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Abstract

Background: Bisbenzimides, or Hoechst 33258 (H258), and its derivative Hoechst 33342 (H342) are archetypal molecules for
designing minor groove binders, and widely used as tools for staining DNA and analyzing side population cells. They are
supravital DNA minor groove binders with AT selectivity. H342 and H258 share similar biological effects based on the
similarity of their chemical structures, but also have their unique biological effects. For example, H342, but not H258, is a
potent apoptotic inducer and both H342 and H258 can induce transgene overexpression in in vitro studies. However, the
molecular mechanisms by which Hoechst dyes induce apoptosis and enhance transgene overexpression are unclear.

Methodology/Principal Findings: To determine the molecular mechanisms underlying different biological effects between
H342 and H258, microarray technique coupled with bioinformatics analyses and multiple other techniques has been utilized
to detect differential global gene expression profiles, Hoechst dye-specific gene expression signatures, and changes in cell
morphology and levels of apoptosis-associated proteins in malignant mesothelioma cells. H342-induced apoptosis occurs in
a dose-dependent fashion and is associated with morphological changes, caspase-3 activation, cytochrome c mitochondrial
translocation, and cleavage of apoptosis-associated proteins. The antagonistic effect of H258 on H342-induced apoptosis
indicates a pharmacokinetic basis for the two dyes’ different biological effects. Differential global gene expression profiles
induced by H258 and H342 are accompanied by unique gene expression signatures determined by DNA microarray and
bioinformatics software, indicating a genetic basis for their different biological effects.

Conclusions/Significance: A unique gene expression signature associated with H342-induced apoptosis provides a new
avenue to predict and classify the therapeutic class of minor groove binders in the drug development process. Further
analysis of H258-upregulated genes of transcription regulation may identify the genes that enhance transgene
overexpression in gene therapy and promote recombinant protein products in biopharmaceutical companies.

Data Deposition: The microarray data reported in this article have been deposited in the Gene Expression Omnibus (GEO)
database, www.ncbi.nlm.nih.gov/geo (accession no.GSE28616).
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Introduction

Many research studies have aimed to target specific sequences

in DNA with the goal of designing drugs [1]. The minor groove of

DNA is becoming a site of great interest due to its high sequence

specific interactions with a large number of small molecules. DNA

minor groove binders (MBs), one of the most widely studied class

of small molecules, typically bind to AT-rich sequences of the

DNA minor groove and may be divided into two functional

classes: 1) compounds that can induce permanent DNA damage;

2) compounds that only interact physically with DNA and cause

only reversible inhibition of DNA-dependent functions [2]. The

Hoechst compounds, Hoechst 33258 (H258) [29-(4-Hydroxyphe-

nyl)-5-(4-methyl-1-piperazinyl)-2,59-bi(1H-benzimidazole)] and its

derivative Hoechst 33342 (H342) [29-(4-ethoxyphenyl)-5-(4-meth-

yl-1-piperazinyl)-2,59-bi(1H-benzimidazole)] belong to the second

functional class and are also the most studied MBs as model

compounds for biochemical and biophysical studies of drugs that

bind to the DNA minor groove. These MBs form strong reversible

complexes preferentially at the nucleotide sequences with 4–5

adjacent AT base pairs in the minor groove of double-stranded B-

DNA, where a particularly narrow groove with a floor lacking

amino groups permits an optimization of van der Waals’ contacts

and hydrogen bonding [3], [4]. As a consequence of this DNA
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sequence-specific binding, drug and protein may cause mutual

interference because they share a common sequence preference

for DNA binding. Previous studies demonstrate that Hoechst dyes

interfere with multiple DNA processing proteins such as

topoisomerase I [5], [6] and II [7], DNA helicase [8], TATA

box binding protein [9], [10], E2F1 [11], and replication protein A

[12]. In fact, most proteins which bind sequence specifically to AT

rich DNA regions have extensive contacts within the minor

groove, and it is likely that inhibition of the binding of these factors

to DNA by MBs is mediated by direct steric interference [13]. In

addition, DNA sequence-specific binding MBs may be associated

with a unique gene expression pattern or drug-specific gene

expression signature since MBs only interact with minor groove

regions in disassembled chromatin where transcription and/or

replication are ongoing. Therefore, it is imperative to determine

the Hoechst dye-specific gene expression signature to uncover

potential biomarkers and Hoechst-specific signal transduction

pathways for cancer therapy.

