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Introduction
The skin is composed of an epithelial and a mesenchymal 
compartment (Fuchs and Raghavan, 2002). The hallmark of 
the epidermis is its ability to self-renew throughout the en-
tire life span of the organism (Clayton et al., 2007; Blanpain 
and Fuchs, 2009). The mouse skin epidermis maintains a 
single basal layer of proliferating cells, which adhere to an 
underlying basement membrane (BM) rich in ECM proteins, 
proteoglycans, and growth factors. Basal cells receive micro-
environmental cues influencing proliferation or differentia-
tion and rely on both mesenchymal cell stimuli and the ECM 
(Fuchs, 2007; Blanpain and Fuchs, 2009). An important and  
still unanswered question is how the surrounding microenvi-
ronment and, in particular, the ECM constituents influence 
basal keratinocyte and dermis fibroblast behavior during  
normal homeostasis.

The cell integrins and their ECM ligands provide a di-
verse repertoire of proliferative stimuli for skin basal cells and 
are key regulators of keratinocyte growth control (Singer and 
Clark, 1999; Watt, 2002). Basal keratinocytes express several 

integrins at the basolateral pole: 31, the laminin-5 receptor; 
21, the collagen receptor that likely mediates cell–cell inter-
actions; 51, the fibronectin receptor; and v3 and v6, 
the vitronectin receptors (Watt, 2002; Owens and Watt, 2003). 
Finally, integrin 91, normally expressed only in the basal 
layer (Palmer et al., 1993; Stepp et al., 2002), has several ECM 
ligands that are prominently expressed beneath migrating kera-
tinocytes only during wound healing (Yokosaki et al., 1994, 
1996; Liao et al., 2002; Shinde et al., 2008). Among these,  
tenascin-C and the EIIIA segment of fibronectin are barely  
expressed under nonpathological conditions (Singh et al., 
2004), suggesting that other ligands may bind to 91 at the 
dermal–epidermal junction in normal conditions.

EMILIN1 (elastic microfibril interface–located protein 1) 
is an ECM multidomain glycoprotein associated with elastic  
fibers (Colombatti et al., 1985; Bressan et al., 1993) particularly 
abundant in the walls of large blood vessels (Zanetti et al., 2004) 
in intestine, lung, lymph nodes, skin, and lymphatic capillaries 
(Danussi et al., 2008). This glycoprotein is characterized by a 

EMILIN1 promotes 41 integrin–dependent cell ad-
hesion and migration and reduces pro–transforming  
growth factor– processing. A knockout mouse 

model was used to unravel EMILIN1 functions in skin 
where the protein was abundantly expressed in the der-
mal stroma and where EMILIN1-positive fibrils reached 
the basal keratinocyte layer. Loss of EMILIN1 caused der-
mal and epidermal hyperproliferation and accelerated 
wound closure. We identified the direct engagement of 
EMILIN1 to 41 and 91 integrins as the mechanism 
underlying the homeostatic role exerted by EMILIN1. 

The lack of EMILIN1–4/9 integrin interaction was 
accompanied by activation of PI3K/Akt and Erk1/2 
pathways as a result of the reduction of PTEN. The down-
regulation of PTEN empowered Erk1/2 phosphorylation 
that in turn inhibited Smad2 signaling by phosphoryla-
tion of residues Ser245/250/255. These results highlight 
the important regulatory role of an extracellular matrix 
component in skin proliferation. In addition, EMILIN1 is 
identified as a novel ligand for keratinocyte 91 integrin, 
suggesting prospective roles for this receptor–ligand pair 
in skin homeostasis.
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mice, although the cellularity was higher in Emilin1/ mice 
(Fig. 2 B). At P17 (catagen) and at the telogen stage P20, the 
thickness of the dermis and epidermis was even more pro-
nounced in Emilin1/ mice. No delay in hair cycle phases was 
evident between the two mouse genotypes, as shown in longitu-
dinally cut representative skin cryostat sections (Fig. 2 A). At 
the second telogen (7 wk old), the increased epidermis and der-
mis thickness observed in Emilin1/ mice was significantly 
different from WT mice (Fig. 2, D and E).

Although no differences were observed in the number of 
active caspase-3–positive cells detected in the skin of WT and 
Emilin1/ mice (not depicted), the thickness of mutant mice 
was associated with a marked increase in Ki67 immunoreactive 
nuclei (Fig. 3, A and B). Emilin1/ epidermis as well as dermis 
displayed a significant increase in the proliferation rate com-
pared with WT (Fig. 3, C and D). The higher magnification  
images (Fig. 3, A and B) and the yz sections (Fig. 3, Ay and By) 
further indicated that Ki67-positive cells were not only lim-
ited to the basal layer but extended to also involve the supra-
basal layers in Emilin1/ mice. Accordingly, the proliferation- 
associated Keratin K6 was present both basally as well as 
suprabasally in Emilin1/ mice (Fig. 3 E). A higher prolifera-
tion rate was already evident in Emilin1/ skin at embryonic 
day 16.5 (E16.5; Fig. S1).

The epidermis consists of nonproliferating multiple layers  
of differentiating suprabasal cells and of a proliferative basal 
cell layer. The higher proliferation detected in Emilin1/ mice 
could be associated with defects in keratinocyte differentiation. 
Adult WT mice expressed K5 only in the basal cell layer, and 
K1 stained only the suprabasal differentiating layers (Fig. 3 E). 
On the contrary, whereas Emilin1/ basal keratinocytes were 
positive only for K5, we detected positivity for both K5 and 
K1 in several suprabasal keratinocytes (Fig. 3 E). Neverthe-
less, a marker of terminal keratinocyte differentiation such 
as loricrin stained similarly in both genotypes only in the  
most superficial layers (Fig. 3 E). BM markers laminin-5,  
nidogen, and collagen IV nicely decorated epithelial BMs with 
an equivalent pattern in WT and Emilin1/ mice (Fig. S2 A).  
To further investigate whether the altered cell proliferation  
could result in polarity and junctional defects, -catenin,  
occludin, and ZO-1 were analyzed and found to be normally 
expressed in mutant mice (Fig. S2 B). In addition, 4 inte
grin was normally expressed in WT and Emilin1/ K5-posi-
tive keratinocytes leaning on the BM (Fig. S2 C). Accordingly, 
no defects in the epidermal integrity were detected by a barrier 
function assay performed on 4-d-old (Fig. S2 D) and 2-wk-old 
mice (not depicted). Altogether, the aberrant proliferation of 
epidermal keratinocytes as well as of dermal fibroblasts re-
sulting in skin hyperplasia in Emilin1/ mice suggested that 
EMILIN1 negatively regulated cell growth.

