normal and pathological cells. Hence, it
is of pivotal importance to compare gene interactions across
biological systems so as to delineate context-dependent molecular
mechanisms. Automated omic technologies for gene expression,
protein activity and metabolic profiling have enabled genome-
wide studies of molecular interaction patterns. Although numerous
biological system modeling methods have been developed (Chou
and Voit, 2009), reverse engineering of biological networks is still
challenging due to insufficient sampling or perturbation in practical
biological experiments (Bonneau, 2008; Marbach et al., 2010).
This has motivated us to compare interactions across conditions
in two biological systems directly from data profiles, overriding
independent network reconstruction for each system.

Previous work, mostly employing reconstruct-then-compare or
differential correlation, has met limited success in exploring
differential interactions, due to restricting assumptions. Reconstruct-
then-compare methods (Gholami and Fellenberg, 2010; Sharan
et al., 2005; Tischler et al., 2008) ignore uncertainty in the
estimated model parameters and can wrongfully announce a
conserved interaction as differential due to random noise. And
differential correlation approaches (Hu et al., 2009; Leonardson
et al., 2010; Mentzen et al., 2009), also known as differential
coexpression, utilize difference in correlation coefficients between
a pair of variables across two conditions to detect differential
interactions. Although uncertainty is accounted for, several
assumptions hamper the usefulness of this strategy. The most
limiting requirement is equality of data and noise variance
under the two conditions (See discussion on their limitations in
Supplementary Material). Such requirements are often not met in
biological experiments.

To overcome the limitations of differential correlation or
reconstruct-then-compare, we introduce and validate a novel
statistical framework for comparing interactions in dynamical
system models (DSMs). We call the framework comparative
DSM (CDSM). We use homogeneity to refer to the similarity of
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Fig. 1. Computing heterogeneity and homogeneity of interactions across
two conditions. Here, we use a linear interaction as an example. (a) In each
condition, five independent noisy observations of random variables X and Y
are provided. Condition 1 (red squares): (1.0,3.49), (1.5,3.53), (2.0,3.80),
(2.5,4.68), (3.0,4.43); Condition 2 (blue triangles): (3.0,3.11), (3.3,5.89),
(3.6,6.27), (3.9,5.85), (4.2,8.74). A null model is first obtained: y=4.98 (the
green line). By pooling all 10 points, a homogeneity model (Hm) is obtain:
y=0.9x+2.27 (the black line). Then we obtain the heterogeneity model
(Ht) which contains y=0.61x+2.77 (the red line) and y=3.74x−7.49 (the
blue line), estimated from each group of 5 points, respectively. (b) The
three models are evaluated by residual sum of squares (RSS) and model
complexities via parameter dimensions (dim). (c) Finally, we compute the
homogeneity and heterogeneity of the interaction between X and Y across
conditions. They are related to the shaded area in the left and right panel
in (a). The significant homogeneity indicates a common interaction trend;
the significant heterogeneity suggests a difference between the two lines
in the heterogeneity model, evidenced by a difference in slope. (d) In
contrast, the difference in slope between the two models is undetectable
by differential correlation, as difference between the Pearson’s correlation
coefficients across the two conditions is zero.

an interaction across conditions (Gholami and Fellenberg, 2010;
Shiraishi et al., 2010), and heterogeneity for the difference of an
interaction across conditions (Ouyang and Song, 2009). Zhao and
colleagues developed an expected conditional F (ECF) statistic
to evaluate heterogeneity across conditions, but the asymptotic
distribution of ECF is open (Lai et al., 2004; Ma et al., 2011). We
used two F-statistics to evaluate heterogeneity and homogeneity
of interactions as illustrated in Figure 1, providing a basis to
detect conserved and differential interactions in biological networks
across conditions (Fig. 2). We demonstrated (in Supplementary
Material) that our framework reduces to differential correlation if
one adds four restricting assumptions: equality of sample sizes,
zero data mean, equality of data variance and equality of noise
variance across conditions. With a fifth assumption on equality of
variance between data and noise, our framework becomes equivalent
to reconstruct-then-compare which we will refer to as numerical
comparison (Ouyang and Song, 2009). By overcoming these
unpractical assumptions on experiments, the CDSM framework
is more general for differential interactions than other known
methods.

The CDSM framework was evaluated by simulation studies
and then applied to detect differential and conserved interactions
during mouse cerebellar development. Our method outperformed
numerical comparison (Shiraishi et al., 2010) and differential
correlation (Hu et al., 2009) in two simulation studies, using
a cdc2-cyclin cell division cycle model with known regulation
kinetics and a realistic network of unknown architecture with
1000 nodes, respectively. We then applied our method to compare
gene interactions during development of the mouse cerebellum,
an excellent biological model system for studying nervous system
development. Although morphological events are well documented
during cerebellar development (Goldowitz and Hamre, 1998;
Sotelo, 2004), the molecular mechanisms are nebulous and it is
hypothesized that diverse gene interactions occur sequentially and
in a tightly controlled manner (Larouche and Goldowitz, 2012).
Therefore, we attempted two studies using our method to identify
conserved and differential interactions on genome-wide microarray
time course data obtained during cerebellar development. For the
first study of screening genetic interactions from other organisms
in BioGRID (Stark et al., 2006, 2011), we generated hypotheses
on 58 and 52 significant genetic interactions involved in external
granule layer (EGL) expansion for the DBA and BL6 mouse strains,
respectively. These putative interactions are implicated in cell cycle,
apoptosis and morphogenesis, and to a lesser extent differentiation.
In a second study, 1639 differential interactions among gene clusters
were identified when comparing cerebellar gene expression in two
developmental events. Specifically, gene expression in a prenatal
period in cerebellar development, characterized by the presence of
the glutamatergic cell germinal zone known as the Rhombic lip, was
compared with gene expression during a late embryonic to post-natal
period, characterized by the presence of distinct internal granule
layer (IGL). This second study also revealed novel gene interactions
as new testable biological hypotheses, and we highlighted those that
are involved with the WNT pathway.