Extensive studies show that Hoechst dyes have anti-cancer

activities like other MBs [2], [14]. Initial studies show that H258

possesses activity against L1210 murine leukemia [15] and several

promising experiments in solid tumors have led to the use of this

compound in phase I clinical trials in human [15]. However, a

subsequent phase II trial against pancreatic carcinoma shows little

response [16]. Further data demonstrate that H342, but not H258,

is a potent apoptotic inducer of different types of cancers [17].

Even so, H342 and H258 share some similar biological effects due

to their similar thermodynamic properties. For example, H342

and H258 poison topoisomerase I [5], [18], inhibit other DNA

processing proteins in in vitro studies [9], and affect the cell cycle

[19], [20]. Both dyes are found to be free radical scavengers and

protect DNA against radiation-induced damage [21]. However,

both dyes significantly enhance UV- and radio-induced cytotox-

icity as sensitizers in human tumor cell lines [22], [23].

Intriguingly, both H258 and H342 can enhance transgene

overexpression in in vitro studies [24], [25].

In addition to their similarities, both Hoechst dyes have

uniquely different biological effects in the cell as well. H342 is

several orders of magnitude more cytotoxic than H258. Large

numbers of protein-DNA cross-links and DNA strand breaks can

be detected in H342-, but not, H258-treated cells [5], [26], [27].

Early studies revealed that H342 causes rapid cell death once

sufficient dye enters the nucleus of a cell [27]. But, our later studies

show that the key difference of intracellular effects between the two

dyes is that H342, but not H258, is a potent apoptotic inducer in

different types of cancer cell lines [17] and species [28]. However,

the molecular mechanisms by which different Hoechst dyes have

diverse intracellular effects are still unclear. In chemical structure,

H342 has a 4-ethyoxy substitution on the phenyl ring that its

parent compound H258 does not, thus enhancing its membrane

permeability. This minute modification in the chemical structure

causes H342 pharmacodynamics to differ from that of H258.

Thus, H258 and H342 are not only archetypal compounds for

designing new MBs and studying the interaction of MBs with

DNA, but also contrasting compounds for identifying the

mechanisms by studying the difference of biological effects induced

by the two Hoechst dyes.

The purpose of the present study is to determine the molecular

mechanisms underlying different biological effects between H342

and H258. Our results show differential global gene expression

profiles with individually unique gene expression signatures

induced by H258 and H342. One application of these gene

expression signatures is that they can be used to predict the

effectiveness of new MBs derived from Hoechst dyes. In addition,

genes consisting of the H342-specific gene expression signature

may be invaluable targets for targeted cancer therapy. Further-

more, genes up-regulated by H258 may be utilized in transgene

overexpression in gene therapy and could promote recombinant

protein products in biopharmaceutical companies. Therefore, the

present study has highlighted the new insights into molecular and

pharmacokinetic mechanisms that cause diverse biological effects

of Hoechst 33342 and Hoechst 33258, which can aid in the

discovery of more advanced and efficient cancer treatments.

Results

Hoechst 33342 is a potent apoptosis inducer of human
mesothelioma cell lines

To test whether or not H342 may trigger cell death in

malignant pleural mesothelioma (MPM) cells, seven MPM cell

lines have been employed in this study. Cell viability results

indicate that H342 significantly induces cell death in all seven

mesothelioma cell lines in dose-dependent manners by MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay

(Figure 1A). To determine the nature of this death in

mesothelioma cells induced by H342, we have used fluorescent

staining assay, Western blot, and caspase-3 activity assay to test

cell morphological changes, caspase-3 activity, and expression of

apoptosis-associated proteins during the cell death of H2373

mesothelioma cells treated by H342 for different times. The cells

shrink, become circular, and lose contact with neighboring cells as

nuclear condensation occurs, forming half-moon shapes typical of

apoptosis in a time-dependent fashion during 36 mM H342

treatment (Figure 2). The apoptotic nature of this death has been

further confirmed by measurement of caspase activation, translo-

cation of cytochrome c, and levels of apoptosis-associated proteins

in H2373 cells treated for different intervals with 36 mM H342.

Consistent with caspase 3 activation (Figure 1B), cytochrome c is

translocated from the mitochondria to the cytosol in the response

to H342 treatment (Figure 1C). Figure 1D shows that degradation

of PARP, inhibition of apoptosis protein 1 (c-IAP1), c-IAP2, and

survivin is associated with a decrease in pro-caspase 3 levels in

H342-treated H2373 cells.

