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ABSTRACT

Motivation: In the analysis of differential peptide peak intensities
(i.e. abundance measures), LC-MS analyses with poor quality peptide
abundance data can bias downstream statistical analyses and hence
the biological interpretation for an otherwise high-quality dataset.
Although considerable effort has been placed on assuring the quality
of the peptide identification with respect to spectral processing, to
date quality assessment of the subsequent peptide abundance data
matrix has been limited to a subjective visual inspection of run-by-run
correlation or individual peptide components. Identifying statistical
outliers is a critical step in the processing of proteomics data as
many of the downstream statistical analyses [e.g. analysis of variance
(ANOVA)] rely upon accurate estimates of sample variance, and their
results are influenced by extreme values.

Results: We describe a novel multivariate statistical strategy
for the identification of LC-MS runs with extreme peptide
abundance distributions. Comparison with current method (run-
by-run correlation) demonstrates a significantly better rate of
identification of outlier runs by the multivariate strategy. Simulation
studies also suggest that this strategy significantly outperforms
correlation alone in the identification of statistically extreme liquid
chromatography-mass spectrometry (LC-MS) runs.
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1 INTRODUCTION

The majority of statistical strategies to assess peptide/protein
differential abundances from liquid chromatography-mass
spectrometry (LC-MS) proteomic experiments are based on
analysis of variance (ANOVA) methodologies applied to peak
intensities (i.e. abundance measures) of proteolytic peptides
(Bukhman et al., 2008; Daly et al., 2008; Karpievitch et al.,
2009; Oberg and Vitek, 2009; Oberg et al., 2008). However,
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the ANOVA approach relies upon accurate estimates of sample
variance, and proteomics studies not only have inherent variability
associated with the biological samples, but potentially diverse
process-based sources of variability. That is, the accurate estimate
of sample variances is often difficult to obtain. For example, sample
preparation protocols and instrument variations associated with the
LC column (particularly important for multi-column platforms) and
mass spectrometer can cause variations in peak intensities, as well
as peptides identified across MS analyses within an experiment.
Data quality is especially important when the number of biological
samples is small, often the case in proteomics experiments, and
extreme values can negatively influence all subsequent data analysis
outcomes.

Identification of statistical outliers in univariate data is an
established but highly debated statistical topic (Barnett and
Lewis, 1994; Hawkins, 1980). There are many consecutive outlier
procedures, focusing on one suspect value at a time, that have been
proposed and implemented across many fields of application, such
as Grubbs’ test and Dixon’s Q-test (Dixon, 1950; Grubbs, 1950).
Because these methods iteratively remove outlier points, the false
positive rate (i.e. Type 1 error) is inflated (Jain, 2010). In contrast,
recursive outlier detection procedures detect the presence of any
number of outliers and control Type 1 errors. For example, Jain
(2010) presents a recursive version of Grubbs’ test and Caroni
and Prescott (1992) derived a sequential application of Wilks’s
multivariate outlier test. There are downfalls to these recursive
procedures: (i) they are designed for univariate data, and if applied
to multivariate data, will likely fail to detect statistically influential
extreme values, and (ii) they are negatively affected by masking
(i.e. the inability to detect an outlier in the presence of another
outlier) and swamping (i.e. identify non-outliers as outliers) effects.

The identification of statistical outliers in multivariate data, such
as microarray and proteomic data, is non-trivial. The multiple
dimensions of the data often subject outliers to masking (Filzmoser
et al., 2008). The microarray community, however, has made
considerable progress in applying statistical metrics to assess the
quality of microarray data (Kauffmann ez al., 2009; Kemmeren et al.,
2005; Lee et al., 2006; Wilson and Miller, 2005). Of particular
applicability to proteomics data are the ideas presented by
Kauffmann ef al. They note that a poor quality array will impede the
statistical and biological significance of the analysis due to the added
noise. This is also true for proteomics data. That is, poor quality
peptide abundance data will hinder downstream statistical analysis,
including normalization, and subsequent biological interpretations.
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Outlier discovery in peptide-centric proteomics data

For proteomics data, a routine but non-probabilistic approach
used for the identification of outlier LC-MS analyses (i.e. runs)
during data preprocessing is through a correlation matrix plot
(Metz et al., 2008). The sample correlation coefficient is calculated
among technical replicates and biological replicates. Those runs
with a relatively low correlation are removed from the dataset.
The determination of ‘low’ correlation is subjective, and varies
across analysts, experiments and time. Correlation may be examined
via a heat map in which a color palette represents the numeric
value, the color palette choice as well as the range of correlation
values it covers can be highly subjective and extremely influential
on the selection of which runs should be removed from the
dataset. In addition, the sample correlation coefficient can only be
computed across peptides with common identifications between runs
(i.e. it does not account for missing data), it does not account for
the multivariate nature of LC-MS runs, nor is there any statistical
certainty associated with the exclusion of a run.