EMILIN1 directly inhibits fibroblast and 
keratinocyte proliferation in vitro
The expression of EMILIN1 in the dermal stroma and the 
presence of EMILIN1-positive fibrillar projections up to the 
basal layers of epidermis and in the hair bulb suggest that 
EMILIN1 might directly regulate the proliferation of dermal 

region homologous to the globular domain of C1q (gC1q  
domain) at the C-terminal end (Doliana et al., 1999; Colombatti 
et al., 2000) involved in EMILIN1 oligomerization (Mongiat  
et al., 2000), cell adhesion, migration, and trophoblast invasion 
via interaction with the 41 integrin (Spessotto et al., 2003, 
2006). The hallmark of the EMILIN family is the elastin micro-
fibril interface domain at the N terminus (Doliana et al., 2000), 
which interacts with pro–TGF- (Zacchigna et al., 2006).  
EMILIN1 has been implicated in multiple functions, including  
elastogenesis, maintenance of blood vascular cell morphology 
(Zanetti et al., 2004), and regulation of the growth and integrity 
of lymphatic vessels (Danussi et al., 2008). Emilin1/ mice 
display elevated blood pressure as a result of increased TGF- 
signaling in the vasculature (Zacchigna et al., 2006). These 
mice also have an abnormal lymphatic phenotype with a signifi-
cant reduction of anchoring filaments and lymphatic vessel  
hyperplasia, leading to a mild lymphatic dysfunction (Danussi  
et al., 2008).

Here, we report that Emilin1/ mice present dermal and 
epidermal hyperproliferation and indicate that EMILIN1 nega-
tively regulates cell growth. Our findings support a model in 
which EMILIN1 interacts with 41 or 91 integrin to pro-
vide an important external cue for the maintenance of a correct 
skin homeostasis.

Results
EMILIN1 produced by dermal fibroblasts 
contacts basal keratinocytes
EMILIN1 was highly expressed as a network in the dermis 
stroma, whereas it was absent in the epidermis. Interestingly, 
we noticed some EMILIN1-positive fibrils departing from the 
region below the basal membrane and reaching up to basal  
keratinocytes (Fig. 1, A and B). EMILIN1 also was particu-
larly abundant in the outer root sheath of the hair follicle (HF) 
forming a basket-shaped network around the hair bulb and  
displayed protrusions toward the keratinocytes in the follicle 
bulb (Fig. 1 C).

The peculiar localization of EMILIN1 up to the basal 
layer of keratinocytes raised the question as to whether it was 
synthesized and deposited locally also by basal keratinocytes. 
To test which cells produce EMILIN1, we isolated epidermal 
HF keratinocytes and dermal fibroblasts from newborn mouse 
skin. Only fibroblasts expressed EMILIN1, as determined by 
RT-PCR analysis (Fig. 1 D). Altogether, these findings suggest 
that the EMILIN1 network and the fibrillar projections reach-
ing the basal keratinocytes might play a functional role that  
deserves further investigation.

Emilin1/ mice exhibit epidermal and  
dermal hyperproliferation
A comparative analysis between wild-type (WT) and Emilin1/ 
skin specimens was performed. Histological analysis of skin 
taken from newborn Emilin1/ mice showed an increased 
epidermal and dermal thickness already at postnatal day 5 (P5) 
compared with WT mice (Fig. 2, A and B). During the late ana-
gen (P10), HFs were fully developed in both WT and Emilin1/ 
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compared with WT fibroblasts (22% BrdU-positive cells) 
also when cultured in vitro (Fig. 4 A) for 3 d. Subsequently, 
a coculture assay with keratinocytes and dermal fibroblasts 
isolated from WT and Emilin1/ mice was performed. In 
detail, the two cell types were cocultured in the same well 

cells as well as keratinocytes. To assess this hypothesis, we 
isolated keratinocytes and dermal fibroblasts from newborn 
WT and Emilin1/ mice and performed in vitro prolifera-
tion assays. Dermal fibroblasts isolated from Emilin1/ mice 
retained a higher proliferation (40% BrdU-positive cells) 

Figure 1.  EMILIN1 is expressed by dermal fibroblasts and 
takes contact with basal keratinocytes. (A) Representative 
immunofluorescence images of skin cryostat sections of 
7-wk-old WT mice stained for EMILIN1 and nuclei. Bar, 
50 µm. (B) Zoomed images of boxes in A Arrowheads 
evidence EMILIN1-positive fibrillar projections that take 
contact with basal keratinocytes. Bar, 16 µm. (A and B) d, 
dermis; e, epidermis. The dashed lines denote the BM. 
(C) Images representing HFs surrounded by EMILIN1.  
(b) A zoomed image corresponding to the boxed area in a;  
(c) A transversally cut section where EMILIN1-positive pro-
trusions reach keratinocytes (indicated by arrows); (d, e,  
and f) Sections cut longitudinally stained for nidogen;  
(f) A zoomed image corresponding to the boxed area in e, 
with arrows indicating the EMILIN1-positive protrusions. 
The white dotted lines in d indicate the sebaceous gland 
(SG) and bulb. Bars: (a, c, d, and e) 50 µm; (b) 40 µm; 
(f) 30 µm. (D) Comparative RT-PCR analysis of EMILIN1 
mRNA levels in HFs, keratinocytes (K), and fibroblasts (Fb) 
isolated from newborn WT mouse skin.
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To assess the hypothesis that EMILIN1 might directly reg-
ulate the proliferative potential of keratinocytes, we suppressed 
EMILIN1 expression in a mouse fibroblast cell line (National 
Institutes of Health [NIH] 3T3) by specific short hairpin RNA 
(shRNA) sequences. Then, mouse keratinocytes were contact 
cocultured with control NIH 3T3 cells transfected with scram-
bled shEmilin1 sequence or with either one of the two clones 
displaying an almost complete protein silencing (clones 6505 
and 6502; Fig. 4 D, top). After 3 d of contact growth, prolif-
eration was revealed by BrdU incorporation, and keratinocytes 
were detected by anti–pan-cytokeratin (CK) immunostaining. 
Representative confocal images documented that proliferating 
BrdU and CK double positive keratinocytes were present in 
higher number when they were cocultured with NIH 3T3 cells 
transfected with shEmilin1 (i.e., clones 6505 and 6502; Fig. 4, 

