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ABSTRACT

Motivation: High-throughput single nucleotide polymorphism (SNP)
arrays have become the standard platform for linkage and
association analyses. The high SNP density of these platforms allows
high-resolution identification of ancestral recombination events even
for distant relatives many generations apart. However, such inference
is sensitive to marker mistyping and current error detection methods
rely on the genotyping of additional close relatives. Genotyping
algorithms provide a confidence score for each marker call that is
currently not integrated in existing methods. There is a need for a
model that incorporates this prior information within the standard
identical by descent (IBD) and association analyses.
Results: We propose a novel model that incorporates marker
confidence scores within IBD methods based on the Lander–Green
Hidden Markov Model. The novel parameter of this model is the
joint distribution of confidence scores and error status per array.
We estimate this probability distribution by applying a modified
expectation-maximization (EM) procedure on data from nuclear
families genotyped with Affymetrix 250K SNP arrays. The converged
tables from two different genotyping algorithms are shown for a wide
range of error rates. We demonstrate the efficacy of our method in
refining the detection of IBD signals using nuclear pedigrees and
distant relatives.
Availability: PLINKe, a new version of PLINK with an extended pairwise
IBD inference model allowing per marker error probabilities is freely
available at: http://bioinfo.bgu.ac.il/bsu/software/plinke.
Contact: obirk@bgu.ac.il; markusb@bgu.ac.il
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The emergence of high-throughput genotyping platforms introduces
various challenges to genetic mapping. In particular, high-
throughput genotyping data contain errors which even in small rates
can obscure signals in genetic mapping (Akey et al., 2001; Kirk
and Cardon, 2002; Pompanon et al., 2005; Sobel et al., 2002).
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An important analysis in genetic mapping is identical by descent
(IBD) inference, which aims to detect regions inherited from a
common ancestor (Bercovici et al., 2010; Kruglyak and Lander,
1995; Kruglyak et al., 1996; Purcell et al., 2007; Thompson, 2008).
Merlin and Plink are examples of popular tools for IBD inference in
pedigrees and distantly related individuals, respectively (Abecasis
et al., 2001b; Purcell et al., 2007). These tools are based on an
efficient implementation of the Lander and Green algorithm for
IBD inference (Kruglyak et al., 1996). It is well recognized that
IBD inference is sensitive to errors which in certain situations
could result in loss of IBD signals (Abecasis et al., 2001a; Douglas
et al., 2000; Gordon et al., 2000). Although not complete, error
detection in pedigree data can be quite effective and cleaning
processes became a routine prior to IBD analysis (Mukhopadhyay
et al., 2004; O’Connell and Weeks, 1998). A major drawback of
error detection methods is the need to set threshold values for
flagging a mistyped genotype. These thresholds balance between
false positive and false negative rates and often depend on other
specific parameters such as pedigree structure, allele frequencies and
error rates (Mukhopadhyay et al., 2004). Moreover, IBD mapping
using distant relatives and case–control association analyses hold
little or no information that facilitate error detection in individual
genotypes. The alternative in these situations is to conduct strict QC
procedures and re-genotype suspicious samples (McCarthy et al.,
2008).

An alternative approach is to incorporate error probabilities per
marker in the statistical models (Lincoln and Lander, 1992; Sobel
et al., 2002). Models that deal with inconsistent markers within
long, nearly identical stretches of markers were implemented for
identical in state (IIS) and identical by descent (IBD) methods. For
example, Purcell et al. implemented an IIS procedure for detecting
runs of homozygosity allowing for a few mismatched markers
within a candidate run (Purcell et al., 2007). Leutenegger et al.
(2003) and Browning et al. (2010) allowed a small probability of
marker error for estimating homozygosity by descent and pairwise
IBD probabilities, respectively (Browning and Browning, 2010;
Leutenegger et al., 2003). These models assume a predefined
error rate for the entire data despite the fact that marker error
probability may not be homogeneous. Error rates may vary between
samples, due to sample-specific preparation details (Wellcome Trust
Case Control Consortium, 2007). Marker error probabilities may
also depend on specific SNP parameters. For example, markers
with extreme allele frequencies are generally more challenging for
genotype calling algorithms (Affymetrix Inc., 2006; Korn et al.,
2008).
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Both the per SNP and per array biases could be addressed via
the confidence scores accompanying each marker call. Genotyping
algorithms report a confidence score for each call based on the allele
intensities of the measured marker relative to a reference sample.
These scores are informative since they assess the confidence of each
call relative to all other samples and therefore reflect the per SNP
relative performance for each sample. They are also informative for
a per sample quality assessment (Yeung et al., 2008). Despite the
valuable knowledge embedded in confidence scores, no rigorous
model has been presented to date that incorporates them in IBD
analysis. Such a model is not trivial because the probability of an
error given a confidence score is not known and depends on details
beyond the genotyping procedure. Estimating the error probability
per marker is important by itself for the analysis of unrelated
individuals for which there is little or no information facilitating
error detection.

