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Abstract

The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in
coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species
Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass,
leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture
and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation,
leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all
positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter-
and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This
indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen
conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the
interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly
confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help
explain its decline.
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Introduction

Salt marsh communities are often characterized by elevational

gradients [1,2]. Such patterns often result from trade-offs between

plant competitive ability and tolerance of stresses such as flooding,

salinity and low nitrogen [3–6]. Interactions between plants can

strongly affect community structure and can also be changed by

environmental factors [7–14].

Nutrients, especially nitrogen, are an important factor that may

affect plant interactions and succession of salt marsh communities

[10,12,15,16]. Nitrogen addition was found to change the relative

abundance of Spartina foliosa and Salicornia bigelovii in a California

salt marsh [17]. The interactions between Spartina anglica and

Puccinella maritima were facilitative in low nutrient conditions, but

not in high nutrient conditions [4]. The ericoid species Calluna

vulgaris and Vaccinium oxycoccus were stronger competitors than the

graminoid species Eriophorum vaginatum and Rhynchospora alba at high

nutrient levels in peat bogs, but not at low nutrient conditions [18].

Spartina anglica is a perennial salt marsh grass native in England

[19,20]. Invasions of S. anglica in other countries or regions have

caused great changes in local communities [21,22]. S. anglica was

first introduced in coastal China in 1963 [23,24], and grew to

cover 36,000 ha by 1985 [25,26]. In the past decade, however,

large-scale decline of the species has been occurring in coastal

China, and the cover has decreased to less than 50 ha [26,27].

Due to the wide spread of Spartina alterniflora in coastal China

[23], the ecological range of S. anglica is restricted to higher

elevations where the native, rhizomatous species Scirpus triqueter is

abundant. Therefore, S. anglica and S. triqueter currently possess

overlapping ecological niches in the intertidal zone in China, and

may compete strongly for space, nutrients and light.

In this study, we aim to test the hypothesis that competition

between S. anglica and S. triqueter is one possible explanation for the

on-going decline of S. anglica in coastal China. Because interactions

between species, especially between exotic and native species, often

depend on environmental conditions [6,28], and because nitrogen is

one of the most important environment factors that limit the growth

of salt marsh plants [17,29], we also test whether nitrogen addition

affects the interactions between S. anglica and S. triqueter and whether

the results can help explain the decline of S. anglica in coastal China.
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Materials and Methods

The species
Spartina anglica C. E Hubbard (cordgrass) is a rhizomatous

perennial grass that spreads mainly by clonal growth [30]. The

flowers occur in numerous, erect, dense panicles that consist of

closely overlapping spikelets in two rows on one side of the rachis

[31]. In Europe the flowers produce viable seeds through both self-

and cross-pollination that is mainly by wind. However, seed

production has changed significantly over years, especially in

China [25]. Viable seed production has diminished [26] due to

poor pollen quality and abnormal pollen tubes [32]. The height of

the plant has decreased from 100 cm to not more than 30 cm in

coastal China.

Scirpus triqueter Linn. is trigonous stems and about 100 cm tall,

with leafless sheaths below. The uppermost sheaths usually have a

short lamina, and the glumes are between 3.4 and 4 mm. S.

triqueter is characterized by two stigmas and nuts between 2.5 and

3 mm [33]. It occurs in different habitats in tidal wetlands that

range from brackish to fresh water along the coast.

Plant materials
In April 2007, plants of S. anglica and S. triqueter were collected

from the same area of the marsh zone (120u159E and 33u429N) at

Xinyang Harbor in Yancheng Nature Reserve in Jiangsu

Province, China. The plants were carefully collected from the

marsh and transplanted into big trays (length 75 cm, width 52 cm

and height 41 cm) filled with a 30-cm-deep 1:1 (v:v) mixture of

sand and clay under greenhouse conditions. For each species,

individual plants consisting of a single tiller with attached roots

were separated from the plants in the trays. Uniformly sized

ramets with a height of 12.660.5 cm (for S. anglica) and

15.260.5 cm (for S. triqueter) were selected and planted into pots

(10 L in volume, 28 cm in diameter, 20 cm in height) containing

the same soil mixture of 15 cm in depth. Biomass of the two

species was 0.26760.008 g and 0.28360.005 g, respectively, at

the beginning of the experiment. The plants were allowed to

acclimatize for six days before experimental treatments began in

May 2007.