(a condition named contact) or were physically separated by 
an insert (transwell) to assess whether fibroblasts were able 
to influence the proliferation of keratinocytes. Proliferation 
was reduced to a much larger extent in contact cocultures with  
WT fibroblasts (40%) compared with Emilin1/ fibroblasts 
(70%; Fig. 4 B). On the contrary, either WT or Emilin1/ fibro-
blasts slightly, but not significantly, reduced keratinocyte pro-
liferation when cocultured and separated in a transwell system  
(Fig. 4 C). As expected, no differences were observed between 
WT (Fig. 4, B and C, black bars) and Emilin1/ keratinocytes 
(Fig. 4, B and C, gray bars). Although these latter findings 
suggested that soluble factors released by fibroblasts might 
partially influence keratinocyte proliferation, by far, the major 
inhibitory effects were likely related to EMILIN1 expression 
in WT cells versus nonexpression in Emilin1/ cells.

Figure 2.  Skin hyperplastic phenotype in Emilin1/ mice. (A and B) H/E-stained skin cryostat sections cut longitudinally at different phases of the hair 
cycle. (A) Low magnification of first anagen (P5) and first catagen (P17). Bars, 200 µm. (B) High magnification of first anagen, late anagen (P10), first 
catagen, and first telogen (P20). Bars, 50 µm. (C) Cross sections of 7-wk-old skin. Bars, 100 µm. (D and E) ImageJ quantification of epidermis and dermis 
thickness of 7-wk-old WT (n = 5) and Emilin1/ (n = 5) mice. For this analysis, three H/E-stained sections for each mouse were examined. Mean values ±  
SD are reported. *, P = 1 × 1014; **, P = 2 × 1012.
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EMILIN1 inhibits cell proliferation  
through a cognate interaction with  
41 and 91 integrins
Altogether, the aforementioned results support the hypothesis 
that EMILIN1 might exert a negative control on cell growth by 
a direct interaction with specific integrins on the cell surface. 

D [bottom] and E). Then, to determine whether the proliferative 
effect was directly linked to EMILIN1, freshly obtained mouse 
keratinocytes were grown on the gC1q cell–binding domain 
of EMILIN1 or on fibronectin. After 3 d, we detected a sig-
nificantly lower number of BrdU-positive cells grown on gC1q 
compared with those on fibronectin (Fig. 4, F and G).

Figure 3.  Emilin1/ mice display epidermal and dermal hyper­
proliferation. (A and B) Representative images of WT and Emilin1/  
mouse skin cryostat sections stained for EMILIN1 and for the pro-
liferation marker Ki67. Bars, 75 µm. (Ay and By) yz sections of 
the confocal images shown in A and B. (A and B) Zoomed 
images of the boxed areas in A and B. d, dermis; e, epidermis. 
The dashed lines denote the BM. (C and D) ImageJ analysis of the 
number of epidermal Ki67-positive cells/micrometer and dermal 
Ki67-positive cells/100 µm2. Mean values ± SD are reported.  
*, P < 0.02. For these quantitative analyses, three different cryostat 
sections of 7-wk-old WT (n = 5) and Emilin1/ (n = 5) mice were ex
amined. (E) Representative images of WT and Emilin1/ mouse 
skin cryostat sections. Green staining represents Keratin 1 (K1),  
Keratin 5 (K5), Keratin 6 (K6), and loricrin. Nuclei are shown in 
blue. Bars, 25 µm.
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Figure 4.  EMILIN1 directly affects proliferation of mouse dermal fibroblasts and keratinocytes. (A) In vitro proliferation of mouse dermal fibroblasts.  
Different populations of WT (n = 4) and of Emilin1/ (n = 6) fibroblasts at passage 3 were analyzed. The percentage of mean values (±SD) of the number 
of BrdU-positive cells/field is reported. *, P = 0.01. (B and C) Cocultures of keratinocytes (K) and dermal fibroblasts (Fb) isolated from WT and Emilin1/ 
newborn mice. The two cell types (Fb and K) were cultured in the same well (contact) or in a transwell system for 3 d. The quantification of keratinocyte 
proliferation was performed counting the BrdU and CK double positive cells/field. Here, the percentage of mean values (±SD) of three independent 
experiments is reported. *, P = 0.03. (D, top) EMILIN1 immunofluorescence staining of mouse fibroblasts transfected with an shRNA Emilin1 (shEmilin1) 
scrambled sequence (control [ctrl]) and two clones (6505 and 6502) transfected with specific sequences for Emilin1 silencing. (bottom) Contact cocultures 
of mouse keratinocytes and NIH 3T3 fibroblasts (control and EMILIN1-silenced cells). BrdU-positive cells are stained green; the pan-CK–positive keratinocytes  
are shown in red. (E) Quantification of BrdU-positive keratinocytes per field. The percentage of mean values (±SD) of three independent experiments is 
reported. *, P = 0.01; **, P < 0.001. (F) Mouse keratinocytes grown for 48 h on gC1q or fibronectin-coated plates for BrdU and CK. (G) Quantification of 
BrdU-positive keratinocytes per field. The percentage of mean values (±SD) of three independent experiments is reported. *, P = 0.01. Bars, 50 µm.
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maturation (Zacchigna et al., 2006), we determined the influ-
ence of this cytokine in the hyperproliferative skin phenotype of 
Emilin1/ mice. For this purpose, we quantified Ki67-positive 
cells in Emilin1+/+TGF-+/+, Emilin1+/+TGF-+/, Emilin1/ 
TGF-+/+, and Emilin1/TGF-+/ mouse back skin (Fig. S4,  
A–F). As expected, the inactivation of one TGF- allele in-
creased the number of Ki67-positive cells in WT epidermis and 
dermis (Fig. S4, B, E, and F). On the other hand, the levels 
of Ki67-positive cells were comparable in Emilin1/TGF-
+/+ and Emilin1/TGF-+/ mice, indicating that TGF- 
gene dosage was apparently less relevant for skin proliferation  
in an EMILIN1-negative background (Fig. S4, D, E, and F).  
Alternatively, a functional upper limit in cell proliferation  
levels could have already been reached. Analysis of whisker 
follicles confirmed these results (Fig. S4 G). We did not notice 
any additional inhibitory effect on cell proliferation after treat-
ment of dermal fibroblasts and keratinocytes with gC1q plus 
TGF- (Fig. S4 H). We confirmed these findings also in several 
cell lines, except for a slight but not significant inhibitory effect 
in CaCo-2 and HaCaT cells (Fig. S4 I).