Antagonistic effect of Hoechst 33258 on Hoechst 33342-
induced apoptosis

To determine the pharmacokinetic relationship between H342

and H258, we postulate that H342 and H258 share the same

transport system due to their similarities in chemical structure. To

test this hypothesis, we examined the effects of incremental doses

of H258 and H342, alone or in combination, on the cell viability

of H2373 mesothelioma cells by MTT assay. Consistent with

previous results, both MTT and cell morphological results show

that H258 fails to induce cell death after 6 hour and 24 hour

treatment at different concentrations when compared to H342-

treated and H258-pre-treated groups (Figure 3 and 4A). In

contrast, cell viability, as determined by MTT assay, reveals that

H258 decreases H342-induced apoptosis by 33% to 57% in a

dose-dependent manner (Figure 4A). Morphological data indicate

combined treatment of H342 and H258 delays cell morphological

changes at least for two hours when compared to H342 treatment

alone or H258-pretreated group, suggesting H258 effectively

delays the entry of H342 into cells (Figure 3). To further analyze

drug antagonism between the two Hoechst dyes, a dose response

curve is generated for Hoechst dyes in H2373 mesothelioma cells

using Calcusyn software (Figure 4B). Consistent with MTT data,

the combination treatment causes a significant decrease in H342-

induced apoptosis when compared to that achieved in response to
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solely H342 (Figure 4B). The fraction of cells affected in response

to each treatment is utilized to perform antagonistic analysis with

Calcusyn. The CI (combination indices) as formulated by the

software, revealed values of more than 1.0, indicating an

antagonistic interaction between H258 and H342 when they are

combined (Table 1). This analysis further confirms the drug

antagonism between the two Hoechst dyes.

Differential global gene expression profiles induced by
Hoechst dyes

Since the thermodynamic features of DNA binding of H342

and H258 are similar, the pharmacokinetic differences in the entry

of H342 and H258 into cells seem to be the initial cause of the

different biological effects of Hoechst dyes [29]. Since AT rich

sequences of DNA are primary binding sites of Hoechst dyes, we

postulate that the different biological effects of Hoechst dyes

eventually stem from differential global gene expression profiles

defined by their unique gene expression signatures. To test the

hypothesis, we performed oligo microarray analysis of gene

expression profiles in H2373 mesothelioma cells after 3 hours of

36 mM H258 or H342 treatment. Utilizing data obtained from the

HumanHT-12 v4 expression BeadChip kit (Illumina), we

performed hierarchical clustering using the Mev version 4.5.1

software and constructed a dendrogram for Hoechst dye-treated

samples. The concordance between the results from the hierar-

chical cluster analysis and Venn diagram indicated that the global

gene expression pattern of H342 induction was different from that

of H258 induction, revealing differential gene expression profiles

of cells in response to H342 and H258 treatment (Figure 5). To

validate the results of our expression microarrays, we carried out

quantitative RT-PCR analysis of the RNAs used in the expression

microarray studies. We have analyzed a total of 4 genes: 2 genes

that are up-regulated in H342-treated H2373 mesothelioma cells

(Fos, JMJD7) and 2 genes that are down-regulated (SNIP1,

SMAD6) (Figure 6). As shown in Figure 6A and 6B, we are able to

confirm significant up- or down-regulation (P,0.05) as predicted

from the microarrays. Recent study shows that SNIP1 is an

important modulator of c-Myc activity [30] and c-Myc target

genes encode global chromatin regulators (e.g., CTCF and

hGCN5) and critical regulators of mitochondrial function such

Figure 1. Effect of H342 on cell viability, caspase 3 activity, cytochrome c translocation, and apoptosis-associated protein levels. A,
Effect of H342 on cell viability of 7 human mesothelioma cell lines. 7 mesothelioma cell lines were treated with different concentrations of H342 (0–
36 mM) for 24 hours. Cell viability was determined by MTT assay. Line chart represents the cell viability (%) with mean + SE. B, Measurement of
endogenous caspase 3 activity after 36 mM H342 for different times in H2373 cells. Line chart indicates relative fluorescence units with mean + SE. C,
Determination of cytochrome c translocation induced by 36 mM H342 for different times in H2373 cells. After treatment, the cytosolic and the
mitochondrial fractions were isolated by differential centrifugation. Levels of cytochrome c in cytosolic and the mitochondrial fractions were
determined by immunoblotting. D, Protein levels of poly (ADP-ribose) polymerase (PARP), inhibitor of apoptosis protein 1 and 2 (c-IAP1 and 2), and
caspase 3 were determined by immunoblotting after H2373 cells were treated with 36 mM H342 for different times.
doi:10.1371/journal.pone.0025822.g001
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as TFAM and NRF1 [31]. Since mitochondrial dysfunction is a