Advanced statistical approaches to outlier detection in proteomics
data have focused either on the identification of outlier spectra
maps (Rudnick et al., 2010; Schulz-Trieglaff et al., 2009) or on
peptide/protein abundances independent of LC-MS run behavior
(Cho et al., 2008; MacCoss et al., 2003; Xia et al., 2006). Rudnick
et al. (2010) described a large set of metrics for the quantitative
assessment of system performance and evaluation of technical
variability among inter- and intra-laboratory LC-MS/MS proteomics
experiments. However, the use of these metrics to assess the quality
of an individual LC-MS/MS run is not addressed. Schulz-Trieglaff
et al. (2009) applied a multivariate method to perform a quality
assessment of raw LC-MS maps using 20 quality descriptors.
The goal of their approach was to identify and remove outlier runs
using unprocessed spectra before noise filtering, peak detection or
centroiding was performed. Cho er al. (2008) presented a peptide
outlier detection method using quantile regression to account for
the heterogeneity of variance between replicate LC-MS/MS runs.
Peptide intensity ratios were plotted on an MA plot, where M is the
difference in peptide abundance values and A is the average peptide
intensity value. MacCoss et al. (2003) developed a correlation
algorithm to detect outlier peptides using fractional changes between
sample and reference intensities. Xia et al. (2006) proposed a
two-stage method, combining Dixon’s Q-test and a median absolute
deviation (MAD) modified z-score test, for outlier detection of
peptide ratios. These latter methods focus on assessing individual
peptides for extreme behavior rather than the distribution of peptide
abundance values for an entire LC-MS run.

Our goal is to statistically identify runs that exhibit extreme
peptide abundance distribution properties, and thus will likely
impact downstream statistical analyses. Consequently, we are not
focused on outliers specific to the spectral properties. We describe
a statistical strategy to identify and remove extreme LC-MS
runs with a high level of statistical certainty, thus removing
subjectivity from the filtering process. The approach, based on a
robust Mahalanobis distance (rMd), assesses the reproducibility
of the distribution of peptide abundance values across replicate
runs of the same biological sample as well across related
biological samples. Statistical methods, which limit the influence
of extreme observations, are applied to obviate assumptions
about underlying probabilistic models (Hoaglin ez al., 2000). We
demonstrate the approach by applying it to simulated and real
LC-MS datasets.

2 METHODS

Our approach to detect and ascertain if an individual LC-MS run within
an experiment, is a statistical outlier with a four-step process. The algorithm
was implemented in MATLAB (version 7.10.0.499, R2010a, The MathWorks
Inc.: Natwick, MA, USA).

2.1 Summarize each LC-MS run as five metrics

Five statistical metrics were chosen to describe the distribution of observed
peptide abundance values in a single LC-MS run. These metrics described
below capture selected aspects of the peptide abundance distribution such as
shape and scatter. The location of each distribution is not directly considered
since it could potentially be a false indicator of outlingness. In addition,
location can easily be corrected by a simple overall normalization factor.
The metrics are vectorized for each run, represented as x; initially reducing
the dimension of each run from p peptides to ¢ metrics with the resulting
dataset dimensionality of (n x g) where n is the number of LC-MS runs.

2.1.1 Metric 1: correlation coefficient The sample correlation coefficient,
rij, is calculated for peptide abundance values between all LC-MS
runs (i=1,...,n; j=1,...,n) resulting in an nxn matrix. The correlation
coefficient metric for the i-th run, R;, which is used for the robust principal
component analysis, is the average correlation within a common grouping
(e.g. treatment group, G), and has dimension (n x 1). For the i-th run this is

computed as,
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where Ng(;) is the total number of runs in the group associated with run i. The
average correlation among biological replicates, rather than among technical
replicates, is used due the small number of technical replicates, if any at all,
observed in a typical LC-MS experiment.
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2.1.2 Metric 2: fraction of missing peptide abundance data The fraction
of missing abundance data in the i-th (1,...,n) LC-MS run is defined as,
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where a;; = 1 if the j-th peptide abundance is absent for the i-th run; otherwise,
ajj = 0.
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2.1.3  Metric 3: median absolute deviation of peptides within a LC-MS run
The MAD (Hoaglin et al., 2000) is a robust measure of the spread of the
data, and is used as an estimate of the sample standard deviation if scaled
by a factor of 1.483. The MAD of the i-th LC-MS run is defined as,

MAD; =med |x; — med(X);]| ©)
That is, within a run, each abundance value for peptide j is compared with

the median peptide abundance values of the run i.