The augmented TGF- levels in Emilin1/ mouse skin 
were surprisingly accompanied by a decreased phosphorylation 
at the C-terminal Ser465/467 of Smad2, whereas an increased 
phosphorylation of its Ser245/250/255 residues corresponding 
to the linker region targeted by Erk1/2 (Kretzschmar et al., 1999) 
was observed (Fig. 6, A and B). The levels of activated Erk1/2 as 
well as of other proproliferative signal molecules (Akt and PI3K) 
and effectors (Cyclin A and Cdk 2) were higher in Emilin1/ 
mice (Fig. 6, A and B). The aforementioned findings prompted 
us to hypothesize a mechanism by which EMILIN1 deficiency 
and increased TGF- levels could influence cell growth. The en-
hanced levels of pErk1/2 detected when 4/9 integrins were 
not bound by gC1q were likely the result of decreased PTEN 
phosphatase expression, as evident in Emilin1/ skin extracts 
(Fig. 6, A and B). The altered pErk1/2 expression of skin ex-
tracts was still detected when epidermis and dermis were sepa-
rately analyzed, with the dermis displaying the most significant 
changes (Fig. 6, C and D). In accord with the in vivo findings, 
PTEN increased in all cell types adherent to gC1q (dermal  
fibroblasts, keratinocytes, CaCo-2, and HaCaT; Fig. 7, A–D).  
The addition of TGF- further increased PTEN levels, and this 
was in agreement with the reduced cell proliferation (Fig. S4, 
H and I). Finally, the higher expression of PTEN was accom-
panied by decreased pErk1/2 levels (Fig. 7, A–D). These data 
suggested a link between PTEN and 4/9 integrin engagement: 
when 4/9 integrins were not ligated by gC1q, as it occurs 
in Emilin1/ mice, PTEN was reduced, and, hence, pErk1/2 
was up-regulated. Thus, in the absence of PTEN, pErk1/2 lev-
els should not be affected. To formally prove this hypothesis, 
PTEN was silenced in CaCo-2 (9 integrin positive) and HaCaT 
(4 integrin positive) cells. Starved cells (silenced [pLKO#49] 
or not silenced [pLKO]) were allowed to adhere onto gC1q in 
the presence or absence of TGF-. Both pLKO and pLKO#49 
cells adhered onto gC1q at the same extent as compared with 
WT CaCo-2 and HaCaT cells (unpublished data). When PTEN 
was silenced by specific shRNA, the levels of pErk1/2 remained 
higher than in control cells (Fig. 7, E and F). This effect was 

First, we assessed the proliferation of carcinoma (HeLa and 
CaCo-2), sarcoma (HT1080 and rhabdomyosarcoma [RD]), and 
keratinocyte HaCaT cell lines in the presence or in the absence 
of soluble gC1q added to the culture medium. Even if the prolif-
eration rate was variable among the cell lines analyzed, the addi-
tion of soluble gC1q reduced the number of BrdU-positive cells 
in respect to their own control from 20 to 60%, with HT1080 and 
HaCaT as the most sensitive cells (Fig. 5 A). HT1080, CaCo-2, 
and HaCaT cells were selected for further experiments as rep-
resentative of fibroblasts and epithelial cells. FACS analysis  
determined that HT1080 and HaCaT expressed 41, the 
known EMILIN1 integrin receptor, whereas CaCo-2 expressed 
negligible levels of 41 (Fig. 5 B). 91 integrin was included 
in our analysis because it is highly homologous to 4 (Palmer  
et al., 1993), and it is expressed by basal keratinocytes, whereas 
4 is lacking in these cells (Fuchs, 2007). One notable exception 
was HaCaT immortalized cells that, although derived from basal 
keratinocytes, expressed only 41. HT1080 did not express 
91, whereas CaCo-2 cells were moderately positive (Fig. 5 B). 
RD and HeLa cells expressed both integrins but at lower levels 
than HT1080 or CaCo-2 cells (Fig. 5 B). We preliminarily dem-
onstrated that HT1080 and CaCo-2 cells specifically adhered to 
gC1q with their respective integrins (i.e., 41 for HT1080 and  
91 for CaCo-2; Fig. 5 C). The addition of an anti–4 integrin 
function-blocking antibody (P1H4) to HT1080 or an anti–9 
integrin function-blocking antibody (Y9A2) to CaCo-2 specifi-
cally inhibited cell adhesion. An antibody against 1 integrin 
(4B4) blocked adhesion of both cell lines (Fig. 5 C). Further-
more, we specifically abrogated cell adhesion when mutants in 
which the integrin-binding region was deleted or mutated in the 
933 glutamic acid residue were used. This inhibitory effect was 
absent with gC1q mutated in other residues in the binding region 
(Figs. 5 C and S3; Verdone et al., 2008).

To probe the mechanistic link between integrin 41 or  
91 and inhibition of cell proliferation, we determined the lower 
dose of soluble gC1q that could significantly inhibit cell prolifera-
tion (5 µg/ml; unpublished data). Then, the addition of function- 
blocking P1H4 to HT1080 and HaCaT or Y9A2 to CaCo-2  
or an antibody able to prevent integrin recognition of gC1q (1H2; 
Spessotto et al., 2003) rescued the inhibition of cell proliferation 
induced by gC1q (Fig. 5, D–F). The rescue obtained using cell ad-
hesion nonfunctional gC1q mutants (Fig. 5 G) also confirmed the 
specificity of the inhibitory effect of gC1q on cell proliferation.

Altogether, these data strongly indicated that EMILIN1 
negatively controlled cell growth by the direct engagement of 
its C-terminal gC1q domain to 41 or 91 integrins. The ex-
pression of 91 integrin in keratinocytes as shown by positive 
staining of adult WT mouse skin sections reinforced the evi-
dence of the antiproliferative activity of EMILIN1 by a direct 
interaction with this specific cellular receptor (Fig. 5 H).