hallmark of H342-induced apoptosis [32–34] we have further

chosen two c-Myc target genes (e.g., CTCF and TFAM) and

COX19 that are downregulated in H342-induced gene expression

profile to test the relevance of SNIP1-mediated c-Myc target genes

and COX19 [35] to chromatin structure/function and mitochon-

drial function [31]. Figure 7A and 7B show the downregulated

gene expression of CTCF, TFAM and COX19 induced by 36 mM

H342 treatment for 3 hour, indicating the potential molecular

basis of chromatin and mitochondria dysfunction in H342-treated

cells. Figure 7C is a schematic diagram of H342-induced

mitochondria dysfunction through SNIP1 and COX19. The

present study represents the first large-scale and high-quality

transcriptome analysis in Hoechst dye-induced gene expression.

Figure 2. Characterization of morphological changes of H2373 cells induced by H342. A-D, The morphology of the cells was
photographed with a microscope. E-H. Untreated and treated cells were rinsed with PBS buffer and stained with Hoechst 33342 (final concentration,
18 mM) for 10 minutes. After staining with Hoechst 33342, the morphological aspects of cell nuclei were observed with a fluorescence microscope.
doi:10.1371/journal.pone.0025822.g002

Figure 3. Effect of H258 on morphological changes induced by H342 in H2373 cells. H2373 mesothelioma cells were treated with H342 or
H258 alone, or combination of H342 + H258 for different times. Control: A (1h), B (3h) and C (6h); 36 mM H258-treated: D (1h), E (3H), F (6h); 36 mM
H342-treated: G (1h), H (3h), I (6h); 36 mM H258- and 36 mM H342-treated: J (1h), K (3h), L (6h).
doi:10.1371/journal.pone.0025822.g003
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Two unique gene expression signatures induced by two
Hoechst dyes

A gene signature consists of a list of genes whose expression is

correlated with the biological state of interest. Applying highly

stringent criteria, our global gene expression data have demon-

strated that 99 genes are upregulated and 582 genes are

downregulated after 3 hour H258 treatment, whereas 191 genes

are upregulated and 490 genes are downregulated after 3 hour

H342 treatment. To gain insight into the biological meaning of the

Hoechst dye–specific signatures, we used David Bioinformatics

Databases (http://david.abcc.ncifcrf.gov/) to examine the expres-

sion of a compendium of differential expression gene profiles

representing specific ontology terms in response to H258

treatment and H342 treatment, respectively [36]. To lend

biological relevance to these gene profile data, we have examined

the lists of up-and down-regulated genes for over-representation of

any functional classes using the DAVID Bioinformatics Database.

In H258-induced gene expression profiling, nine classes were

significantly over-represented among the upregulated genes of

H258 treatment. These genes are mainly involved in regulation of

transcription (26%), DNA binding (19%), response to organic

substances and nutrients (10%), and apoptosis (10%). Five

functional classes out of nine are associated with gene transcription

and DNA binding (34) (Figure 5). In contrast, 582 genes are

downregulated and found to be related to regulation of nuclear

components (chromosomes, microtubules, the nuclear body, etc.)

and nuclear biological processes (cell cycle, macromolecule

metabolism and assembly, etc.) (Figure 5). Thus, it is likely that

upregulation of the transcription regulation genes and downreg-

ulation of the nuclear structure and cell cycle genes are the

signature of the H258-induced gene expression profile. In H342-

induced gene expression profiling, twelve classes are significantly

over-represented among the upregulated genes. These genes are

involved in intracellular biological processes (signal, MAPK

signaling pathway, cell adhesion, etc.) and cellular components

such as the extracellular matrix part (Figure 5). These data suggest

that cells prevent H342-induced damage by enhancing intracel-

lular biological processes and reinforcing cellular components.

Among the down-regulated genes, thirteen classes are found to be

related to the regulation of nuclear metabolism, including nuclear

components and nuclear biological processes (Figure 5). In

contrast to the H258-downregulated gene expression profile,

H342 mainly targets nuclear processes, in particular, transcription

regulation (30%). Thus, it is likely that downregulation of the

genes of transcription regulation is the H342-specific gene

expression signature.