2.1.4 Metric 4: skew The asymmetry of a distribution is described by
skew. In our application to the i-th (1,...,n) LC-MS run, p is the number of
peptides observed in the i-th run, Xis the average peptide abundance value of
all peptides observed in the i-th run and S is the sample standard deviation

of the i-th run.
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2.1.5 Metric 5: kurtosis The peakedness, or ‘heavy-tailedness’, of a
distribution is described by kurtosis. The same parameters are used as skew.
Kurtosis is calculated as,

) 1< Xi—X 4
Kurtoms,-:EZ[T} -3 (@)

i=1
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2.2 Obtain a robust estimate of the covariance matrix

The purpose of robust principal component analysis (rPCA) in our method is
to obtain the eigenvalues and eigenvectors to calculate a robust covariance
matrix, which will be used in the calculation of the rMds. We employ a rPCA
algorithm developed by Croux et al. that is based on the projection-pursuit
approach to estimate the eigenvalues, and subsequent scores obtained from
the projections of the metrics on the eigenvectors (Croux and Ruiz-Gazen,
2005; Li and Chen, 1985). The robust covariance estimate is defined as,
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for which S, is the robust scale estimator used by the projection-pursuit
index Agyx is the k-th eigenvalue and vg,  is the k-th eigenvector (Croux
and Ruiz-Gazen, 2005). The rPCA algorithm uses the Lj-median value to
center the data, and (MAD*1.483) as the robust scale estimate.

2.3 Identify outlier LC-MS run(s) using the rMd

A widely accepted measure of distance in multivariate data is the
Mahalanobis distance because it accounts for not only the average value,
but also the covariance structure of the measured variables (Mahalanobis,
1936). The distance of an individual LC-MS run from the center of the
data is measured by a rMd. For a g-dimensional multivariate vector x; for
i=1,...,n, the rMd is defined as,

Dy (x)=1/(xi—=m)T Cg, (x; —m) 0]

where Cg;,, a robust estimate of the covariance matrix, is obtained from the
robust principal component analysis of the n x ¢ quality matrix, and m; is a
vector of medians of the five metrics.

2.4 Statistical assessment of the rMds

The rMd squared values associated with the peptide abundances vector
(rMd-PAV) is the score used to assess whether an individual LC-MS run
is an outlier. The rMd-PAV scores are approximately chi-square distributed
with ¢ degrees of freedom ( XZ)- Therefore, outlier LC-MS runs are defined
by a large rMd-PAV score such that the calculated squared distance exceeds
a critical value of the XZ distribution specified a priori.

2.5 Proteomics data processing

We present two independent real datasets to demonstrate the application
of this outlier discovery strategy to LC-MS proteomics data. Human
cell culture samples were analyzed with an Exactive mass spectrometer
(Thermo Electron Corp.), and mouse plasma samples were analyzed
with an LTQ-Orbitrap mass spectrometer (Thermo Electron Corp.).
Nanoelectrospray ionization was used in the analysis of all samples. Spectra
were collected at 400-2000 m/z with a resolution of 100k and analyzed
using the accurate mass and elution time (AMT) tag approach (Smith et al.,
2002). The mass de-isotoping process was performed using Decon2LS (Jaitly
et al., 2009), and the matching process was performed using VIPER (Monroe
et al., 2007). Features from the LC-MS analyses were matched to AMT tags
to identify peptides, using an initial tolerance of £3 p.p.m. for mass and
2.5% for the LC normalized elution time (NET). The human cell culture
peptide datasets were further processed to remove peptides identified with
low confidence, using the uniqueness filter Statistical Likelihood Confidence
(SLiC) (Anderson et al., 2006) score of 0.35 and a DelSLiC of 0.2.
In circumstances where a peptide was identified in some LC-MS analyses,
but not others, the missing data were coded as ‘NaN’. All peptide abundance
values were transformed to the log10 scale. Minimum occurrence data filters
were used to identify those peptides for which the amount of data present
was not adequate for differential abundance analysis (Webb-Robertson et al.,
2010). The sample complexity of the sham controls (SCs) in each of the
designed experiments is the same with respect to original biological material.