In this article, we develop an extended model for IBD inference
incorporating marker confidence scores. We apply a modified
Lander–Green Hidden Markov Model (HMM) on nuclear families
genotyped with Affymetrix 250K SNP arrays and infer both IBD
status and error status for each marker. The main result is an
empirical distribution of confidence scores conditioned on error
status that could be used for IBD inference, error rates estimation and
SNP filtering. Our model is compared with the standard approach
for IBD inference using Merlin, and the results suggest a significant
improvement in correct inference especially for noisy samples. In
addition, we show how to incorporate our findings in the analysis of
unrelated individuals. Plinke, a modified Plink code for pairwise
IBD sharing that incorporates genotyping error probabilities per
marker was implemented. We demonstrate using real and simulated
data the efficacy of the modified algorithm in the recovery of lost
IBD signals between sib-pairs and distantly related individuals.
Further applications for analyzing datasets of general pedigrees and
unrelated individuals are discussed.

2 METHODS

2.1 IBD inference and the Lander–Green model
The standard approach for analyzing small pedigrees is the Lander–Green
model (Lander and Green, 1987). This model could be represented as a
directed acyclic graph (DAG) as indicated in Figure 1 (Fishelson and Geiger,
2002). The figure corresponds to a nuclear family of two parents and two
siblings genotyped over positions (loci) along their genomes. Each locus
has a representation of the entire pedigree as follows. Denote by Hij and
Gij variables corresponding to the j-th individual at the i-th locus. Gij is an
unordered pair of measured alleles as measured for individual j at locus i
(in our case, these are SNPs: AA, AB, BB or 00 for missing value). Another
set of variables, Hij , is defined to indicate the true genotype behind Gij .
Hij is an ordered pair indicating the hidden haplotypes for individual j at
locus i as follows: Hij = (Hp

ij
, Hm

ij
) where p and m represent the paternal

and maternal alleles, respectively. Pedigree members are connected via
the variables Hij by connecting parents with their children as depicted in
Figure 1. Following Lander–Green’s approach, we define selector variables:
Sij = (Sp

ij
, Sm

ij
) to be an ordered pair for paternal and maternal inheritance

indicators: Sx
ij

assumes the values 1 or 2, indicating whether a paternal or
maternal allele were inherited, respectively. Adjacent loci are connected via
the selectors Sij , Si+1,j which indicate the inheritance pattern along the loci for
each individual (Lander and Green, 1987). The model depicted in Figure 1
assumes that the markers are in linkage equilibrium. Therefore, there are
no edges between Hi,j and Hi+1,j (Bercovici et al., 2010). The probability

Fig. 1. The Lander–Green model shown for a nuclear family having two
parents and two siblings. The model is drawn for two adjacent loci assuming
linkage equilibrium. Gij indicates the measured genotype for individual j at
locus i as an unordered pair. Hij indicates the real genotype and Sij indicates
a pair of inheritance selectors with transition probabilities as indicated in
Equation (1).

table for these selectors is modeled by the recombination fraction θ between
adjacent loci with the following transition matrix:

P(Sx
i+1|Sx

i )=
(

1−θx
i θx

i
θx

i 1−θx
i

)
(1)

To simplify notation, locus i is represented by the following vectors for a
pedigree of n individuals:

Hi ={Hi1,Hi2, ...,Hin,}
Gi ={Gi1,Gi2, ...,Gin,}
Si ={Si1,Si2, ...,Sin,}

(2)

The vector of all inheritance vectors in the data is a matrix represented
by the set of all vectors, one per locus: S = {S1,S2, … ,SL}. Similarly
the matrix G = {G1,G2, … ,GL} denotes all measurement vectors and
H = {H1,H2, … ,HL} denotes all hidden alleles in the data.