Identification of signal transduction pathways consisting
of these gene signatures

H258-upregulated and H342-downregulated genes that involve

transcription regulation are the signatures of differential global

gene expression profiles induced by H342 and H258. Comparing

these two sets of genes shows a statistically significant overlap of

only 7 genes, the majority of which is regulated in the same

direction (Figure 8). To further find the enriched pathways of the

two gene sets related to H342- and H258-induced transcription

regulation, we performed an overrepresentation pathway analysis

on Genomatix. Under the threshold of a P value of ,0.05, there

are 35 enriched pathways for 26 H258-upregulated genes and 10

enriched pathways for 148 H342-downregulated genes. Of the 10

enriched pathways for H342-downregulated genes (Table 2), 9,

except for the vitamin D receptor, overlap with the pathways for

H258-upregulated genes. Of the 7 shared genes, 5 genes (e.g.

Cited2, DDIT3, Isl1, id1 and MSC) involve 8 H342-enriched

pathways. These data further prove both Hoechst dyes may share

the same primary targets.

Discussion

Hoechst 33342 (H342) is a novel apoptotic inducer in different

types of cancer cell lines [17] and species [28]. Conventionally,

Figure 4. Antagonistic effect of H258 on H342-induced cell
death in H2373 cells. A, Cell viability was determined by MTT assay
after H2373 cells were treated by H342 or H258 alone, H258
pretreatment for 1 h followed by H342 treatment, or combination of
H342 + H258 for different times. B, Antagonistic effect between H342
and H258 was analyzed by Calcusyn software to generate a dose
response curve. Fa represents the fraction of cells that is growth
inhibited in response to H342 and/or H258. This is calculated as 1 2
fraction of surviving cells. Fa values for each treatment were used to
conduct synergy analysis by CalcuSyn software as described in Materials
and Methods.
doi:10.1371/journal.pone.0025822.g004

Table 1. Combination indices for H342 and H258 treatment
for 24 h, as computed by CalcuSyn for H2373 cells.

H342 (mM) Fa H258 (mM) Fa
H342+H258
(Fa) CI

4.5 0.0133 18 0.0054 0.0329 1.186

9 0.3218 36 0.0231 0.1735 1.416

13.5 0.8759 72 0.0391 0.2392 1.918

18 0.9342 108 0.1133 0.3050 2.356

Note: CI (combination indices).1 indicates antagoniusm; Fa, fraction affected.
doi:10.1371/journal.pone.0025822.t001
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apoptosis occurs via two main pathways: the intrinsic pathway

mediated by mitochondria, resulting in the activation of caspase 9,

or the extrinsic pathway mediated by the activation of death

receptors (Fas and TNFR), involving the activation of caspase 8

[17], [37]. Cytochrome c release is a crucial step in the

mitochondrial or intrinsic pathway due to its ability to activate

caspase 3. Since both the extrinsic and intrinsic pathways converge

at caspase 3, cytochrome c release can be used to determine the

pathway involved. Capase 3, together with other effector caspases

(such as caspase 7 and 6), orchestrates the dismantling of diverse

cell structures through cleavage of specific substrates [38].

Caspases, including caspase 3, exist as inactive proenzymes that

undergo proteolytic processing at conserved aspartic residues to

produce a cleaved active enzyme that is detected by immunoblot.

A classical substrate for caspase 3 is poly ADP ribose polymerase

(PARP). Our results show that degradation of PARP, inhibition of

apoptosis protein 1 (c-IAP1), c-IAP2, and survivin are associated

with a decrease in pro-caspase 3 levels and an increase in caspase 3

activity that are related to cytochrome c translocation from the

mitochondria to the cytosol. Degradation of PARP impairs the

DNA repair process, whereas c-IAP1, c-IAP2 and survivin

downregulation disarms their antiapoptotic capacity [39], thus

enhancing the apoptosis process. However, it is important to note

that in this study, the signal of cleaved caspase 3 is undetected by

immunoblotting. This raises the question of whether the synthetic

peptide corresponding to residues that have been used for

antibody generation is not included in the activated caspase 3

when H342-induced cleavage occurs, indicating the possibility of

other cleavage sites for caspase 3 activation. Overall, H342-

induced apoptosis is an intrinsic pathway-dependent apoptosis that

is characterized by not only a morphological hallmark, but also the

key biochemical features of apoptosis, including mitochondrial

membrane potential [33], externalization of membrane phophoa-

tidylserine [40], DNA fragmentation [40], [41], activation of

caspase 3 associated with cytochrome c release (Figure 1C) [42],

and cleaved caspase 3 substrates (Figure 1D). Moreover, H342-

induced apoptosis is also associated with dysfunctions of Lactate

oxidation [32] and fatty acid anabolism [43]. Thus, H342-induced

apoptosis is complicated and still remains unclear.