3 RESULTS

Simulations of size 500 based on the p-variate standard normal
distribution Np(0,I), and an empirically influenced p-variate normal
distribution Np(u, ¥) were performed to examine a range of outlier
configurations. In addition, we assessed the performance of the
multi-dimensional outlier detection method against the conventional
method of using a Pearson’s correlation coefficient [previously
described in Section 2.1 as metric 1—Equation (1)] to ascertain
whether a LC-MS run is an outlier. Simulation is useful to
investigate the properties of rMd-PAV, however; since simulation of
expected distribution parameters in real proteomics data is not well
understood, these results are presented in Supplementary Material
(Rocke et al., 2009).

The results of the multi-dimensional outlier detection analysis are
displayed in a simple yet effective graphic in which rMd-PAV scores
are plotted for each LC-MS run and compared with a reference line
representing the %2 critical value. For improved visualization, the
tMd-PAV scores and the x2 critical value are transformed to the log2
scale. The red horizontal line represents the log,( X%,9999, 5) critical
value. That is, at a significance level of 0.0001, a LC-MS run may
be classified as a statistical outlier if the calculated test statistic >
X(2)_9999, 5 critical value, or equivalently, the x2 P <0.0001. LC-MS
runs with logy(rMd-PAV) scores above the red horizontal line are
suspect and should be removed from the dataset.

3.1 Real data benchmark—expert identified outlier
runs

Calu-3 cells, a human lung adenocarcinoma cell line, were
infected with the severe acute respiratory syndrome coronona virus
(SARS-CoV) at a multiplicity of infection of 5. Cell monolayers
were inoculated with SARS for 40 min at 37°C, and sham-infected
controls were inoculated with medium only. Following inoculation,
monolayers were rinsed and incubated for times 0, 3, 7, 12, 24,
30, 36 and 48 h. At the indicated times post-infection, wells were
washed three times with ice cold 150 mM ammonium bicarbonate
buffer and cells lyzed for S5min in ice cold 8 M urea. Samples
were frozen at —80°C until assayed. Samples were analyzed in
triplicate, except where noted in Supplementary Table S2, and
the minimum occurrence filter returned a total of 26 776 peptides
(Webb-Robertson et al., 2010).

This study included three biological replicates per time point
as well as a large number of LC-MS runs (n=141), thus the
removal of runs with poor quality abundance data is essential
to maintain statistical power in downstream analyses. An LC-MS
expert at Pacific Northwest National Laboratory upon reviewing the
chromatography maps for this study was able to designate 28 out
of 141 (~20%) LC-MS analyses as suspect due to various reasons
(e.g. electrospray instability, elution time, sample prep/collection
problem). We performed the rMd-PAV analysis, and compared its
performance with ¢ correlation alone to identify statistical outliers
(runs at the peptide abundance level) via a receiver operating
characteristic (ROC) curve analysis.

The rMd-PAV approach identified 12 out of the 28
expert-designated suspect runs as statistical outliers at the
0.0001 significance level (Fig. 1a). Electrospray issues represent
almost half (13/28) of the expert identified runs, while the statistical
algorithm identified three of these runs. It is the most likely
technical issue to occur and the most difficult to detect. One reason
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Fig. 1. Calu-3 cell-line experiment. (a) The rMd-PAV plot of the LC-MS runs. Runs identified as outliers (blue downward triangles) sit above the red horizontal
line which represents the log, ()(39999’5) critical value (i.e. P=0.0001). The empty upward triangles below the red horizontal line represent runs identified
as suspect by the MS expert that were not identified as statistical extreme. (b) The correlation plot of the LC-MS runs.

could be that the electrospray issue does not translate to a poor

peptide abundance distribution, and thus an outlier. The other

15 runs identified by the MS expert are due to elution time (5/28;

4/5 identified by algorithm), chromatography (3/28; 1/3 identified

by algorithm) and sample prep/collection (7/28; 4/7 identified by
algorithm).