In IBD inference, the state space at each slot is defined to be the inheritance
vector Si. The inheritance matrix S is inferred using an HMM over adjacent
loci. The conditional probability of the inheritance vector at locus i is
P(Si|Gi), where Gi represents the data at locus i. Using the forward and
backward algorithms (Rabiner and Juang, 1986), the posterior probability of
Si =s given the data at all loci are calculated as follows:

P(Si =s|G)= P(G,Si =s)

P(G)
(3)

The probability of the data, P(G), is calculated by iterating over all values
of Hi as follows:

P(G)=∏
i

∑
Si

P(Gi|Si)P(Si|Si−1)

=∏
i

∑
Si

P(Si|Si−1)︸ ︷︷ ︸
transition

∑
Hi

P(Gi|Hi)P(Hi|Si)

︸ ︷︷ ︸
emission

(4)
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Fig. 2. The Lander–Green model extended with error indicators and
confidence scores.

The emission probability in Equation (4) for each locus can be further
decomposed into two selectors. In a nuclear pedigree, the conditional
probability of the hidden alleles is:

P(Hi|Si)=P(Hif )P(Him)︸ ︷︷ ︸
Parents-priors

siblings∏
n

P(Hin|Hif ,Him,Sin)︸ ︷︷ ︸
selector

The conditional probability of the measured genotype is:

P(Gi|Hi)=
∏

k

P(Gik |Hik)

The joint probability of the data and Si is calculated in a similar manner:

P(Si =s,G)=
∏

k

∑
Sk∈{Si=s}

P(Gk |Sk)P(Sk |Sk−1) (5)

where {Si = s} is the set of all possible inheritance vectors such that Si =s.

2.2 Incorporating confidence scores
Originally in the Lander–Green model, the data were assumed to be error free
and the posterior probability for S was estimated without a measurement error
model. In order to introduce an error model, we define additional variables
for each measured locus. Denote by eij an indicator variable such that eij =1
whenever Hij and Gij are not consistent.Assuming no errors, as in the original
Lander–Green model, implies P(e=1)=0. Current error models that assume
a homogeneous error rate interpret the probability P(e=1) as the error rate of
the data which is the same for all loci (Douglas et al., 2000). The inclusion
of confidence scores for each marker in the model enables a per marker
treatment.

Confidence scores are introduced to our model by defining a new variable
cij for each measured genotype, which indicates the confidence score for
individual j at locus i. Consistent with Equation (2), we define the vectors
ei and ci for locus i and the matrices e and c over all loci and individuals.
Furthermore, define τij =P(cij,eij) to be the joint probability distribution of
marker confidence and error status for marker i of individual j. Figure 2
depicts the modified Lander–Green model with the suggested changes to
each slot emphasized in thick lines.

The assumptions of our model are as follows:

(1) eik is independent of ejk for all loci pairs i, j.

(2) eik is independent of eim for all individual pairs k, m.

(3) The probability table τij is identical for all loci of individual j. We
denote τij =τj , for all i.

These assumptions are reasonable approximations in most cases and they
considerably simplify the calculation of posterior probabilities. Assumption
(3) expresses the assertion that confidence scores should be calibrated per
sample in order to reliably calculate marker error probabilities and maintain
consistency with the definition of error rates.

The error rate for individual j is,

P(ej =1)=
# loci∑
i=1

P(cij,eij =1) (6)

Under this model, the probability of the data P(G,C) takes the following
form:

P(G,C)= ∑
S,H,e

P(G,C,S,H,e)

=∑
S

P(S)
∑
H

P(H|S)
∑
e

P(e)P(G|H,e)P(C|e)
(7)

Decomposing over loci, we get:

P(G,C)=∏
i

∑
Si

P(Si|Si−1)
∑
Hi

P(Hi|Si)∑
ei

P(Gi|Hi,ei)P(Ci|ei)P(ei)

︸ ︷︷ ︸
error-model

(8)

Decomposing also over individuals, we get:

P(G,C)=∏
i

∑
Si

∑
Hi

P(Hif )P(Him)︸ ︷︷ ︸
Parents-priors

siblings∏
n

P(Hin|Hif ,Him,Sin)︸ ︷︷ ︸
selector

P(Si,n|Si−1,n)︸ ︷︷ ︸
transition

pedigree∏
k

∑
eik

P(Gik |Hik,eik)P(cik |eik)P(eik)

︸ ︷︷ ︸
error-model

(9)

In this expression, the index k is iterated over pedigree members including
parents, while the index n is iterated over siblings.