2 A COMPARATIVE DYNAMICAL SYSTEM
MODELING FRAMEWORK

Our objective has been to develop methods to compare interactions across
experimental conditions, using observed time course trajectories from
dynamical systems. The data acquired in today’s biological experiments
hardly allow complete network reconstruction of all molecular interactions.
This is due to a low sample size (rarely >1000) in a high-dimensional space
of tens of thousands of genes. We attempt to alleviate such data insufficiency
by a comparative framework to identify those consistently conserved or
differential interactions across conditions. We define an interaction as
direct influence from some parent variables to a child variable. A pair of
interactions across experimental conditions is conserved if and only if the
same child variable has the same relationship with the same set of parent
variables; otherwise, it is differential. In the DSM representation of a gene
network, a relationship is denoted by an ordinary differential equation (ODE).
We propose a CDSM framework for two purposes. The first is to determine
from comparative data whether a pair of interactions, given parents and child,
is conserved or differential across experimental conditions. The second is to
identify novel interactions, based on consistency in potential conserved or
differential interactions, by comparing data from two networks of unknown
architecture. We describe the CDSM framework in three parts. First, we
define the DSM. Then we describe the CDSM framework through statistical
testing of homogeneity, heterogeneity and total strength of given interactions.
A strategy of learning biology networks of unknown architecture will also
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Fig. 2. Overview of the comparative dynamical system modeling (CDSM)
framework. Variables A, B and C represent three interacting molecules.
(a) The input to CDSM is time courses of the three molecules under two
conditions. Each series of time course data contains 10 time points. The
expression rate for each variable is estimated from the time courses by
pspline. (b) With variable B as an example, its parents are selected to
be A and C, which represent the most significant total regulation strength
among all possible interactions. (c) Homogeneity and heterogeneity across
two conditions are calculated for the selected parent combination. The
interaction for B showed significant heterogeneity of P-value 1.19e-12. Thus,
we considered the interaction for B differential across the two conditions.
(d) After applying CDSM on all three variables, we identified two conserved
interactions targeting A and C and one differential interaction targeting B.

be discussed. Figure 2 provides an overview of the CDSM framework using
a concrete example.

2.1 The dynamical system model
In biomolecular networks, dynamics of interacting molecules are often
described by DSMs, such as those in the BioModels Database (Le Novère
et al., 2006). Based on the DSM, we will build our CDSM framework to
identify conserved and differential interactions. Variables in the DSM denote
the concentrations of molecules (mRNA, protein or metabolite). A DSM
represents a system of interacting variables by a set of ODEs, each defined
as a many-to-one interaction by

dxi(t)

dt
= fi(x(t),βi)+βi0 (1)

where xi is the i-th variable in a DSM, x(t)= (x0(t),x1(t),...,xN−1(t))� is a
vector of all N variables in the DSM at time t, fi is a function that determines
the rate of change, dxi(t)/dt, βi is the interaction coefficient vector for x(t)
in the function fi and βi0 is a constant coefficient. The functional form of fi
depends on prior knowledge about a system, and we use a linear combination
of linear or non-linear terms (Ellner and Guckenheimer, 2006). Examples of

these terms are linear in xj , quadratic x2
j or xjxk and sigmoidal

xn
j

kn+xn
j

(n and k

are constants). Here, we call the dependent variable xi the child and its parents
are all the independent variables in βi that have an effect on xi. Details of
reconstruction of DSMs are given in Supplementary Material.

2.2 The comparative DSM framework
In the DSM context, we established a CDSM framework to compare
interactions in biological networks from time course observations across
experimental conditions. Although the CDSM can be applied on more than
two conditions, we use two conditions to illustrate our approach. A pair
of interactions is differential if any coefficient in Equation (1) is different
across two conditions; otherwise, it is conserved. Let matrices X(1) and X(2)

be two sets of time course observations under two conditions, each column
represents concentrations of all molecules at a certain time point. Let T1 and
T2 be the total number of observed time points. Let y(1) and y(2) be two
vectors of expression rates of a molecule of interest under two conditions,
respectively. Here we ignore the subscript i from Equation (1), as the method
is all discussed for variable i as a child. The expression rates are estimated
as derivatives of smoothing splines using the R package pspline (Heckman
and Ramsay, 1996).

Homogeneity is the extent an interaction is similar across two conditions,
which we represent using a homogeneous interaction model. Preservation in
the form and strength of gene interactions can maintain essential biological
functions, such as those conserved in animal development across species
and environments. To detect a conserved interaction, we use a single
interaction model to explain data observed under both conditions. Therefore,
we create this model from the pooled datasets and call it the homogeneous
model, represented by y= f(x(t),βc)+β0. Based on the pooled dataset, the
interaction coefficient vector βc and constant coefficient β0 are estimated

by least squares. The model complexity is dfc =dim(βc)+1. Let ŷ(j)
c =

f (X(j),βc)+β0 be the prediction made for condition j by the estimated
homogeneous model.