Malignant pleural mesothelioma (MPM) is a deadly and

asbestos-associated disease with patient survival from presentation

of ,12 months [44]. Unfortunately, no single therapy has proven

effective in curing MPM, presumably because of the multiplicity of

survival and chemoresistance pathways in these tumors [45].

Substantial improvements in survival will require the development

of novel and more effective pharmacological interventions. In

addition, nearly all MPM patients progress during or after first-line

treatment, and second-line chemotherapy is being increasingly

used in clinical practice. Therefore, second-line therapy of MPM

remains an ideal field in which to test new chemotherapy agents as

Figure 5. Differential gene expression profiles induced by H258 and H342. Venn diagram (left) illustrating overlap between changes
identified with H342- and H258-induced differential gene expression profiles. Hierarchical cluster (middle) indicating differential gene expression
induced by H258 and H342: red (up-regulated) and green (down-regulated). Gene ontology analysis (right) (P-values represent a Bonferroni-corrected
EASE score). These genome-wide gene expression profiles were normalized by untreated H2373 cell gene expression profile.
doi:10.1371/journal.pone.0025822.g005
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well as new therapeutic strategies, including anti-angiogenic

compounds, small molecules or monoclonal antibodies that target

different molecular pathways [46]. In the present study, H342 acts

as a potent apoptotic inducer in mesothelioma cell lines, which

indicates that MBs may hold promise as a novel therapeutic

approach for MPM treatment.

Hoechst dyes are utilized for staining DNA to evaluate the cell

cycle and apoptosis, and quantify viable cells in molecular biology

[17]. H342 efflux technique has been widely used for identifying

side population cells from a variety of tissues and species, including

cancer cell lines and tissues. The efflux ability of the cells has been

attributed to the high expression of the ATP binding cassette

(ABC) transporter G2 and multidrug resistance protein 1 [47].

However, the mechanism by which a cell readily takes up Hoechst

dyes remains unclear. The present results show that pretreatment

of H258 for one hour fails to protect H2373 cells from H342-

induced apoptosis, and H342 approaches its maximum peak

emission spectra for the formation of H342-DNA complexes in

spermatozoa after a 30 minute incubation period [48], thus

indicating the antagonistic effect of H258 on H342-induced

apoptosis is not associated with pre-occupied AT-rich DNA

sequences by H258 (Figure 3A). However, since H342-induced

apoptosis is partially blocked by H258, this implies that Hoechst

dyes at least partially share the same transport system. Previous

literature has suggested that H342 enters the cell by an

unmediated diffusion transport mechanism through the cell

membrane prior to DNA binding [48], [49]. In addition, our

initial data shows that the components of the cell culture media

affect the potency of H342-induced apoptosis [41]. Antagonism

between Hoechst dyes and among Hoechst dyes and other

components of the media may imply that there is existence of a

mediated transport mechanism involving Hoechst uptake. There-

fore, further experiments are required to determine whether or not

Hoechst dyes pass through the cell membrane by not only simple

diffusion, but also by mediated transport mechanisms. Our present

result suggests that the pharmacokinetic reason for the two

Hoechst dyes’ diverse biological effects on the cell is due to

differences in cell membrane transport of the two dyes into the

cell.

In the present study, our gene expression profiles in response to

the treatment of the two Hoechst dyes show differential global

gene expression profiles with unique gene expression signatures.

It is likely that upregulation of the transcription regulation genes

and downregulation of the nuclear structure and cell cycle genes

Figure 6. Real-time RT-PCR for microarray data validation. A, Four gene products of the real-time RT-PCR were visualized after separation on
an agarose gel. B, Comparing differences of PCR cycles of four genes.
doi:10.1371/journal.pone.0025822.g006
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are the signature of the H258-induced gene expression profile.