LC-MS runs that were expert designated as suspect, but did not
exhibit different peptide abundance distributions from those runs
that were not designated as suspect are identified in Figure 2a as
unfilled triangles. Although the MS expert identified these runs as
suspicious, the peptide abundance distributions are indistinguishable
from those runs that were not designated as suspect.

In addition, we reviewed the sample correlation coefficient
between all the study runs (Fig. 1b). Based on a subjective visual
inspection of this graph, 6 out of the 28 expert-designated suspect
LC-MS runs (#6, 25, 67,78, 131 and 132) would have been dropped o} Wicoran ign k.~
from the dataset. The rMd-PAV scores identified six additional runs '
as statistical outliers. This method did not identify any of the extreme
runs due to electrospray issues; it did identify 3/5 runs labeled as
suspect due to elution time, 1/3 suspect runs due to chromatography Fig. 2. The ROC curves from the rMd-PAV and correlation alone outlier
and 2/7 runs due to sample prep/collection issues. analyses of the calu-3 cell-line experiment.

AROC analysis was completed to compare all levels of sensitivity
and specificity. A comparison of the ROC curves for the rMd-PAV
scores and the correlation metric alone by a Wilcoxon signed

[T [ T} [T
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Fig. 3. Cigarette smoke exposure experiment. (a) Box plots of peptide abundance values observed in LC-MS runs (n=98) for the mouse plasma dataset.
The color indicates experimental group membership. (b) The rMd-PAV plot of the LC-MS runs. Those runs identified as outliers sit above the red horizontal

line which represents the log, ( Xé.9999,5) critical value (i.e. P <0.0001). The downward triangles represent outlier runs—red represents all technical replicates

from a biological sample, and blue represents individual technical replicates within a sample. (¢) The run-by-run (r;;) correlation plot of the LC-MS runs.

rank test results in statistically significant differences between the
curves in favor of rMd-PAV (P <0.0001, Fig. 2). Therefore, for this
benchmark dataset we observe that rMd-PAV scores are superior to
correlation alone for the identification of statistical outlier runs in
LC-MS peptide abundance data.

3.2 Case study—cigarette smoke exposure data

Groups (N =8 biological replicates) of regular weight (RW) and
diet-induced obese (OB) C57BL/6 mice (15 weeks old) were
exposed to either filtered air (SCs), mainstream (MS) or side stream
(SS) cigarette smoke by nose-only inhalation exposure for 5 h/day
for 8 days. Target cigarette smoke exposure concentrations were
250 pg wet-weight total particulate matter (WTPM)/L of air for the
MS exposures and 85 wg WTPM/L for the SS exposures. RW mice
are defined as those mice fed a regular diet (PMI 5002 Rodent
Diet®, Richmond, IN, USA; ~5kal% fat) throughout the study.

DIO mice were fed a high-calorie/high-fat diet (D12492 Rodent
Diet, Research Diets Inc., New Brunswick, NJ, USA; 60kal% fat)
starting at 6 weeks of age and continued throughout the study.
Immediately following the last exposure, each animal was removed
from the exposure unit and anesthetized. Blood was collected into
tubes containing potassium ethylenediaminetetraacetic acid (EDTA)
(Tyco Healthcare Group LP, Mansfield, MA, USA) and centrifuged
to obtain plasma for analysis by LC-MS/MS. Samples were analyzed
in duplicate, except where noted in Supplementary Table S3 and
a minimum occurrence filter returned a total of 3655 peptides
(Webb-Robertson et al., 2010).

As in any data analysis problem, visual inspection of complex
data before statistical analysis is vital. Box plots are a simple
and statistically robust techniques that are informative concerning
distributional properties (e.g. skew and kurtosis), and provide visual
guidance when interpreting analysis results. Peptide abundance data
for each example has been displayed versus a LC-MS run order
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Fig. 4. Cigarette smoke exposure experiment. The score plot of the first
two latent variables resulting from the rPCA of the data. It suggests the
runs labeled on the plot are outliers due to the fraction of missing peptide
abundance values, and the skewness and kurtosis of the peptide abundance
distribution within a run.

identification number (not true LC run order) using a box plot.
The box plot of the mouse plasma data (Fig. 3a) shows a fair
amount of variability from run to run making visual determination
of statistical outlier runs difficult.