The homogeneity test determines whether a homogeneous model is
supported by the pooled dataset through goodness-of-fit. In this statistical
test, the alternative hypothesis is that the homogeneous model has some non-
zero interaction coefficients, βc �=0; the null hypothesis is that the interaction
coefficients are all zero βc =0, the null model, with complexity dfn =1. The
residual sum of squares (RSS) of the distances between the observations

and the model predictions are, respectively, RSSc =∑2
j=1

∥∥∥y(j) − ŷ(j)
c

∥∥∥
2

and

RSSn =∑2
j=1

∥∥y(j) − ȳpool
∥∥2

, where ȳpool is the mean value over time across
both conditions. RSS measures the goodness-of-fit of a model to the data.
In the context of gene expression, the null model serves as a control when
fluctuation in gene expression over time is due to noise only. Then we perform
homogeneity test through the F-statistic computed through multiple linear
regression. Because the homogeneous model degrades to a null model when
βc =0, the null model is nested within the homogeneous model. This gives
rise to an F-statistic defined as

Fc = (RSSn −RSSc)/(dfc −dfn)

RSSc/(T1 +T2 −dfc)
. (2)

Such defined Fc strikes a balance between goodness-of-fit (RSSc,RSSn)
and model complexity (dfc and dfn). Under the null hypothesis of no
interaction, Fc asymptotically follows an F-distribution with (dfc −dfn)
numerator and (T1 +T2 −dfc) denominator degrees of freedom, if the noise
follows a normal distribution (Zar, 2009). The P-value pc, the upper-tail
probability of Fc, gives the statistical significance of the homogeneous
model and thus indicates the strength of homogeneity. Strong homogeneity
is a necessary condition for conserved interactions. However, differential
interactions can also have substantial homogeneity. For example, a parent
gene can enhance the expression of its child in both conditions but with
different strengths (coefficients). To tell differential interactions apart from
conserved ones, one must examine the heterogeneity of an interaction across
two conditions to be defined next.

Heterogeneity is the extent an interaction differs across two conditions,
which we represent by a set of heterogeneous models. Heterogeneity of gene
interactions may arise as a consequence of molecular evolution, manifesting
in biological diversity. We test heterogeneity between interactions by
checking whether two individual models are necessary to explain the two
datasets beyond what a homogeneous model can do. We consider two models,

2853



[14:24 27/9/2011 Bioinformatics-btr472.tex] Page: 2854 2851–2858

Z.Ouyang et al.

y(j) = f (j)(x(j),β
(j)
d )+β

(j)
0 , where j=1,2, each for a condition, together as

a set of heterogeneous models. Let (β̂
(j)
d ,β̂(j)

0 ) be the best model estimator
under condition j obtained by least squares. If the heterogeneous models
are considerably different from the homogeneous model defined earlier,
heterogeneity of the interaction across two conditions is justified.

The heterogeneity test determines whether the set of heterogeneous
models is different from the homogeneous one. In this test, the alternative
hypothesis is that the individual models of interactions are different from
each other: β

(1)
d �=β

(2)
d or β

(1)
0 �=β

(2)
0 . The null hypothesis is β

(1)
d =β

(2)
d and

β
(1)
0 =β

(2)
0 , equivalent to the homogeneous model. The overall goodness-of-

fit for the heterogeneous model is measured by RSSd =∑2
j=1

∥∥∥ŷ(j)
d −y(j))

∥∥∥
2
,

where ŷ( j)
d = f ( j)(x( j),β̂

( j)
d )+β̂

(j)
0 is a vector of predictions from the

heterogeneous model under condition j. The complexity of the set
of heterogeneous model is the number of its free parameters, dfd =∑2

j=1(dim(β(j)
d )+1). When a set of heterogeneous models contains equal

coefficients, they degrade to a homogeneous model. Thus, the homogeneous
model is nested within the heterogeneous models. This suggests an F-test
to measure the relative improvement of the heterogeneous models over the
homogeneous one by

Fd = (RSSc −RSSd )/df1
RSSd/df2

(3)

where df1 =dfd −dfc and df2 =T1 +T2 −dfd . RSSc and the complexity
dfc of the homogeneous model are defined earlier. This ratio considers
improvement (RSSc −RSSd ) in goodness-of-fit relative to the cost of
increased complexities (dfd −dfc). Under the null hypothesis, the test
statistic Fd asymptotically follows an F-distribution with df1 numerator
and df2 denominator degrees of freedom if the additive noise is normally
distributed (Zar, 2009). The P-value, pd , the upper-tail probability of Fd ,
gives the statistical significance of the heterogeneous models over the
homogeneous model. Given test size α, we can determine if heterogeneity
of an interaction exists between two conditions. A conserved interaction
must have homogeneity by a large Fc without heterogeneity (small Fd );
but a differential interaction must exhibit heterogeneity by a large Fd with
or without homogeneity. However, Fd or Fc alone only assesses partial
information of a given interaction under two conditions. They must be
combined to evaluate the total strength of an interaction.

The total strength refers to overall activity of an interaction in two
conditions, regardless of homogeneity or heterogeneity. A gene interaction
may be inactive under both conditions. It is thus of interest to test for such
scenarios. The principle here is to compare how two interaction models for
each condition statistically explain the data better than no interaction at all.
This reduces to testing the heterogeneous models versus the null model.
A statistical test can thus be formulated to examine the total strength of
an interaction across two conditions. The alternative hypothesis is β

(1)
d �=0,

β
(2)
d �=0, or β

(1)
0 �=β

(2)
0 ; the null hypothesis is β

(1)
d =β

(2)
d =0 and β

(1)
0 =β

(2)
0 .