The error model in Equation (9) has two components; the conditional
probability of the measured genotype and the joint probability of marker
error and confidence scores. The first factor, P(Gik |Hik , eik), encodes the
details of the error model. We use a simple model by assuming equal
probabilities to all types of genotype inconsistencies. The second factor
τik =P(cik |eik)P(eik) is unknown and in the next section we show how to
estimate it from a training dataset. Inference of either IBD status, error status
or both is accomplished by summing up all other hidden variables. One
convenient way of accomplishing such inferences is to define the state space
as composed of both the inheritance and error indicator vectors. Inference
of this extended state space could be calculated by the standard HMM
algorithms. The emission and transition probability matrices are given by:

Ei(Si,ei)=∑
Hi

P(Hi|Si)P(Gi|Hi,ei)P(ci|ei)

Ti(Si,Si−1,ei)=P(Si|Si−1)p(ei)

In particular, the posterior probability for the error vector ei at locus i is:

P(ei|G,C)=
∑

Si

P(Si,ei|G,C)=
∑
Si

P(G,C,Si,ei)

P(G,C)
(10)

And the posterior probability of a specific error indicator ein is:

p(ein =e|G,C)=
∑

ei∈{ein=e}
P(ei|G,C) (11)

In Equation (11), the expression ei ∈{ein =e} indicates all error vectors for
slot i for which the value of the n-th individual is fixed at e.
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2.3 Parameter estimation
To enable a realization of the joint probability P(cij,eij), binning is applied on
the confidence scores. Note that due to assumption (3), binning is applied per
individual. Let βM (c) = {c0, c1, … ,cM } define a grid of M confidence scores
so that bin m resides between cm−1and cm. The distribution of confidence
scores for each individual is estimated by a counting procedure in each bin.
Define an indicator function I(x), which counts the occurrences of x: ∀x∈
{0,1}, I(x)=x. Then bin m for the confidence distribution of individual k
takes the form:

Pk(cm)≡Pk(cm−1 ≤c<cm)

∼=∑L
i=1I(cm−1 ≤cik <cm)/L (12)

The joint distribution for individual k is estimated in the same way:

τk(e0 ,c
m)≡Pk(e=e0 ,c

m−1 ≤c<cm)

∼=∑L
i=1I(cm−1 ≤cik <cm ∩eik =e0 )/L (13)

The table τk could be estimated from two types of data. The simplest
dataset for this task is a repeated measurement for the same individual.
Since we propose to address this distribution per individual, there is no need
for many measurements. In principle, five repeated arrays already suffice
to form a consensus genotype per individual. Comparing this consensus
genotype with each measured array yields the desired error indicator and the
confidence scores are generated for each sample by the genotyping algorithm.
However, measuring each sample several times is usually not practical. In
many cases, nuclear families with parents are genotyped and could be used
to estimate this table within the suggested IBD model. Since the inheritance
selectors and the error selectors are conditionally dependent given the data
in the proposed model, some iterative process should be applied on the
desired table.

We propose to perform a modified EM algorithm to study the table
for each individual in nuclear pedigrees. At each step, we evaluate the
most likely error states for each individual and use these error states to
estimate the corresponding probability table. Finding the most likely state
sequence is a well-defined problem in Bayesian inference and requires
some criterion for optimal solution (Dechter, 1999). We employ the Viterbi
algorithm for finding the state sequence that maximizes the joint probability
of state space and data (Rabiner and Juang, 1986). Define a state sequence
to be a set of values for the state space (Si, ein) for each locus i and
individual n. Si corresponds to the inheritance vector of all individuals and
ein corresponds to the error state for individual n at locus i. Let the most likely
state sequence for individual n be the one which maximizes the following
probability:

e(n)∗,S∗ =argmax
e(n),S

{P(S,e(n),G,C)}

In this expression, e(n) is the set of error indicators corresponding to
individual n over all loci: e(n) = {e1n, e2n, … eLn}, and (e(n)∗,S∗) is the
most likely state sequence. This expression is calculated by applying the
Viterbi algorithm over the state space (Si,ein),i=[1,2, ... ,L] (Rabiner and
Juang, 1986). Since the probability P(S,e(n),G,C) is marginal, summing
over error states for all other individuals in the pedigree, the time and space
complexities of this calculation are held at a reasonable cost allowing it to
be applied for several siblings simultaneously.