The altered proliferative homeostasis in 
Emilin1/ mice is associated with PI3K/Akt 
and Erk1/2 pathway activation
Considering that TGF- is implicated in the maintenance of skin 
homeostasis (Böttinger et al., 1997; Tang et al., 1998, 1999) 
and that EMILIN1 binds pro–TGF- to negatively regulate its 

http://www.jcb.org/cgi/content/full/jcb.201008013/DC1
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Figure 5.  The EMILIN1 gC1q domain inhibits cell proliferation through the interaction with the 4 and 9 integrin subunit. (A) Proliferation of sarcoma 
(HT1080 and RD), carcinoma (HeLa and CaCo-2), and immortal keratinocyte (HaCaT) cell lines in the presence or in the absence of 50 µg/ml of soluble 
gC1q added to the culture medium for 24 h. The percentage of mean values (±SD) of the number of BrdU-positive cells per field of three independent 
experiments is reported. *, P < 0.05. (B) FACS analysis of 4 and 9 integrin subunit expression levels in HT1080, RD, CaCo-2, HeLa, and HaCaT cells. 
(C) Cell adhesion of HT1080 and CaCo-2 cells to gC1q. The cells were preincubated with anti–4 integrin subunit mAb (P1H4), anti–9 integrin subunit 
mAb (Y9A2), or anti– integrin subunit mAb (4B4; final concentration, 10 µg/ml) for 15 min at 37°C and were then allowed to adhere at 37°C for  
20 min. Data are expressed as the means ± SD of three independent experiments with six replicates. *, P < 0.05; **, P < 0.001. (D–F) Proliferation inhibition 
of HT1080, CaCo-2, and HaCaT cells expressed as the percentage versus the respective control (ctrl). The gC1q domain was used at a concentration of 
5 µg/ml; the monoclonal antibody anti-gC1q (1H2) and the function blocking monoclonal antibodies anti–4 integrin subunit (P1H4) and anti–9 integrin 
subunit (Y9A2) were used at 10 µg/ml. Data are expressed as the means ± SD of three independent experiments. *, P < 0.05; **, P < 0.001. (G) Effect of  
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gC1q and the mutants E933A, G945A, and the deleted form on CaCo-2 cell proliferation monitored using the XCELLigence system. The cell index after 
48 h of dynamic monitoring calculated as the mean ± SD from n = 3 experiments with n = 6 replicates is reported. *, P < 0.001. (H) Representative  
immunofluorescence images of skin cryostat sections of 7-wk-old WT mice stained for EMILIN1 and for the 9 integrin subunit. Bars, 25 µm.

 

Figure 6.  Lack of EMILIN1 up-regulates 
PI3K/Akt and Erk1/2 and down-regulates 
PTEN. (A) Representative Western blot analysis 
of 6–8-wk-old skin tissue extracts of WT and 
Emilin1/ mice. (B) Quantification of West-
ern blot analysis reported in A by Quantity  
One software. The mean values (±SEM) of  
pSmad2 (Ser465/467 and Ser245/250/255), 
pErk1/2, PTEN, pAkt (Ser473), PI3K, Cyclin 
A, and Cdk2 relative expression levels of WT  
(n = 8) and Emilin1/ (n = 8) mice are 
reported. (C) Representative Western blot 
analysis of epidermis and dermis extracts of 
7-wk-old WT and Emilin1/ mice. (A and C) 
Molecular mass is indicated in kilodaltons. 
(D) Quantification of Western blot analysis 
reported in C by Quantity One software. The 
mean values (±SD) of pSmad2 (Ser465/467 
and Ser245/250/255), pErk1/2, PTEN, pAkt 
(Ser473), and PI3K relative expression levels 
of WT (n = 4) and Emilin1/ (n = 4) mice  
are reported. *, P = 0.05; **, P < 0.05;  
***, P < 0.01.
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To correlate the accelerated wound closure to the hyperprolif-
erative phenotype of Emilin1/ mice, we stained cryostat sec-
tions of wounded skin for Ki67 (Fig. 8 C). The proliferation was 
significantly increased in Emilin1/ compared with WT mice  
(Fig. 8 D), indicating that EMILIN1 is involved also in reepi-
thelialization and regenerative processes.

Discussion
Skin homeostasis is regulated by microenvironmental growth 
factors, ECM proteins, and integrins (Fuchs, 2007). The most 
prominent phenotype of the Emilin1/ mouse skin reported 
here was the increased thickness of the epidermis and der-
mis. It is generally known that integrin engagement positively 
regulates cell growth (Schwartz et al., 1995). The finding that 
the ECM glycoprotein EMILIN1 modulated skin cell prolif-
eration pointed out an opposite function of 41 and 91 
integrins: the lack of integrin occupancy by EMILIN1 re-
sulted in reduced PTEN, up-regulated Erk1/2, and increased 

observed also when attached CaCo-2 and HaCaT cells, grow-
ing on plastic under normal culture conditions, were treated 
with soluble gC1q; pErk1/2 levels were up-regulated in control 
cells (pLKO) but not in PTEN-silenced cells (pLKO#49; Fig. 7,  
G and H). Thus, gC1q integrin ligation determined the EMILIN1- 
dependent antiproliferative effects that in turn regulated PTEN 
expression and hence pErk1/2 levels.

Accelerated closure of skin wounds in 
Emilin1/ mice
To functionally link a potential contribution of EMILIN1 ex-
pression to the control of skin wound and to the process of 
tissue regeneration, we performed full-thickness excisional 
wounds on the back of 7-wk-old WT (n = 6) and Emilin1/  
(n = 6) mice. At different postwounding days, photographs were 
taken (Fig. 8 A), and the size of the wound edge was measured. 
As evident in Fig. 8 (A and B), the skin wounds of Emilin1/ 
mice closed considerably faster than their WT littermates, and 
the differences were significant already at the early phase.  

Figure 7.  PTEN down-regulates pErk1/2. (A and B) Western blot analysis of dermal fibroblast and keratinocyte extracts after adhesion on control 
polylysine (Polylys) or on gC1q in the presence or absence of 10 ng/ml TGF-. (C and D) Western blot analysis of CaCo-2 and HaCaT cell extracts after 
adhesion on control polylysine or on gC1q in the presence or absence of 10 ng/ml TGF-. (E and F) Western blot analysis of control (pLKO) or PTEN- 
silenced (pLKO#49) CaCo-2 and HaCaT cell extracts after adhesion for different lengths of time on gC1q in the presence or absence of 10 ng/ml TGF-. 
(G and H) Western blot analysis of control (pLKO) or PTEN-silenced (pLKO#49) CaCo-2 and HaCaT cell extracts after the addition of 5 µg/ml soluble 
gC1q in the presence or absence of 10 ng/ml TGF-.