The heterogeneous model and the null one, as estimated previously, have
goodness-of-fit RSSd and RSSn, respectively. Because the heterogeneous
models degrade to the null one when β

(1)
d =β

(2)
d =0, the null model is nested

within the heterogeneous models. Then one can use the following F-statistic
to assess the total strength of the interaction

Ft = (RSSn −RSSd )/(dfd −dfn)

RSSd/(T1 +T2 −dfd )
. (4)

Under the null hypothesis of no interaction, Ft also asymptotically follows
an F-distribution with (dfd −dfn) numerator and (T1 +T2 −dfd ) denominator
degrees of freedom when the noise is normally distributed (Zar, 2009). The
P-value, pt , the upper-tail probability of Ft , gives the statistical significance
of the total interaction.

Not surprisingly, homogeneity, heterogeneity and total strength are not
independent to each other. The three corresponding statistical tests are
summarized in Table 1. The total strength is a relative measure of the
heterogeneous models against the null model; heterogeneity is a relative

Table 1. Three hypothesis tests for homogeneity, heterogeneity and total
strength of an interaction across two experimental conditions

Test on an interaction Null Alternative Test Significance
across two conditions hypothesis hypothesis statistic

Heterogeneity β
(1)
d =β

(2)
d β

(1)
d �=β

(2)
d Fd pd

test and β
(1)
0 =β

(2)
0 or β

(1)
0 �=β

(2)
0

Homogeneity βc =0 βc �=0 Fc pc

test

Total strength β
(1)
d =β

(2)
d =0 β

(1)
d �=β

(2)
d Ft pt

test and β
(1)
0 =β

(2)
0 or β

(1)
0 �=β

(2)
0

measure of the heterogeneous models against the homogeneous model; and
homogeneity is a relative measure of the homogeneous model against the null
model. They are connected through the goodness-of-fit and the complexity
of models. From Equations (2), (3) and (4), we obtain a rule that decomposes
Ft to Fc and Fd in the log form

log(1+Ft ·rt)= log(1+Fc ·rc)+log(1+Fd ·rd ) (5)

where rt = dfd−dfn
T1+T2−dfd

, rc = dfc−dfn
T1+T2−dfc

and rd = dfd−dfc
T1+T2−dfd

are the ratios of
degrees of freedom. By decomposing the total interaction strength to
homogeneity and heterogeneity, it suggests that any F-statistic can be
determined mathematically given the other two. Thus, with homogeneity
and heterogeneity, one can learn in further detail whether the difference or
the commonality of an interaction contributes to its activity across conditions.
Therefore, the decomposition rule underpins the CDSM framework and has
profound implications.

By the decomposition rule, a given interaction can be studied for being
conserved or differential across two conditions. After computing pc, pd and
pt , one can compare them with given test size α to make one of four decisions
regarding the interaction between two conditions: inactive if and only if
pt >α, differential if and only if pt ≤α and pd ≤α, conserved if and only if
pt ≤α, pd >α and pc ≤α, and active (but neither differential nor conserved)
if and only if pt ≤α, pd >α and pc >α.

The CDSM framework also provides an alternative to learn two systems
of unknown network architecture by comparison, as our second objective.
We can learn the network architecture by inspecting simultaneously the
parents of a child. There are three strategies depending on the emphasis
on conservation, differentiation or overall strength of interactions. First,
when system conservation is the emphasis of network learning, one may
reasonably assume that mechanisms for two systems are the same, and select
best parents of a child to maximize homogeneity according to pc. Second,
if system differentiation is the primary emphasis, best parents of each child
can be selected to maximize heterogeneity according to pd . A caveat is that
neither strategy guarantees the best goodness-of-fit to the data. Third, when
one is equally concerned with conservation and differentiation of a system,
the total interaction strength provides a comprehensive measure to select
the best parents for each child via pt . By the decomposition rule, strong
total interaction strength (Ft) can be attributed to various combinations of
homogeneity (Fc) and heterogeneity (Fd ). Based on pc and pd , one can
further determine whether each interaction is conserved or differential.

Since the three test statistics, Fc, Fd and Ft , may not follow F-distributions
in case of small sample sizes and are subject to multiple testing for parent
selection, we correct the three P-values of CDSM by permutation tests
(see details in Supplementary Material).

3 SIMULATION STUDIES
We demonstrate the effectiveness of CDSM by two simulation
studies. We applied CDSM on simulated datasets, to be contrasted
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with two other alternative methods: numerical comparison
(Shiraishi et al., 2010) and differential correlation (Hu et al., 2009).
The first simulation study evaluated the performance of differential
interaction detection on a given network, cdc2-cyclin cell division
cycle model (Tyson, 1991). The performance based on Fd of
the CDSM is consistently better than numerical comparison. A
preliminary result appeared in Ouyang and Song (2009) and the
complete detail is included in Supplementary Material.