The modified EM algorithm is as follows: at iteration t, we iterate over all
n individuals and calculate the most likely error sequence over all loci using
the current tables for all the n individuals denoted by τ t = {τ t

1, τ t
2, …, τ t

n}.
For individual n it is:

e(n)t =argmax
e(n)

{p(S,e(n),G,C;τt)}

Next we estimate the new tables using these error states:

τt+1
n (e0 ,c

m)=Pn(e=e0 ,c
m−1 ≤c<cm;e(n)t)

The initial table assumes that confidence and error states are independent:

τ0
n (e0 ,c

m)=Pn(e=e0 )Pn(cm−1 ≤c<cm).

2.4 Error handling in MERLIN and PLINK

Plink implements a simple error detection procedure by analyzing trios for
Mendelian inconsistencies. A marker that is not consistent with Mendelian
inheritance is removed from all individuals. This scheme is widely used in
many tools prior to statistical analysis and requires no error model. However,
the small detection rates and the need to genotype the parents make it
inefficient for samples of unrelated individuals (Douglas et al., 2002). This
means that in the general case for which there are no genotyped parents,
Plink offer no error detection at all.

Merlin error detection is a multipoint extension to the simple Mendelian
inconsistency procedure. It takes into account all available pedigree members
and uses several linked markers simultaneously. After cleaning the data
from Mendelian inconsistent markers, Merlin iterates over each marker
and calculates the likelihood of the data with and without that marker.
A likelihood ratio score statistics is generated for each marker which is
compared with a predefined threshold for mistyping detection. We used
the default error detection options in our tests, which include the removal
of Mendelian inconsistent markers and markers flagged with the default
threshold by Merlin.

In the following section, we present results for several error models. The
standard model is represented by the analysis carried out with Merlin using
the default error filtering. All other error models do not use error detection
and filtering, even for Mendelian errors. Our model, designated by the marker
error model, calculates a per marker error probability. The sample error rate
model uses a per array error rate calculated from the joint probability P(c,e).
The fixed error rate model represents current algorithms that use an error
model and assume a fixed error rate. The three error models are available in
Plinke for pairwise IBD inference.

3 RESULTS

3.1 Real data
We compared our model to two standard tools for IBD inference,
Merlin and Plink, by analyzing real and simulated datasets.
The pedigree data were taken from a recent study of Pelizaeus–
Merzbacher-like disease, a rare recessive syndrome that was mapped
to the gene AIMP1 using standard linkage analysis (Feinstein et al.,
2010). From this pedigree, we genotyped a nuclear family of three
siblings and their parents, three additional relatives and one distantly
related individual. All members were genotyped with Affymetrix
250K arrays. The SNP data were processed prior to the analysis with
the following filters. Non-informative SNPs and SNPs having minor
allele frequency (MAF) <0.1 were filtered out. From the remaining
list, SNPs were selected at random with a minimum distance of
0.1 Mb between consecutive SNPs.

Figure 3 depicts the results of IBD inference between siblings
from the nuclear family. Figure 3A shows an example of a sib-pair
analysis for sharing one allele IBD with no parental information.
The solid line was generated using all three siblings including
their parents and represents the real IBD status. Note the dramatic
recovery of the IBD status by our model, spanning 5 cM in length.
Figure 3B shows an example of IBD inference including parental
genotypes. These probabilities were inferred using all three siblings
and parents, a situation in which Merlin is able to filter out >90%
of the errors. Despite of the cleaning procedure, the figure on the
left still contains many spikes. These are highly unlikely events and
as depicted on the right plot, our model classifies them as errors.
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A

B

Fig. 3. Comparing sib-pair IBD inference between our model and Merlin.
(A) Depicts sib-pair analysis with no parental information. Note the recovery
of a 5 cM region in our model on the right. (B) Depicts IBD inference
with parental genotypes. Note that the spikes generated with Merlin were
classified as errors in our model.

Fig. 4. Pairwise IBD inference for distant relatives. The inference was
carried out on a 7 cM region that was confirmed to be IBD between all
individuals. The star indicates the locus of the causative mutation (Feinstein
et al., 2010).