141EMILIN1 in skin homeostasis • Danussi et al.

This notion is supported by several experimental evi-
dences. First, EMILIN1 produced by fibroblasts was deposited 
in the dermis and contacted basal keratinocytes. Second, only 
contact and not transwell coculture of keratinocytes with WT 
EMILIN1-producing fibroblasts inhibited their proliferation. 
Third, knocking down EMILIN1 expression in NIH 3T3 fibro-
blasts stimulated the proliferation of cocultured keratinocytes. 
Fourth, keratinocytes plated on the cell-binding gC1q domain 
proliferated significantly less than keratinocytes grown on  
fibronectin. Fifth, functional antibodies blocking EMILIN1 li-
gation by 41 or 91 integrin prevented the inhibition of cell 
proliferation.

TGF- is one of the major cytokines regulating the main-
tenance of skin homeostasis (Böttinger et al., 1997; Tang et al., 
1998, 1999). TGF- is synthesized as a large precursor (pro–
TGF-) that is cleaved by proprotein convertases (Beck et al., 
2002; Annes et al., 2003). Mounting evidence indicates that the 
diversity of TGF- signaling responses is determined by the 
combinatorial usage of core pathway components and by cross 
talk with other signaling pathways to modulate (i.e., reinforcing 
or attenuating downstream cellular responses; Zhang, 2009). 
Here, we demonstrated that Emilin1/ dermal fibroblasts as 
well as keratinocytes proliferated to a higher extent than WT 
cells, even if higher TGF- levels were present. Our expecta-
tion was that the lower TGF- levels attained in Emilin1/ 
TGF-+/ mice could effectively rescue the normal skin phe-
notype. However, this was not the case and suggested that a 
cross talk between 4/9 integrins and TGF- occurred. Physio
logical signals such as those activated by EGF or integrins are 
able to trigger phosphorylation of the inhibitory sites in the 
linker region of Smad2 and may use this mechanism to adjust 
the ability of Smad2 to convey appropriate TGF- signals. 

fibroblasts and keratinocytes proliferation, whereas when 
these integrins were bound to EMILIN1, a normal cell growth 
was maintained. Finally, this study identified EMILIN1 as a 
novel 91 integrin ligand.

Epidermal–dermal communication through the BM is  
important for skin homeostasis (Grose et al., 2007). The BM 
contains a specialized structure, the anchoring complex, which 
ensures the stability of connection and communication between 
these two tissue compartments (Böck, 1983; Nishiyama et al., 
2000). The proteins within the anchoring complex provide links 
to both the intracellular cytoskeletal keratins in keratinocytes 
and connective tissue proteins of the dermis (i.e., collagen  
fibers and elastic microfibrils; Masunaga et al., 1997). One of 
the key components of the anchoring filaments is laminin-5, 
which initiates hemidesmosome formation and provides stable 
attachment of the epidermis to the dermis (Nishiyama et al., 
2000). Other components of the BM at the dermal–epidermal 
junction are mainly type IV and VII collagens, several laminins 
such as laminin-6 and -10, nidogen, and perlecan (Marinkovich 
et al., 1993; Kikkawa et al., 1998, 2000). In the present study, 
we demonstrated an abundant expression of EMILIN1 in the 
dermal stroma. Interestingly, EMILIN1-positive fibrils departed 
from the region below the BM reaching the basal keratinocyte 
layer. EMILIN1 also surrounded the outer root sheath of  
the HFs and displayed protrusions toward the keratinocytes  
in the follicle bulb. The peculiar localization of EMILIN1 up to 
the basal layer of keratinocytes indicated that this ECM protein 
plays a role in connecting the epidermis to the underlying der-
mal layer. In addition to a potential structural function, we dem-
onstrated that EMILIN1 regulated keratinocyte as well as 
fibroblast proliferation through a direct integrin-mediated cell–
ECM interaction.

Figure 8.  Wound closure is accelerated in 
Emilin1/ mice. (A) Representative examples 
at 0, 3, and 7 d after skin wounding. Bars, 
2 mm. (B) Quantification of wound closure 
at 3 and 7 d. The mean values ± SEM are 
reported. n = 6. *, P = 0.04. (C) Immuno-
fluorescence staining of skin cryostat sec-
tions at day 3 with Ki67. Bars, 300 µm.  
(A and C) The dashed lines indicate the wound 
edges. (D) Quantification of proliferation in 
the wounded area. The mean values ± SEM 
correspond to ImageJ software evaluation of 
Ki67 fluorescence staining in the wounded 
area (pixel/area). n = 6. **, P = 0.002.
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Depletion of PTEN by shRNA in 4/9-positive cell lines pro-
vided the formal demonstration that engagement of integrins 
by EMILIN1 regulated pErk1/2 levels through PTEN. When  
integrins engaged EMILIN1, the pErk1/2-dependent phosphory
lation of the inhibitory Smad2 Ser245/250/255 residues was 
reduced, and proliferation was maintained at lower levels.

Emilin1/ mice also were useful to address the role of 
EMILIN1 in dermal wound healing. Our present data showed that 
the absence of EMILIN1 accelerated the early events of wound 
closure. The enhanced proliferation rate detected in Emilin1/ 
normal skin was thus transposed to the dermal wound healing 
process, in which a much higher proliferation was evident in 
Emilin1/ mice. On the other hand, conditional null mice for 
the 9 integrin chain in the skin and cornea (K14-9 null) showed 
a significantly reduced proliferation in cutaneous wounds with 
thinner epithelium (Singh et al., 2009). 91 interacts with  
tenascin-C and the EIIIA segment of fibronectin expressed spe-
cifically during wound healing (Singh et al., 2004). However, 
the identity of the keratinocyte 91 ligands under normal con-
ditions was still unknown. Given our present finding that 9 
represents a specific integrin receptor for EMILIN1 in keratino-
cytes and to reconcile the different results obtained in Emilin1/ 
compared with K14-9–null mice, it is tempting to speculate that 
EMILIN1 might represent the 9-specific ligand of normal skin.