The second simulation study further showed an advantage of
CDSM over numerical comparison and differential correlation on
comparing large realistic networks of unknown architecture. As the
groundtruth, the architecture of a 1000-gene network is extracted
from GeneNetWeaver (GNW) (Marbach et al., 2009) based on
known transcription regulation in the yeast. Two DSMs, each
including 1000 ODEs, are generated according to the extracted
architecture, where each ODE expresses a parent–child regulatory
relationship with a sigmoidal form

dxi

dt
=βi0 +

∑

j∈Pari

βij
x2

j

1+x2
j

−βixi (6)

where xi represents the expression level of gene i, Pari the parents
of gene i and βs the model coefficients. Coefficients in 800 pairs of
interactions are made the same in the two DSMs, while those for the
other 200 pairs are made different. They constitute the groundtruth
for the conserved and differential interactions, respectively. The
goal is to detect them on time course data generated by the two
DSMs, under various noise levels. The time course data contained
three trajectories with different initial conditions, and each of them
included 20 time points with equal time lapses. All three methods
are blind to the architecture. Because both conserved and differential
interactions are expected, we choose parents according to the total
interaction strength using pt in CDSM. The performance of the
three methods on identifying differential interactions across the two
systems is shown by receiver operating characteristic (ROC) curves
in Figure 3. Our CDSM achieved the best performance across all
noise levels. Except at the extremely high noise level of a zero signal-
to-noise ratio (SNR) when all methods failed, the advantage of
CDSM is substantial: its true positive rate (TPR) can be 35–90%, at a
false positive rate (FPR) of 0.05, while the other two approaches had
almost no statistical power, i.e. TPR, at the same FPR. Advantage
of CDSM over numerical comparison is expected because the
former properly accounted for uncertainty in model coefficients. The
highly pronounced disadvantage of differential correlation is due
to its invalid assumptions on linearity of interactions and on noise
variances as discussed in Section 1 and Supplementary Material.

4 CONSERVED AND DIFFERENTIAL GENE
INTERACTIONS DURING MOUSE
CEREBELLAR DEVELOPMENT

We applied the CDSM to identify conserved and differential
interactions during mouse cerebellum development using gene
expression time course data. The cerebellum is an excellent model
system for studying nervous system development, because it is
a relatively homogeneous system—90% is composed of granule
cells. Various developmental events, such as expansion of the
EGL (Wallace, 1999), occur sequentially in a tightly controlled
manner (Goldowitz and Hamre, 1998; Wang and Zoghbi, 2001).
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Fig. 3. The advantage of CDSM on detecting conserved and differential
interactions when network architecture is not given, in contrast to numerical
comparison and differential correlation. In the figures, TPR, the true positive
rate, is the ratio of detected true differential interactions to total true
differential ones; and FPR, the false positive rate, stands for the ratio of
falsely detected differential interactions to total true conserved ones. The
closer to the top-left corner an ROC is, the better the performance. The
diagonal line stands for the performance of random guessing. For all noise
levels, CDSM achieved the best performance among the three methods.

These events are well-documented morphologically, but the
transcription regulation network responsible for the chain of events
remains poorly understood. Cerebellar samples from BL6 and DBA
mouse strains were obtained from embryos each day from E12 to
E19 and every 3 days post-natally, from P0 to P9 and consisted of
two or three biological replicates at each day. Relative abundance
of mRNA from the samples was measured using the Illumina
microarray platform (Oliphant et al., 2002) covering over 46 000
transcripts. By the CDSM, we examined known gene interactions
(identified in other biological systems) in a first study and proposed
novel hypothetical gene interactions that play non-uniform roles
during cerebellar development in a second study.

In the first study, we screened known genetic interactions—
validated in other biological systems—for their involvement in
the biological event of EGL expansion in cerebellar development.
Between E12 and E15, granule cell progenitors arise from a germinal
zone known as the Rhombic lip and migrate over the surface of
the cerebellum to form the EGL. Mainly driven by Shh signaling
from Purkinje cells, the EGL expands and gives rise to cells that
migrate inward to form internal granule layer (IGL). This process
continues until at least 3 weeks post-natal (Solecki et al., 2001;
Wallace, 1999). The EGL expansion phase begins as early as E16
and extends to P9 and beyond. In contrast, we call the days preceding
the formation of the EGL—E12 to E15—the pre-EGL stage. We
focused on 1435 transcripts of known transcription factor (TF) genes
reported in a mouse TF database (Fulton et al., 2009). We used
BioGRID (Stark et al., 2006, 2011) to further narrow our focus
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Table 2. Summary of conserved and differential genetic interactions
between pre-EGL stage and EGL expansion in biological processes, in DBA
and BL6, respectively

Biological process DBA strain BL6 strain

Conserved Differential Conserved Differential

Cell cycle 18 29 19 26
Differentiation 9 14 12 12
Apoptosis 8 22 10 19
Morphogenesis 4 15 6 12

Total 21 36 21 30

An interaction might be involved in more than one biological process. Across the two
developmental stages and consistently in both strains, more differential than conserved
interactions are detected for cell cycle, morphogenesis and apoptosis, but not for
differentiation.