The rMd-PAV approach identified 6 out of the 98 LC-MS runs as
statistical outliers at the 0.0001 confidence level (Fig. 3b). Singleton
technical replicates were removed (run id #23 and 96), in addition
to two complete biological samples (run id #11 and 12—obese
SC sample; run id #27 and 28—obese MS inhalation sample).
Of the six runs identified as statistical outliers, it is unlikely any
would have been removed using run-by-run correlation coefficient,
rij, as the median correlation of all runs is 0.86 (Fig. 3c), and ranging
from 0.72 to 0.87 across the pool of identified outlier runs. Using a
more reflective score of correlation, R;, which for the i-th run is the
average correlation among the biological replicates within a group,
the rMd-PAV identified runs would not have been removed from the
dataset as the median correlation is 0.88 ranging from 0.73 to 0.85
across the identified outlier runs.

An additional benefit of the rPCA is the ability to explore the
behavior of the metrics (e.g. skew, kurtosis, fraction missing, etc.)
used to describe the peptide abundance distributions for the LC-MS
runs within an experiment. Explaining high-dimensional data in
two or three latent variables (i.e. principal components) is highly
desirable. With only a few latent variables, data can be graphically
displayed and the key contributing attributes to the total explained
variation is easily interpreted. The relationship among the five
metrics for peptide abundance data can be understood by examining
the score plots of the latent variables. In addition, the behavior of
the outlier runs can be understood relative to the non-outlier runs
(i.e. average).

The most dominant manner in which these runs deviate is
Kurtosis, Skew and Fraction Missing Data, as observed in the score
plot associated with the rPCA (Fig. 4). The score plot is unique to
an experiment, and thus is an excellent tool to further understand
statistical differences in the peptides distributions among the LC-MS

runs. The first score plot to consider is a comparison of the first
two rPCA components (i.e. latent variables). In combination they
account for >88% of the total variation in the data, and suggest
differences among kurtosis, skew and fraction of missing abundance
data explain most of the variation in the data. The plot shows
the rMd-PAV identified runs located at the extreme ends of the
observed data with respect to the first and second latent variables.
Using the angle between vectors as a visual guide, for this data,
it can be deduced the Fraction Missing Data and Skew of the
peptide abundance distribution are correlated. In total, the first three
components account for ~95% of the variation observed in the data.
While a two-dimensional view of the data is helpful in understanding
relationships among variables, outliers and non-outliers, it is the
relationship among the data under the full dimensionality that is the
basis for the evidence of outlier runs.

4 DISCUSSION

Outlier detection in multivariate data is a non-trivial statistical
task often subject to the masking effect (Filzmoser et al., 2008;
Rocke and Woodruff, 1996). Caution should always be taken when
removing data from any dataset, large or small, and data should
not be removed solely on the grounds of a statistical outlier test.
Rather, the results of any statistical outlier algorithm used should
always be reviewed in the context of the research goal and the
experiment. Often the extreme data values are of interest and may
explain technical difficulties in the process (e.g. sample preparation
issues, technical difficulties with instrumentation and a mislabeling
of samples). However, as with any statistical analysis and especially
those dealing with small sample sizes, reviewing the outcome of
the analysis is imperative. Specifically, graphical methods allow the
analyst to review the analysis in a stepwise manner. For example, as
our first step, we first plot the peptide abundances observed in the
experiment for each LC-MS run using a box plot. Then to understand
how the abundance distributions vary across the LC-MS runs we
examine the scores plot resulting from the robust PCA.

5 CONCLUSION

We have presented a novel approach to the identification of statistical
outliers in LC-MS proteomics peptide abundance data. The value of
the multivariate outlier discovery strategy utilizing rMd-PAV scores
is the use of an objective probabilistic model to assess statistical
certainty of the exclusion of runs within an experiment in the
context of the complete dataset. Proteomics has placed considerable
effort on assuring the quality of the peptide identification with
respect to spectral processing (Piening et al., 2006; Rudnick et al.,
2010; Schulz-Trieglaff er al., 2009; Stead et al., 2008); however,
quality assessment of the subsequent data matrix has focused on
subjective visual inspection of run-by-run correlation, or individual
peptide components. The quality of the LC-MS peptide abundance
data matrix is essential to the identification of robust biomarkers.
Moreover, statistical evaluation of the data relies upon tools often
based on linear models, such as ANOVA which require accurate
estimates of variance (Bukhman et al., 2008; Daly et al., 2008;
Karpievitch et al,, 2009; Oberg et al., 2008). Without proper
identification of statistical outlier runs the estimates of variance
will be inflated, which may have a considerable effect on the
identification of significant peptides and proteins.
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