A model summarizing how EMILIN1-occupied 41 
and/or 91 integrins maintained homeostatic proliferative cues 
in basal keratinocytes and dermis fibroblasts is shown in Fig. 9. 
Consistent with this proposed role, we suggest that the extrinsic 
signals couple with the intrinsic properties (i.e., stemness?) of 

Hepatoma cancer cells overexpressing 1A integrin display 
loss of the Smad2/3 C-terminal phosphorylation sites (Hamajima 
et al., 2009). This depends on the phosphorylation of the linker 
region mediated by Erk activation and results in the repression of  
the antiproliferative effect of TGF- (Kretzschmar et al., 
1999). One of the most relevant molecular features observed in  
Emilin1/ skin extracts was the dramatic increase of pErk1/2. 
The higher levels of activated Erk in Emilin1/ tissues were 
linked to a reduced expression of PTEN. Our data are in line 
with the results obtained by White et al. (2003), who demon-
strated that ligation of 41 integrin induced a significant  
increase in PTEN activity. Here, we detected strong Erk1/2  
activation, phosphorylation of the linker region, and down- 
regulation of the C-terminal pSmad2 sites when 41 and 91 
integrins were not ligated by EMILIN1. It is likely that the 
down-regulation of pSmad2 signaling, even when the TGF- 
levels are higher as in Emilin1/ mice, is the consequence of a 
direct Erk1/2 action whose activation is in turn linked to PTEN 
reduced levels.

It is worth considering that the higher TGF- levels in 
Emilin1/ mice could enhance cell proliferation in a Smad- 
independent manner. PTEN expression is regulated by TGF- 
in keratinocytes (Li and Sun, 1997), and PTEN mRNA levels 
are reduced in a model of TGF-–overexpressing transgenic 
mice (Ebert et al., 2002). Chow et al. (2008) demonstrated that 
TGF- enhanced cell proliferation by increasing PI3K tyrosine 
phosphorylation and suppressing PTEN. Accordingly, the de-
creased PTEN and higher PI3K activity observed in our models  
may give keratinocytes and fibroblasts a growth advantage. 

Figure 9.  Proposed model for the regulatory role of EMILIN1 in skin homeostasis. The illustration summarizes the proposed molecular mechanism under
lying the regulatory role of EMILIN1 in skin proliferation. (A) TGF- triggers cytostatic signal pathways mainly through pSmad2 (Ser465/467) activation 
and modulates PI3K/Akt signaling by regulating PTEN expression. Zacchigna et al. (2006) showed that EMILIN1 inhibits TGF- processing by binding 
specifically to the pro–TGF- precursor and by preventing its maturation in the extracellular space. Here, we demonstrated that EMILIN1 binding to dermal 
fibroblast and basal keratinocytes 41/91 integrins empowers the down-regulation of proliferative cues induced by TGF-. This effect is mediated by 
4/91-dependent PTEN activation and inhibition of pErk1/2 proproliferative activity. (B) The increased levels of mature TGF- and the lack of 4/91 
integrin–specific engagement by the lack of EMILIN1 result in PTEN down-regulation and, hence, reduced activity. This determines the activation of prolif-
erative pathways such as pAkt and pErk1/2 that in turn lead to a reduction of TGF- signaling via increased Erk1/2-dependent phosphorylation of Smad2 
at inhibitory Ser245/250/255. In conclusion, we provide the first evidence for the central role of PTEN in the cross talk between 4/91 integrin and 
TGF- signal pathways.
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keratinocytes) cell line was provided by L. Banks (International Centre 
for Genetic Engineering and Biotechnology, Italy) and cultured in DME 
supplemented with 10% FCS.

Histological and immunofluorescence analysis
Mouse dorsal skin specimens were excised and processed, embedded in 
optimal cutting temperature compound (Kaltek), snap frozen, and stored at 
80°C. Cryostat sections of 7 µm were air dried at room temperature and 
kept at 80°C wrapped in aluminum foil. For histological analysis, sec-
tions were stained with hematoxylin/eosin (H/E). For immunofluorescence 
staining, the sections were equilibrated at room temperature, hydrated 
with PBS for 5 min, and fixed with PBS 4% PFA for 15 min. Then, they were 
permeabilized (with PBS, 1% BSA, 0.1% Triton X-100, and 2% FCS) for  
5 min and saturated with the blocking buffer (PBS, 1% BSA, and 2% FCS) 
for 30 min. The primary antibodies were then incubated at room temperature 
for 1 h followed by three 5-min washes in PBS, and the secondary anti-
body incubation was performed for 1 h. Multiple staining was performed 
using a combination of different secondary antibodies conjugated with  
Alexa Fluor 488 and 568 (Invitrogen). Nuclei were visualized with  
TO-PRO (Invitrogen). Images were acquired with a true confocal scanner 
system (SP2; Leica) equipped with an HC PL Fluotar 10×/0.30 NA and 
HCX PL Apo 40×/1.25–0.75 NA and HCX PL Apo 63×/1.40–0.60 NA 
oil objectives (Leica) using Leica confocal software.

BrdU proliferation assay
Cells were grown on glass coverslips at defined times and conditions. 
Then, the incorporation of BrdU was performed using the BrdU labeling 
and detection kit (Roche) according to the manufacturer’s instructions. The 
proliferation index was expressed as a percentage of the mean number of 
BrdU-positive cells per field (63× magnification).

Cell adhesion assay
The quantitative cell adhesion assay used in this study is based on centrifu-
gation and has been previously described (Spessotto et al., 2009). 6-well 
strips of flexible polyvinyl chloride–denoted centrifugal assay for fluores-
cence-based cell adhesion (CAFCA) miniplates covered with double-sided 
tape (bottom units) were coated with 20 µg/ml gC1q. Cells were labeled 
with the vital fluorochrome calcein acetoxymethyl (Invitrogen) for 15 min at 
37°C and were then aliquoted into the bottom CAFCA miniplates, which 
were centrifuged to synchronize the contact of the cells with the substrate. 
The miniplates were then incubated for 20 min at 37°C and were subse-
quently mounted together with a similar CAFCA miniplate to create com-
municating chambers for subsequent reverse centrifugation. The relative 
number of cells bound to the substrate (i.e., remaining in the wells of the 
bottom miniplates) and cells that failed to bind to the substrate (i.e., remain-
ing in the wells of the top miniplates) was estimated by top/bottom fluores-
cence detection in a computer-interfaced GENios Plus microplate reader 
(Tecan Group Ltd.).