This signature discloses the molecular mechanisms behind

previous findings: inhibition of constitutive heterochromatin

condensation [50], prolongation of the G2 cycle [51], and

enhancement of transgene overexpression [25]. In contrast to the

H258 signature, it is likely downregulation of the genes involved

in transcription regulation is the H342-specific gene expression

signature. Consistent with H342-response gene expression

signature, H342-induced apoptosis is not related to de novo

synthesis of RNA and proteins [32], which is associated with

rapid degradation of multiple critical proteins such as replication

protein A [12], TATA box binding protein [10], fatty acid

synthase [43]. There are approximately 2600 proteins in the

human genome that contain DNA-binding domains, and most of

these are presumed to function as transcription factors [52].

Thus, only a paucity of transcription regulation genes (less than

7% of the total transcription regulation genes) are affected by

Hoechst dyes, indicating that Hoechst dyes are highly specific

DNA binders. Of the 10 enriched pathways for 148 H342-

downregulated genes of transcription regulation, 9 (except for the

vitamin D receptor) overlap with the pathways for H258-

upregulated genes of transcription regulation in enriched

pathway analysis of the signatures of these two dyes, demon-

strating their sharing similar primary targets. Since H342-

downregulated genes of transcription regulation involve some

critical pathways for cell survival and development such as Notch

and TGF-b, etc (Tables 2) H342 like other DNA minor groove

binders may be unnecessarily over-targeting many vital genes in

the cells, which results in extreme intolerance [14]. Therefore,

choosing some pathways targeted by H342 for pathway-targeted

cancer therapy may be a way to minimize cytotoxicity and

maximize therapeutic effectiveness of DNA minor groove

binders. It is worth mentioning that several expected targets,

such as helicase and topoisomerase I and II, are not detected by

microarray analysis, suggesting that helicase and topoisomerases

may not be the initial targets of Hoechst dyes. The gene

expression profile induced by camptothecin, a typical inhibitor of

topoisomerase I, is characterized by downregulated genes

involved in DNA metabolism and mitosis, and upregulated genes

related to DNA damage stimulus and cell cycle arrest [53]. These

differential gene expression profiles induced by camptothecin and

the two Hoechst dyes demonstrate that drug-induced gene

signatures may provide valuable information for drug reclassifi-

cation, efficacy prediction, and toxicity evaluation.

Materials and Methods

MPM cell lines and Reagents
Seven cell lines (H2373, H2452, H2596, H2461, H2591, H-

meso, and H2714) derived from patients with malignant plural

mesothelioma were cultured in RPMI 1640 (HyClone) supple-

mented with 100 units/ml of penicillin, 100 mg/ml streptomycin,

and 10% fetal calf serum (HyClone) [54], [55], [56]. Anti-PARP

antibody was purchased from Biomed. Anti-caspase-3 antibody

was purchased from Cell Signaling Technology and anti-actin

antibody was from Sigma. Antibodies against survivin, c-IAP1,

and c-IAP2 were from Santa Cruz Biotechnology, Inc. Anti-

cytochome c antibody was from BD Bioscience. Fluorogenic

caspase-3 specific substrate Ac-Asp-Glu-Val-Asp-AMC was from

EMD Chemicals.

Figure 7. H342 downregulates SNIP1-stimulated gene expression of c-Myc target genes that are associated with mitochondrial
function in H2373 MPM cells. A, Four gene products of the real-time RT-PCR were visualized after separation on an agarose gel. B, Comparing
differences of PCR cycles of four genes. C, Schematic diagram of H342-induced mitochondria dysfunction through SNIP1 and COX19. In untreated
H2373 MPM cells, C-terminus of nuclear protein SNIP1 interacts with the N-terminal c-Myc, resulting in enhanced transcriptional activation of c-Myc-
dependent genes [30]. In addition, COX19 participates in the biogenesis mitochondrial respiratory chain complexes [35]. H342 rapidly attenuates
gene expression of SNIP1 and consequently causes downregulation of c-Myc target genes such as TFAM, resulting in downregulation of gene
expression of mitochondria such as COX1 [34]. COX19 downregulation fail to organize cytochrome c oxidase. Overall, these alterations of gene
expression induced by H342 may lead to mitochondrial dysfunction, for good reason-H342-induced apoptosis is a mitochondria-mediated apoptosis.
doi:10.1371/journal.pone.0025822.g007
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MTT Assay
Determination of cell viability was studied using the MTT

assay. Cells were seeded in a 96-well culture plate and

subsequently treated with indicated agents for different times.