to previously identified interactions yielding a list of 104 pairs of
known genetic interactions reported in various organisms (BioGRID
version 3.1.74; updated in February, 2011). We tested each given
genetic interaction by CDSM to query whether it is active during
the pre-EGL or EGL expansion, and if so, whether this interaction
is conserved or differential when comparing the gene expression
pattern in the two temporal periods. The result, summarized in
Table 2, suggests distinct involvement of transcription regulation
in three of four cellular processes across the two stages. Listed
in Supplementary Tables S2 and S3 are 58 significant (pt ≤0.05)
genetic interactions detected in the DBA strain, and 52 in the
BL6 strain. There are 36 differential (pd ≤0.05) and 21 conserved
interactions in the DBA strain, and 21 conserved and 30 differential
interactions in the BL6 strain. Genes in these interactions are
involved in cell cycle regulation, cell differentiation and cell
apoptosis, all collectively contributing to morphogenesis. Among
these interactions, 22 are involved in brain/neuron development
for DBA and BL6, respectively, and 11 are differential for the
DBA or BL6 strain when comparing the pre-EGL stage with
the EGL expansion phase. Overall, the distributions of conserved
and differential interactions in the four biological processes are
consistent between the two strains. In Supplementary Material, we
visualized differential and conserved interaction patterns through
phase diagrams for two pairs: Meis1.1400575-Scx.130066 in the
DBA strain and Six3.3830402-Pax6.101660253 in the BL6 strain,
respectively.

Many of the differential interaction gene ontology categories
identified by the analysis (cell cycle regulation, morphogenesis,
and even apoptosis) can be reasonably explained based on
events occurring in the development of the granule layer. For
example, differential interactions involving genes known to regulate
cell proliferation are expected during EGL expansion since this
phase of cerebellar development is prominently characterized by
extensive cell proliferation and production of billions of cells that
constitute this population in the mature cerebellum. Moreover, the
morphogenetic phase of granule cell development occurs when cell
division ceases. Thus, the morphogenesis-related genes expressed
during EGL expansion should be expressed at much higher levels
than when compared with the pre-EGL period. Finally, apoptosis in
granule cells has been noted to occur in these cells during and after
migration; and it would therefore be expected that genes involved

in this process would be expressed at much higher levels in the
EGL-expansion phase when compared with the pre-EGL period. As
granule neurons are the most abundant population of neurons in
the cerebellum, our analyses are likely biased toward granule cell
events. From a differentiation perspective, the majority of granule
cells probably differentiate after P9 and this could explain why fewer
differential gene interactions involved are detected in the data.

Although these interactions are based on expression data from
whole cerebellar tissue samples, they are most likely to explain the
population behavior of granule cells, because billions of these cells
are produced during the EGL expansion phase. Notably, many of
the putative interactions are associated with brain disabilities that
involve abnormal cerebellar development. For instance, Pax6, as
identified in our study, is involved in regulating neuronal migration,
morphology and proliferation in several neuronal subtypes including
cerebellar granule cells (Duparc et al., 2006; Swanson et al.,
2005). Pax6 mutations in humans are associated with small eyes
and cerebella. Also the identified Scx is associated with several
nervous system diseases in humans, and has been implicated in
neurodegeneration (Yeghiazaryan et al., 1999). (See Supplementary
Material for a complete discussion on the relevance of the detected
genetic interactions in this study to cerebellar development.)
Therefore, we expect that the detected gene interactions provide
testable hypotheses regarding cerebellar development for further
biological experiments.

In the second study, we searched for novel gene interactions in
the mostly architecture-unknown transcriptional networks required
for mouse cerebellar development, using the same dataset as in the
first study. We predicted putative network architecture by analyzing
two developmental events: presence of Rhombic lip spanning E12
to E17 and presence of distinct IGL spanning E18, E19, P0, P3,
P6, P9. These two events present an opportunity to compare gene
interactions across embryonic and post-natal stages, since they
approximate developmental milestones for the cerebellar granule
neuron. We began by filtering the expression data to remove
transcripts either without expression change across time or that
were inconsistent between the DBA and BL6 mouse strains. We
also grouped linearly correlated transcripts into 1823 clusters, as
transcripts with linearly correlated time courses are mathematically
equivalent for DSM modeling. A representative is selected for each
cluster that is most linearly correlated to the other transcripts in the
same cluster. Details are given in Supplementary Material. Finally,
we applied CDSM to detect conserved and differential interactions
across the two developmental events. In CDSM, we utilized a
sigmoidal regulation model [Equation (6)] with a maximum number
of two parents and self-regulation allowed. The most significant
parent combination for each transcript measured by its pt was
selected to form an estimated topology. Then Fc and Fd of each
transcript cluster representative were used to determine conserved
and differential interactions.

This study yielded three findings on mouse cerebellar
development based on the putative network architecture generated
by CDSM. First, more differential interactions (1639) than
conserved ones (184) between the presence of Rhombic lip and
distinct IGL were identified. We used an α=0.05 test size cutoff
after multiple testing adjustment. Based on the composition of cell
type in the cerebellum, the interactions revealed by our analysis
are expected to be heavily biased toward gene expression events
associated with the granule cell population (�90% of cells in
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Fig. 4. Significant differential interactions detected between transcripts
involving the WNT pathway by CDSM in the presence of Rhombic lip versus
distinct IGL. The gray scale defined in the boxes represents the significance
(pd ) of a differential interaction targeting a gene cluster. The darker the
node is, the more differential is an interaction. Each node is labeled with its
cluster name and a gene of interest. An interaction, between representatives
of C326, containing Lef1, and C656 containing Ccnd2, shifted across the
two developmental events. The statistical significance of each differential
interaction is given in the Supplemental Material.