Experimental design
The experiment took a randomized block design, with nitrogen

level and species combination as the main factors. There were five

species combination treatments, i.e., each pot (28 cm in diameter)

was planted with (i) only 2 individuals of S. anglica (coded as

‘‘SA2’’), (ii) only 2 individuals of S. triqueter (ST2), (iii) 4 individuals

of S. anglica (SA4), (iv) 4 individuals of S. triqueter (ST4), and (v) 2

individuals of S. anglica and 2 individuals of S. triqueter (SA2+ST2).

When the pot was planted with two individuals (treatments of SA2

and ST2), the two individuals were spaced 7.3 cm apart along a

diameter of the pot. When the pot was planted with four

individuals (treatments SA4, ST4 and SA2+ST2); two individuals

were located along one diameter with 7.3 cm apart, and the other

two were planted along its perpendicular diameter also with

7.3 cm apart. For SA2+ST2, the two individuals of the same

species were planted along the same diameter. There were three

nitrogen treatments, i.e., control (no added N), low nitrogen, and

high nitrogen, imposed by hand-broadcasting a total of 0, 2.5 and

5.0 g of fast-release, (NH2)2 CO pelletized fertilizer, respectively,

over the surface of the soil in each pot every three months from

May to December 2007. In total there were 15 treatments and

each treatment had four replicates (pots) arranged in four different

blocks.

The plants for each treatment were selected at random from the

experimental stock in an attempt to reduce the possible influence

of clonal variation and plant history. Pots were randomly located

and rotated every other week. Salinity was maintained at about

15.8 ppt. Water level was maintained at the level of the soil

surface. We weeded the experimental pots for the first 24 weeks,

after which no more weeds appeared.

Data collection
Plants were harvested during 1 to 6 December 2007. The pots

were upended to remove plants, and the plants were then rinsed in

fresh water. For each species in each pot, leaf area and number of

leaves were used as measures of leaf performance, and total length

of rhizomes and number of ramets as measures of asexual

performance. Leaf area was measured using a Licor-3000

electronic conveyor. Plants were then divided into leaves and

stems (i.e., shoots), rhizomes and roots, dried to constant mass at

80uC, and weighed. No plants flowered during the experiment.

The average values for each parameter were calculated for each

pot.

Data analysis
Statistical analyses were conducted in SPSS 17.0 for Windows

(SPSS Inc., USA). We used three-way ANOVAs to test the effect

of block, nitrogen, species combination and nitrogen by species

combination on the variables measured. P,0.05 was considered to

be statistically significant. Measures of biomass were transformed

to the log as needed to improve homogeneity of variance prior to

ANOVA.

The intensity of inter- and intra-specific interactions between

the two species was quantified using relative neighborhood effect

[4,27]:

RNE~ P{N{PzNð Þ=Max P{N , PzNð Þ

where RNE is relative neighborhood effect, P2N and P+N are a

measure of plant performance in the absence or presence of intra-

or inter-specific neighbors, respectively, and Max (P2N, P+N) is the

larger value of P2N and P+N. RNE varies from 21 to 1; a value of

0 indicates no interaction, with negative values indicating

facilitation and positive values indicating competition.

The different combinations of the two species tested the

presence or absence of neighbors; treatments with two plants of

the same species per pot tested growth in the absence of neighbors,

while those with four plants of the same species per pot or with two

of each species, respectively, tested growth in the presence of intra-

specific or inter-specific neighbors. The intensity of intra- and

inter-specific interactions was determined using total biomass as an

indicator of plant performance. A Duncan test was conducted to

examine the difference in intra- and inter-specific interactions

among the treatments.

Results

Biomass
Total biomass, shoot mass and root mass of S. anglica in SA2

were significantly higher in the low nitrogen treatment than in the

high nitrogen treatment (Fig. 1A–C; Table 1A). Rhizome mass in

SA2 was significantly greater in the low nitrogen treatment than in

the control and the high nitrogen treatment (Fig. 1D; Table 1A).

In the control, total biomass and shoot mass of S. anglica were

significantly less in the two-species treatment (SA2+ST2) than in

the single-species treatments (SA2, SA4) (Fig. 1A,B).