Figure 4 shows pairwise IBD probabilities between four affected
members of the pedigree and a distant relative. The exact pedigree
relatedness is unknown and we used Plink and Plinke to infer the
probability of sharing two alleles IBD. The locus depicted in the
figure was confirmed to be IBD by typing additional microsatellite
markers (data not shown). The star at 107 cM marks the location of
a rare causative allele of the gene AIMP1, which was found present
in all affected individuals (Feinstein et al., 2010). The main concern
when comparing the results of the two models at this locus is that,
in some of the cases, Plink inference is fragmented into a collection
of smaller segments. Typically, there is a 1 Mb threshold on region
length under which the region is marked as IIS rather than IBD.
In such cases, there is a high risk of false negatives (Purcell et al.,
2007).

Next we demonstrate a situation which involves error in the
parental data. Figure 5 depicts the probability for sharing two
alleles IBD in sib-pair data that includes the parental genotypes.
These probabilities were calculated using Merlin, the sample error
models and the marker error model. This situation is common when
searching for recessive traits and inference is considerably easier
when including parental information (Kruglyak et al., 1995). The

A

B

C

D

Fig. 5. Comparison of sib-pair IBD inference between three models under
high homozygosity level. The data includes the parental genotypes. (A), (B)
and (C) depict 3 different models for inferring IBD probabilities between a
pair of siblings (see main text for details). (D) Shows the homozygosity level
in one of the parents. The presence of a few heterozygous SNPs within the
large homozygous regions is probably due to undetected errors. Note that the
marker error model is correctly less certain of these regions than the other
methods.

three models show two candidate places along the chromosome at
which the IBD status changes from sharing one allele to two alleles.
Figure 5A was generated using Merlin, Figure 5B using the sample
error rate model and Figure 5C using the marker error model. Note
that the IBD inference using both error models tend to be less certain
of the regions than Merlin.

Inspection of the parents in these regions reveals that the
father is homozygous precisely along the IBD signals (Fig. 5D).
Homozygous regions are not informative for IBD inference and
therefore the change in IBD status from sharing one allele to
two alleles does not stand on firm evidence. The fact that the
standard model yields high probabilities in these regions is probably
due to undetected errors in the father, which are manifested as
heterozygous SNPs. A few of these markers could be seen in
Figure 5D sporadically along the homozygous regions. Note that
the marker error model does not infer these regions decisively. This
is because the confidence scores of these heterozygous markers are
poor, indicating that these markers are uncertain. In this case, the
IBD signals are probably a false positive and certainly cannot be
represented with high posterior probabilities.

We now present the results relating marker error status and marker
confidence scores. Confidence scores occupy the range [0,1]. The
confidence metric is such that lower confidence scores correspond to
higher certainty in the genotyping procedure. Usually, SNPs having
extremely high confidence scores are marked as ‘No-Calls’. We
retained the BRLMM threshold of 0.5 above which a call would
not be determined.

We analyzed eight nuclear pedigrees which include parental data
and were genotyped on the same platform at various time points
during the past 3 years. The results depicted in Supplementary
Figure S1 suggest that under the BRLMM algorithm, the conditional
probability of confidence scores is approximately uniform for the
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Table 1. Simulation results for sib-pair analysis with no parental information comparing the standard and the per sample error models to the marker error
model

The error model Error rate (%) Z0 Z1 Z2

Discrepancy Relative Discrepancy Relative Discrepancy Relative
(%) improvement (%) (%) improvement (%) (%) improvement (%)

Standard model 4 28 99 33 98 12 99
2 17 98 19 98 4 98
1 10 97 11 96 1 97

Sample error rate 4 4 70 4 70 <0.5 –
2 3 76 3 74 <0.5 –
1 2 82 2 81 <0.5 –

positive error status, P(c|e = 1). In a separate test (data not shown),
we found that using a uniform distribution instead of the measured
one for P(c|e = 1) yields a negligible difference in the posterior
probabilities (99% of the difference is <0.015, averaged over all
datasets). We assumed a uniform P(c|e = 1) distribution when using
Plinke in Figure 4.

We also examined the confidence distributions under two different
genotyping algorithms: BRLMM and Birdseed V2 (Affymetrix
Inc., 2006; Korn et al., 2008). Supplementary Figure S2 shows a
comparison of the distributions between these two algorithms. Note
that the distribution of confidence scores is not similar between the
two genotyping algorithms. In Birdseed, the distribution tends to
occupy smaller confidence scores and peak steeper toward zero.
Similar results for the Birdseed algorithm were obtained using our
EM procedure (data not shown).