the mature cerebellum). Major developmental events of this cell
type (expansion and migration of the progenitor population in the
presence-of-the-rhombic-lip period versus proliferation, migration,
and morphogenesis during the presence-of-distinct-EGL period) are
approximately coincident with the birth of a mouse. Thus, more
differential interactions explain the change in activity in the granule
cell population. Second, a TF named Lef1, whose downstream genes
are more heavily involved in the WNT pathway than other TFs,
was influenced differently between the presence of Rhombic lip and
presence of distinct IGL. Detected interactions among some TFs
and their target genes involved in the WNT pathway are shown in
Figure 4, and a table of statistical significances of involved clusters
is given in Supplementary Material. Third, genes in cluster C851
are highly active in influencing four genes (Ppard, Lef1, Crebbp,
Map2k7) in the WNT pathway. They are as follows: Rsc1a1, Zfp367,
Rnf26, Gli2, Impa2, Rfc1, Polb, Fen1, B830045N13Rik, BC062185,
Uros, Prr14, Bik, Zkscan17, Pmf1, Mybl2, Tk1, Tbl2 and Plec1.
Although most of these interactions have not been reported in
the literature, recent research suggests evidence of a relationship
between Mybl2 and Crebbp (Rønneberg et al., 2011) or Mybl2 and
Fosl1 (Pennanen et al., 2009), which are associated with aberrant
cell proliferation in cancer. As the WNT pathway is known to be
involved in cerebellar development, these gene interactions that
influence the WNT pathway are most promising for future biological
investigation.

5 DISCUSSION
We have proposed and validated the CDSM framework to detect
conserved and differential gene interactions across molecular
contexts from time course observations. Instead of focusing on the
reconstruction of interactions, often limited by data insufficiency,
we use CDSM to compare interactions across conditions. We
achieved the comparison by decomposing the total interaction
strength, Ft , across conditions into strengths of homogeneity Fc and
heterogeneity Fd , and therefore established a decomposition rule.
The CDSM framework was validated by two simulation studies,

in which it outperformed two alternative methods: numerical
comparison and differential correlation. Numerical comparison
ignored uncertainty and did not perform well. Differential
correlation did not do well either, due to its limitations in dealing
with non-linearity, combinatory effects and unequal variance of the
variables and noise. The CDSM overcomes these issues and can
be particularly effective for comparing gene regulatory networks
to detect inherent systematic changes in terms of differential
interactions, beyond system state changes via differential gene
expression analysis.

Applying CDSM to the time course microarray data for cerebellar
development revealed conserved and differential interactions across
various events. The gene regulatory network underlying cerebellar
development is poorly understood. Our rationale is to find gene
interactions that were either consistently conserved or differential
in two setups through CDSM on genome-wide time course
observations. In our first and more conservative setup, we studied
how genetic interactions known in other organisms may participate
in mouse cerebellar development. We found 58 and 52 significant
interactions putatively involved in EGL expansion, for the DBA and
BL6 mouse strains, respectively. These efforts identified promising
candidates for further biological validation. For instance, E2f1,
E2f2, Pax6, Pitx2 and Scx are now hypothesized to be involved
in cerebellar granule cell development. In the second and more
explorative setup, we detected, at the genome scale, many de
novo differential interactions between the presence of Rhombic
lip and presence of distinct IGL. Among these interactions, the
most promising ones are those that are found to influence general
developmental pathways such as the WNT pathway. An example
is the novel gene interactions involved in a TF named Lef1—
an essential output of the WNT pathway—whose downstream
gene interactions are strongly differential when comparing the two
developmental events. Overall, these identified gene interactions
have generated testable hypotheses that merit further biological
investigation.

Three conditions are important to make CDSM fruitful,
based on our simulation studies. First, our framework works
better on a cascaded network architecture, often the case for
biological systems, than on random networks. That is, an upstream
differential interaction can be reliably detected, without announcing
downstream interactions differential even if the expression levels of
downstream genes may have changed. Second, the DSM is based
on the estimation of the derivative of each variable to time, and is
thus effective to deal with systems with smooth dynamics, but not
discrete non-smooth observations. Third, the DSM heavily relies on
the correct mathematical form for interactions, and the comparative
results will be reliable only when a sufficiently good approximation
of the interaction form is used in the modeling.

Several future directions are possible for comparative modeling
of interactions. The CDSM is readily applicable to data obtained
by experiments using combinatorial gene perturbation, such as
data from high-throughput quantitative genetic interaction assays
(Costanzo et al., 2010). Also, a wider range of mathematical
forms for interactions can be included beyond our proposed models
of additive non-linear terms, without changing the underlying
statistical framework. This will be feasible with an increasing
supercomputing power. Furthermore, prior biological knowledge
obtained from alternative means can be incorporated to limit the
search space for potential interactions.

2857



[14:24 27/9/2011 Bioinformatics-btr472.tex] Page: 2858 2851–2858

Z.Ouyang et al.

ACKNOWLEDGEMENT
We acknowledge supercomputing support on SGI Altix 8200
‘Encanto’ from New Mexico Computing Applications Center.

Funding: A Graduate Research Assistantship Award from NMSU
Graduate School (to Z.O.); NSF CREST Grant no. (HRD-0420407);
National Research Initiative Grant no. (2006-35504-17359) from
the USDA Cooperative State Education and Extension Service; U54
award no. (5U54CA132383) from the National Cancer Institute.

Conflict of Interest: none declared.

REFERENCES
Bonneau,R. (2008) Learning biological networks: from modules to dynamics.

Nat. Chem. Biol., 4, 658–664.
Califano,A. (2011) Rewiring makes the difference. Mol. Syst. Biol., 7, 463.
Chou,I.-C. and Voit,E.O. (2009) Recent developments in parameter estimation and

structure identification of biochemical and genomic systems. Math. Biosci., 219,
57–83.