Nitrogen Level Affects Intra- and Inter-Specific Competition
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Figure 1. Biomass, leaf and asexual characteristics of S. anglica in nitrogen level and species combination treatments. Different
lowercase letters indicate that groups differ significantly.
doi:10.1371/journal.pone.0025629.g001
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Total biomass, shoot mass and root mass of S. triqueter were

greater in the low and the high nitrogen treatment than in the

control (Fig. 2A–C; Table 1B). Biomass measures of S. triqueter did

not differ significantly among ST2, ST4 and SA2+ST2 in the

control or the high nitrogen treatment, except for rhizome mass in

the high nitrogen treatment and total biomass in the low nitrogen

treatment (Fig. 2 A–D).

Leaf area and number
Leaf area of S. anglica was greater in the low and the high

nitrogen treatment than in the control (Fig. 1E; Table 1A). Leaf

area of S. anglica was significantly greater in SA2 than in SA4 and

SA2+ST2 in the low nitrogen treatment, but did not differ among

SA2, SA4 or SA2+ST2 in the control or the high nitrogen

treatment (Fig. 1E). Number of leaves was smaller in SA2+ST2

than in SA2 and SA4 in the control and the low nitrogen

treatment (Fig. 1F; Table 1A).

In S. triqueter, leaf area and number were greater in the low and

the high nitrogen treatment than in the control (Fig. 2E, F;

Table 1B). In the low and the high nitrogen treatment, leaf area

was the largest in ST2, smallest in SA2+ST2, and intermediate in

ST4; in the control, it did not differ among ST2, ST4 or SA2+ST2

(Fig. 2E). Number of leaves was significantly larger in ST2 than in

ST4 and SA2+ST4 in the low nitrogen treatment, but did not

differ among them in the control or the high nitrogen treatment

(Fig. 2F).

Asexual reproduction
Total rhizome length of S. anglica was significantly greater in

SA2 than in SA4 and SA2+ST2 in the low and the high nitrogen

treatment, and was smaller in SA2+ST2 than in SA2 and SA4 in

the control (Fig. 1G; Table 1A). In the low nitrogen treatment,

number of ramets of S. anglica was significantly greater in SA2 than

in SA4 and SA2+ST2 (Fig. 1H).

In S. triqueter, number of ramets was significantly greater in the

low and high nitrogen treatment than in the control (Fig. 2H;

Table 1B). But total rhizome length did not differ significantly

among the three nitrogen treatments (Fig. 2G; Table 1B).

Relative neighborhood effect
In S. anglica, the values of RNE were all positive (Fig. 3A),

suggesting that the effects of neighbor plants on S. anglica were all

competitive. In S. anglica, RNE was significantly higher when the

neighbors were a different species (inter-specific RNE) than when

the neighbors were the same species (intra-specific RNE) in the

control, but they did not differ significantly in the low or the high

nitrogen treatment (Fig. 3A).

In S. triqueter, the values of RNE were positive in the control and

the low nitrogen treatment, but became negative in the high

nitrogen treatment (Fig. 3B), suggesting that the effects of

neighbors on S. triqueter changed from competition to facilitation

with increasing the nitrogen levels. The inter-specific RNE did not

differ significantly from the intra-specific RNE in the control or

the low nitrogen treatment, but was significantly larger than the

intra-specific RNE in the high nitrogen treatment (Fig. 3B).

Discussion

Values of RNE indicate that inter-specific competition was

more intense than intra-specific competition, and that S. triqueter

was competitively dominant over S. anglica. Competition between

the two salt marsh species in the field is likely because their niche

overlaps [23]. However, the two species differed substantially

when facing interference competition. When grown in monocul-

ture without added nitrogen, biomass, leaf area and asexual

reproduction of both species were slightly reduced in the presence

of neighbors (Figs. 1 and 2). This is consistent with previous

research [3,4,27]. Differences between the inter-specific and the

intra-specific RNE of the two species (Fig. 3) indicate that S.

triqueter was less affected by S. anglica than by S. triqueter, whereas S.

anglica was more affected by S. triqueter than by S. anglica. Thus, S.

triqueter has a stronger inter-specific competitive ability and a

weaker intra-specific competitive ability than S. anglica.

Many studies have shown that environmental conditions can

change inter-specific interactions [3,4,6,18,34–36]. Our study also

showed that nitrogen level changed the interactions between the

two species. The effects of S. triqueter on biomass and asexual

reproduction of S. anglica changed with increasing nitrogen levels.