Using the eight nuclear pedigrees, we compared the performance
of several types of error models with Merlin. We used the default
error handling in Merlin as indicated in Section 2.4. The other three
error models include a fixed error model, a sample error model and a
marker error model. The first model uses a fixed error rate of 0.5%,
which is the median level in our dataset. This represents current
algorithms that use a fixed error rate. The second error model uses a
per sample error rate as estimated from the learned joint probability
table p(c,e) using Equation (6). The third model is our proposed
algorithm integrating the confidence scores per marker. The result
depicted in Supplementary Figure S5 and Table S1 suggests a
gradual improvement in accuracy of IBD inference as a function
of the error rate. Note that for error rates >2% there is a substantial
difference between the fixed error rate model and the other two
error models. It should be noted that the error rates depicted in this
analysis correspond to one of the siblings and thus the effective error
rate of the sibling pair is actually lower.

3.2 Simulated data
Using simulated data, we compared the performance of the marker
error rate and sample error rate models to Merlin. We simulated the
genotypes of a sib-pair over 100 chromosomes each with 6800 SNPs
spanning 50 Mb in length. The simulation was carried out using
SimPed (Leal et al., 2005) assuming Hardy–Weinberg equilibrium
(no marker LD). Allele frequencies were taken from the HAPMAP
CEU samples and confidence scores were taken from real datasets.
Noise was added at random for each marker according to our model.

Consistent with our finding for the BRLMM genotyping algorithm,
we assumed a flat distribution of confidence scores given the positive
error state (e=1). For each marker, we calculated the conditional
probability of marker error given its confidence score and used it as
the probability of success in a Bernoulli process for which success
corresponds to the presence of an error.

Following the introduction of noise, we preprocessed the
simulated data as follows:

(1) Filter SNPs with MAF <0.1.

(2) Select SNPs at a minimum distance of 0.1 Mb.

These filters form a reasonable strategy for analyzing real data
when no LD modeling is applied. The results for sib-pair analysis
with no parental information are summarized in Table 1. The table
summarizes a comparison of the marker error model with the
standard model using Merlin and with the sample error rate model.
For each model, three error rates were tested by comparing the
inferred probabilities to share 0, 1 or 2 alleles IBD (Z0, Z1 or Z2,
respectively). We defined the sharing state of each locus to be 1
whenever the posterior probability was >0.5, and zero otherwise.
The discrepancy column indicates the percentage of inconsistencies
as the relative number of loci inconsistent between the two models
being compared. Improvement was defined as the relative number
of loci that were classified correctly by our model among those loci
which are inconsistent. Thus for example under the 4% error rate,
the sample error rate model and marker error model disagree on
4% of the loci for Z0 probabilities. Out of these 4%, 70% were
classified correctly by the marker error model. Note that there is
a big difference between the standard model and the marker error
model especially under Z0 and Z1. Practically, all places inconsistent
between the models were classified correctly by our model. The
differences between the marker error model and the sample error
rate model are more subtle. In this case, the marker error model
classifies correctly the IBD status in 70–80% of the cases.

4 DISCUSSION
In this study, we proposed a model that integrates confidence scores
within the standard model for IBD inference. Confidence scores
measure the amount of certainty a genotyping algorithm has in each
call and therefore contain relevant information for error modeling
even without pedigree data. We found that the joint distribution of
confidence score and error status holds relevant information for error

2885



[16:45 21/9/2011 Bioinformatics-btr486.tex] Page: 2886 2880–2887

B.Markus et al.

detection. In particular, our finding that the conditional probability
distribution p(c|e = 1) is approximately uniform is surprising. In an
ideal situation, a genotyping algorithm would yield an increasing
distribution of confidence scores under the positive error states.
The fact that there are mistyped markers even for very good
confidence scores suggests that there might be two conceptually
different mechanisms in the genotyping process. The first is the
correct genotyping of the targeted sample which would create an
increasing distribution (i.e. p(c→ 0|e = 1)→0). The other process
involves the genotyping of different material not relevant to the
targeted DNA (contamination for example). Markers that manifest
this process would generate a decreasing distribution (i.e. p(c→
1|e = 1) → 0) similar to the overall confidence distribution. Adding
these two processes together with different ratios could yield the
observed distributions for both genotyping algorithms examined (see
Supplementary Figs S1 and S2).