Costanzo,M. et al. (2010) The genetic landscape of a cell. Science, 327, 425–431.
Duparc,R.H. et al. (2006) Pax6 is required for delta-catenin/neurojugin expression

during retinal, cerebellar and cortical development in mice. Dev. Biol., 300,
647–655.

Ellner,S.P. and Guckenheimer,J. (2006) Dynamic Models in Biology. Princeton
University Press, Princeton, NJ08540.

Fulton,D.L. et al. (2009) TFCat: the curated catalog of mouse and human transcription
factors. Genome Biol., 10, R29.

Gholami,A.M. and Fellenberg,K. (2010) Cross-species common regulatory network
inference without requirement for prior gene affiliation. Bioinformatics, 26,
1082–1090.

Goldowitz,D. and Hamre,K. (1998) The cells and molecules that make a cerebellum.
Trends in Neurosciences, 21, 375–382.

Heckman,N. and Ramsay,J.O. (1996) Spline Smoothing with Model Based Penalties.
R package version 1.0-14 (2010). S original by Jim Ramsay. R port by Brian Ripley.

Hu,R. et al. (2009) Detecting intergene correlation changes in microarray analysis: a
new approach to gene selection. BMC Bioinformatics, 10, 20.

Lai,Y. et al. (2004) A statistical method for identifying differential gene-gene co-
expression patterns. Bioinformatics, 20, 3146–3155.

Larouche,M. and Goldowitz,D. (2012) Genes and Cell Type Specification In Cerebellar
Development - Handbook of Cerebellum and Cerebellar Disorders. Springer (in
press).

Le Novère,N. et al. (2006) BioModels Database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Res., 34, D689–D691.

Leonardson,A.S. et al. (2010) The effect of food intake on gene expression in human
peripheral blood. Hum. Mol. Genet., 19, 159–169.

Ma,H. et al. (2011) COSINE: COndition-SpecIfic sub-NEtwork identification using a
global optimization method. Bioinformatics, 27, 1290–1298.

Marbach,D. et al. (2009) Generating realistic in silico gene networks for performance
assessment of reverse engineering methods. J. Comput. Biol., 16, 229–239.

Marbach,D. et al. (2010) Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. USA, 107, 6286–6291.

Mentzen,W.I. et al. (2009) Dissecting the dynamics of dysregulation of cellular
processes in mouse mammary gland tumor. BMC Genomics, 10, 601.

Oliphant,A. et al. (2002) BeadArray technology: enabling an accurate, cost-effective
approach to high-throughput genotyping. Biotechniques, (Suppl.), 56–58, 60–61.

Ouyang,Z. and Song,M. (2009) Comparative identification of differential interactions
from trajectories of dynamic biological networks. In Proceedings of German
Conference on Bioinformatics Halle Germany, Vol. 157 of Lecture Notes in
Informatics, Gesellschaft für Informatik 2009, Bonn, Germany, pp. 163–172.

Pennanen,P.T. et al. (2009) Gene expression changes during the development of
estrogen-independent and antiestrogen-resistant growth in breast cancer cell culture
models. Anticancer Drugs, 20, 51–58.

Rønneberg,J.A. et al. (2011) Methylation profiling with a panel of cancer related genes:
association with estrogen receptor, TP53 mutation status and expression subtypes
in sporadic breast cancer. Mol. Oncol., 5, 61–76.

Sharan,R. et al. (2005) Conserved patterns of protein interaction in multiple species.
Proc. Natl Acad. Sci USA, 102, 1974–1979.

Shiraishi,Y. et al. (2010) Inferring cluster-based networks from differently stimulated
multiple time-course gene expression data. Bioinformatics, 26, 1073–1081.

Solecki,D.J. et al. (2001) Activated Notch2 signaling inhibits differentiation of
cerebellar granule neuron precursors by maintaining proliferation. Neuron, 31,
557–568.

Sotelo,C. (2004) Cellular and genetic regulation of the development of the cerebellar
system. Progr. Neurobiol., 72, 295–339.

Stark,C. et al. (2006) BioGRID: a general repository for interaction datasets. Nucleic
Acids Res., 34, D535–D539.

Stark,C. et al. (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids
Res., 39, D698–D704.

Swanson,D.J. et al. (2005) Disruption of cerebellar granule cell development in the
Pax6 mutant, Sey mouse. Dev. Brain Res., 160, 176–193.

Tischler,J. et al. (2008) Evolutionary plasticity of genetic interaction networks.
Nat. Genet., 40, 390–391.

Tyson,J.J. (1991) Modeling the cell division cycle: cdc2 and cyclin interactions.
Proc. Natl Acad. Sci. USA, 88, 7328–7332.

Wallace,V.A. (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron
precursor cell proliferation in the developing mouse cerebellum. Curr. Biol., 9,
445–448.

Wang,V.Y. and Zoghbi,H.Y. (2001) Genetic regulation of cerebellar development. Nat.
Rev. Neurosci., 2, 484–491.

Yeghiazaryan,K. et al. (1999) Downregulation of the transcription factor scleraxis in
brain of patients with Down syndrome. J. Neural Transm. Suppl., 57, 305–314.

Zar,J.H. (2009) Biostatistical Analysis, 5th edn. Prentice Hall, Upper Saddle River,
NJ07458.

2858