Without nitrogen addition (in the control), inter-specific compet-

itive ability was lower than intra-specific competitive ability in S.

triqueter; in contrast, S. anglica had higher inter-specific competitive

ability and low intra-specific competitive ability. These results

suggest that S. anglica was strongly affected by S. triqueter, but S.

triqueter was not strongly affected by S. anglica. Thus, without

nitrogen addition S. triqueter was competitively dominant over S.

anglica. At the low nitrogen level, patterns in competitive ability

were similar to those in the control. At the high nitrogen level,

however, the interactions between the two species changed greatly:

in S. triqueter, inter- and intra-specific interactions became

facilitative rather than competitive, whereas in S. anglica only

inter-specific interactions were important (Fig. 3). Thus, the

interactions between S. anglica and S. triqueter were determined to

some extent by abiotic factors, as found in other research [34–37].

Table 1. Effects of block, nitrogen level and species
combination on growth and asexual reproduction of Spartina
anglica (A) and Scirpus triqueter (B).

Variable Block Nitrogen (N) Combination (C) N6C

(A) Spartina anglica

Total biomass 0.4 ns 24.1** 47.5** 9.8**

Shoot mass 0.8 ns 21.1** 31.5** 6.9**

Root mass 1.2 ns 13.8** 45.0** 3.9*

Rhizome mass 0.2 ns 1.9 ns 7.6** 2.8*

Leaf area 0.4 ns 29.6** 2.9 ns 7.6**

Number of leaves 1.1 ns 12.5** 18.4** 4.7*

Rhizome length 1.4 ns 1.7ns 9.5** 2.0ns

Number of ramets 2.4 ns 4.2 * 7.8** 1.4ns

(B) Scirpus triqueter

Total biomass 3.0ns 37.7** 0.2ns 3.4*

Shoot mass 2.1 ns 37.2** 0.01ns 2.6ns

Root mass 2.3 ns 22.6** 0.3 ns 2.0ns

Rhizome mass 0.9 ns 0.04ns 1.2ns 2.5 ns

Leaf area 0.5 ns 139.1** 31.5** 4.4**

Number of leaves 1.2 ns 35.3** 5.6* 3.8*

Rhizome length 0.4 ns 3.8* 3.3 ns 0.6ns

Number of ramets 1.3 ns 26.8** 2.3ns 0.2ns

F- values and significance levels (** P,0.01, * P,0.05, ns P$0.05) are given.
Degrees of freedom for the block effect, nitrogen level, species combination
and interaction between nitrogen and combination are (3, 24), (2, 24), (2, 24)
and (4, 24), respectively.
doi:10.1371/journal.pone.0025629.t001

Nitrogen Level Affects Intra- and Inter-Specific Competition
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Competition for resources is mainly due to competition for light

and nutrients [38–40]. Our results indicate that S. triqueter had a

higher and denser canopy than S. anglica and could thus shade S.

anglica to some extent, consistent with previous findings [41–43]. In

the case of competition for nutrients, the relative allocation of

biomass to shoots and roots provides insight into the competitive

mechanisms employed by different species [39]. In the control and

the low nitrogen level, S. triqueter responded to competition by

increasing shoot growth, and thus produced a dense, highly

branched canopy; in the high nitrogen level, its growth was

faciliated by neighbors. This suggests that S. triqueter has a higher

tolerance for low nitrogen availability than S. anglica.

The inter-specific competitive advantage of S. triqueter shown in

this study may explain the decline of S. anglica in coastal China.

Figure 2. Biomass, leaf and asexual characteristics of S. triqueter in nitrogen level and species combination treatments. Different
lowercase letters indicate that groups differ significantly.
doi:10.1371/journal.pone.0025629.g002
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When S. anglica was first introduced to China, it occupied the open

coastal areas and expanded its population quickly [23,26]. The

conditions had changed because S. alterniflora had accelerated

natural land formation by expanding over tremendous areas with

a vertical accretion rate of 48–52 cm in 3–4 years [24]. Because of

this vertical accretion, the hypsography is higher than that of 30

years ago and only spring tides can reach the current population of

S. anglica in the upper marshes where S. triqueter is abundant. Due

to accretion, these areas have also become poor in nitrogen, which

may limit the growth of S. anglica. The fact that S. triqueter is more

tolerant to low nitrogen than S. anglica can further explain the

decline of S. anglica in coastal China.
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