Impedance measurement with the XCELLigence system
To quantitatively monitor cell behavior in real time, we adopted the innova-
tive technology provided by the Real-Time Cell Analyzer dual plate instru-
ment (Roche). The strategy is based on continuous quantitative monitoring 
of cells as they adhere and proliferate by measuring electrical impedance 
(Xing et al., 2005). The change in impedance caused by cell attachment and 
proliferation is expressed as the cell index, which is an arbitrary measure-
ment defined as (Rn  Rb)/15, in which Rb is the background impedance of 
the well measured with medium alone, and Rn is the impedance of the well 
measured at any time (t) with cells present. Thus, the cell index is a reflection 
of overall cell number, attachment quality, and cell morphology that can 
change as a function of time. The Real-Time Cell Analyzer dual plate instru-
ment was placed in a humidified incubator maintained at 37°C with 95% 
air/5% CO2. For adhesion experiments, the E-plates 96 were precoated 
with the gC1q domain or its mutants (20 µg/ml), and cells were then seeded 
at 40,000 cells/well in FCS-free medium. Cells were monitored once every  
5 min for 2 h. For proliferation, cells were seeded in E-plates 96 at 20,000 
cells/well in FCS-containing medium and in the presence or in the absence 
of the gC1q domain or its mutants (5 µg/ml) The E-plates 96 were monitored 
every 30 min for 48 h. Data analysis was performed using Real-Time Cell 
Analyzer software (version 1.2) supplied with the instrument.

Western blotting
Shaved dorsal skin samples were collected from 6–8-wk-old WT and  
Emilin1/ mice. In brief, the skin was flash frozen with dry ice, and the epi-
dermis was removed by scraping it off with a cold scalpel. Tissue extracts were 
prepared in tissue protein extraction reagent lysis buffer supplemented with 

the basal epidermal cells to define their ability to self-renew. 
The novel ligand–receptor pair (i.e., EMILIN1-91) supported 
a scenario in which one of the functional consequences is  
the integration of EMILIN1 into the complex connections of 
basal keratinocyte turnover and the cross talks between basal 
keratinocytes, underlying ECM, and stromal cells. Whereas sig-
nals generated by ligand-activated integrins are in general pro-
proliferative (Clark and Brugge, 1995; Walker and Assoian, 
2005; Gilcrease, 2007; Streuli, 2009), signals emanating from 
EMILIN1-ligated 4/9 integrins were antiproliferative. It has 
been suggested that proliferation and antiproliferation signals  
occur simultaneously within the same cell, and the antipro
liferative effectors accumulate over time (EMILIN1 ligation in the 
present model) and override the proproliferative signals when 
they reach a certain threshold (Müller et al., 2008). This study 
unveiled another piece of the complex puzzle of skin homeosta-
sis and opened new perspectives in the molecular mechanisms 
of basal keratinocytes quiescence.

Materials and methods
Antibodies and other reagents
Rat monoclonal anti–mouse EMILIN1 (clone 1007C11A8) and mouse 
anti–human gC1q (clone 1H2) antibodies were produced in our labora-
tories as previously described (Spessotto et al., 2003; Danussi et al., 
2008). Rabbit anti–Keratin 5 (AF 138), Keratin 1 (AF 109), and loricrin 
(AF 62) antibodies were purchased from Covance. Rabbit antioccludin 
and ZO-1 were obtained from Invitrogen. Rabbit anti–-catenin, anti–
phospho-p44/42 MAPK (Erk1/2; Thr202/Tyr204), anti–phospho-
Smad2 (C-terminal Ser465/467 and linker region Ser245/250/255), 
anti-Smad2/3, anti–phospho-Akt (Thr308 and Ser 473), anti-Akt, anti-
PTEN, and anti–PI3K p110- antibodies were obtained from Cell Signal-
ing Technology. Goat anti-Erk1/2 and rabbit anti-p27, rabbit anti–Cyclin A,  
and goat antivinculin antibodies were obtained from Santa Cruz Biotechnol-
ogy, Inc. Rabbit anti-Ki67, Keratin 6, laminin-5, collagen IV, and entactin/ 
nidogen antibodies were purchased from Abcam. Moreover, mouse anti-
CdK2 (BD), mouse anti–Cyclin D1/2 (Millipore), rabbit anti–mature TGF-1  
(BioVision Research Products), rabbit anti–pan-CK antibody (Dako), 
mouse anti–integrin 91 (clone Y9A2) and anti–integrin 4 (clone 
P1H4; Millipore), goat anti–mouse integrin 91 (LifeSpan BioSciences), 
and mouse anti–1 integrin subunit (clone 4B4; Beckman Coulter) anti-
bodies were used.

The C-terminal domain of EMILIN1 (gC1q) and the recombinant mu-
tants of the integrin-binding sequence of gC1q were produced as previ-
ously described (Fig. S3; Spessotto et al., 2003; Verdone et al., 2008) 
and were provided by R. Doliana and A. Capuano (Centro di Riferimento 
Oncologico National Cancer Institute, Aviano, Italy). Recombinant human 
TGF-1 was purchased from PeproTech EC.

Mice
Procedures involving animals and their care were conducted according 
to the institutional guidelines in compliance with national laws (Legislative  
decree no. 116/92). WT and Emilin1/ mice (CD1 strain) were generated  
as previously described by Zanetti et al. (2004) and were provided by 
G.M. Bressan (University of Padua, Padova, Italy). Emilin1+/+TGF-+/+, 
Emilin1+/+TGF-+/, Emilin1/TGF-+/+, and Emilin1/TGF-+/ were ob-
tained crossing WT and Emilin1/ mice with TGF-+/ mice, which were 
provided by G.M. Bressan. Genotypes were determined by PCR screening 
of tail biopsies (Maxwell mouse tail DNA purification kit; Promega).

Cells and culture procedures
Keratinocytes, HFs, and fibroblasts were isolated from WT and Emilin1/ 
newborn mice (1–3 d old) as described by Lichti et al. (2008) and 
cultured, respectively, in KGM-2 medium (Cambrex Corporation) plus 
0.05 mM CaCl2 and in DME (Lonza) supplemented with 10% FCS.  
NIH 3T3 (mouse fibroblasts), HT1080 (fibrosarcoma), RD, HeLa (cervix 
adenocarcinoma), and CaCo-2 (colorectal adenocarcinoma) cell lines 
were purchased from American Type Culture Collection and cultured in 
DME supplemented with 10% FCS. The HaCaT (immortalized human 



JCB • VOLUME 195 • NUMBER 1 • 2011� 144

Emilin1/ mouse skin. Fig.S3 shows gC1q mutants and their binding activ-
ity. Fig. S4 shows that EMILIN1 deficiency overrides the TGF- effect on epi-
dermal and dermal proliferation. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.201008013/DC1.
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Statistical analysis
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