Our initial motivation for integrating confidence scores was to
increase accuracy of IBD inference when no parental information
is at hand. However, even when both parents are genotyped we
found unlikely spikes in the standard inference that our model
classifies as errors. In general, the presence of spikes becomes
more prominent with increased density of the SNPs selected for
the analysis. This may be important for studies on recombination
hotspots for which the location of a cross-over is sought within
nuclear families (Coop et al., 2008). In such studies, spikes as we
observed may bias the results substantially. In sib-pair analysis with
no parental information, we found discrepancies between our model
and the standard model that can span a few centimorgan in length,
a scale which is significant in linkage analysis (Terwilliger and
Ott, 1994). Simulation suggests that for noisy datasets our model
can recover up to 30% of the IBD signal, which was not inferred
correctly by the standard model. As expected, these discrepancies
decrease with lower noise levels to ∼10% at 1% error rate.

The use of our model requires an estimation of the joint probability
distribution τ(c,e) which in turn requires knowledge on the error
states for each marker. Since this knowledge is not always available,
we examined ways to approximate the probability table without the
need to genotype additional individuals. We found that it is possible
to estimate the error rates from the call rates of each array with
good accuracy (Supplementary Figure S3). This result is consistent
with other findings for the Affymetrix technology although it must
certainly depend on other factors such as the genotyping algorithm
(Saunders et al., 2007; Yeung et al., 2008). Using the per array error
rate, we were able to perform nearly as good as the full model as
could be seen in Table 1 and Supplementary Table S1. This suggests
that the per array error rates are the most important factor in the
analysis. Using a sample error rate model with the correct error rates
could be considered as a smoothed version of our full model, which
ignores the per marker error weights. As a second order correction,
one can use an approximated distribution for p(c|e = 1) and together
with the approximated error rate deduce the joint probability table
p(c,e) as suggested in Methods of Supplementary Material. We
found that under the BRLMM algorithm using a uniform distribution
for p(c|e = 1) is practically as good as the full model.

The complexity of the Lander–Green algorithm is exponential in
the number of individuals in the pedigree (Kruglyak et al., 1996).
Our algorithm adds another constant factor for each genotyped
individual and thus changes the overall complexity by a constant
factor. However, a naïve implementation of the Lander–Green

algorithm is limited to small pedigrees and current implementations
use various algorithms to allow more efficient calculations. In
particular, the use of sparse trees or descent graphs allows the
analysis of moderate pedigrees otherwise not feasible with the naïve
calculations (Abecasis et al., 2001b; Sobel and Lange, 1996). The
main idea is to select a subspace of the inheritance space which is
compatible with the observed data and thus reduce both time and
space complexities. Once errors are incorporated to the model, all
options for founder alleles are compatible with the data since we do
not observe the real alleles directly (Sobel et al., 2002). Therefore,
the reduction of the state space is not possible using our algorithm
which means that analysis is limited to small nuclear pedigrees.

There is, however, a class of approximated models for IBD
inference that can benefit from our error model without a change
in the overall complexity. In this approach, the entire process from
founders to the measured descendants is averaged. This replaces the
Markovian inheritance process of hidden generations with a single
probability table and thus does change in complexity with increasing
generations. This approach has been suggested for pairwise IBD
inference (Thompson, 2008), autozygosity (Leutenegger et al.,
2003) and locus-specific ancestry inference (Falush et al., 2003). In
particular, the Plink package implements such a method for pairwise
IBD inference which we extended with our error model. The new
implementation includes the three error models described in this
article, the fixed error rate, the per array error rate and per marker
error model.

A different application that we plan to examine is to use the joint
distribution table τ(c,e) to facilitate the selection of a subset of
SNPs in general pedigrees. A common practice in linkage analysis
using the standard IBD models is to select a subset of markers that
are in linkage equilibrium. This approach to dealing with marker
LD may result in the reduction of 1–2 orders of magnitude in the
number of SNPs, from 106 to 104. Thus, the vast majority of SNPs
are filtered out and the remaining are assumed to be error free. A
reasonable approach to SNP filtering would be to perform a per
sample confidence cutoff depending on the corresponding error rate.
Our approach in generating the reference IBD curves was to level
all error rates in the data to the best performing sample as indicated
in Methods of Supplementary Material. This approach minimizes
the loss of knowledge while addressing the fluctuation in the quality
of each sample.
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