After treatment, the cells were incubated with 0.5 mg/ml MTT

reagent (Sigma) at 37uC for 3 h and then MTT medium was

removed and 100 mL of DMSO added, followed by colorimetric

analysis using a Victor3 Multilabel Plate Reader at 570 nm

(Perkin Elmer). Results were plotted as the mean from triplicate

experiments.

Figure 8. Comparison of gene expression signatures induced by H258 and H342. Heat map showing kinetics of changes in expression of
transcription regulation genes identified in H342- and H258-induced global gene expression profiles based on DAVID Bioinformatics Database gene
descriptions.148 H342-downregulated transcription regulation genes (left). Venn diagram (middle) illustrating 7 overlapped genes between H342-
downregulated and H258-upregulated genes of transcription regulation. 26 H258-upregulated transcription regulation genes (right).
doi:10.1371/journal.pone.0025822.g008

Table 2. Pathways in which 148 H342-downregulated genes of transcription regulation involved.

Pathways P-value # Genes (obsreved) # Genes (total)

NOTCH 7.72E-07 20 580

TGF BETA 6.34E-06 31 1408

RETINOBLASTOMA 1 1.98E-05 12 277

MOTHERS AGAINST DPP HOMOLOG 1.49E-04 19 758

WINGLESS TYPE 2.62E-03 19 954

PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA 2.73E-03 10 350

HISTONE DEACETYLASE 3.49E-03 8 247

TUMOR PROTEIN P53 3.95E-03 19 989

ARYL HYDROCARBON RECEPTOR 7.14E-03 6 168

VITAMIN D (1,25 DIHYDROXYVITAMIN D3) RECEPTOR 8.21E-03 5 123

doi:10.1371/journal.pone.0025822.t002
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Analysis of interaction between H342 and H258
Combination index (CI) method adapted for in vitro drug testing

was used to determine the nature of interaction between the two

agents as described previously [57]. CI was generated from MTT

data by CalcuSyn software (Biosoft). Based on CI values, the

extent of synergism/antagonism may be determined. In general,

CI,1 suggests synergy, whereas CI .1 indicates antagonism

between the drugs.

Morphology Studies and Hoechst 33342 Staining
The treated and untreated H2373 cells were washed twice in

PBS and fixed in PBS containing 1% paraformaldehyde. The

morphology of the cells was then studied and photographed with a

microscope.

Hoechst 33342 staining was used to observe the nuclear

morphology of the cells through fluorescence microscope using a

320 to 350 nm filter. Untreated and treated cells were rinsed with

PBS buffer and stained with Hoechst 33342 (final concentration,

18 mM) for 10 minutes. After staining with Hoechst 33342, the

morphological aspects of cell nuclei were observed with a

fluorescence microscope.

Caspase-3 activity assay
Intracellular caspase-3 activities in cell extracts were determined

by measuring the release of the AMC groups from a caspase-3

specific substrate Ac-Asp-Glu-Val-Asp-AMC. The treated and

untreated cells were harvested. Cell extracts were prepared using

RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1.0% IGEPAL

CA-630, 0.5% sodium deoxycholate, 0.1% SDS) with protease

inhibitor cocktail (Sigma). The cell extract (30 mg) was then

incubated in 100 ml of the reaction buffer (50 mM Tris–HCl,

pH 7.5) along with 40 mM of caspase-3 substrate in a 96-well

plate. The reaction mixture was incubated at room temperature

for 10 min and the hydrolyzed fluorescent AMC groups were

measured using a Victor 3 Multilabel Counter with an excitation

filter of 380 nm and an emission filter of 460 nm (Perkin Elmer).

Mitochondria isolation and cytochrome c release assays
Isolation of mitochondria and cytochrome c release assays were

performed by differential centrifugation as described previously

[58]. In brief, untreated and treated cells were homogenized in

HM buffer (10 mM HEPES, pH 7.4, 250 mM mannitol, 10 mM

KCl, 5 mM MgCl2, 1 mM EGTA) containing 1 mM phenyl-

methylsulfonyl fluoride and protease inhibitor cocktail (Sigma).

The homogenate was centrifuged twice at 1000 6 g for 5 min to

remove nuclei and debris, and the resulting supernatant was

centrifuged at 10,0006g for 10 min to sediment the low speed

fraction containing mitochondria. The mitochondria were washed

twice with the HM buffer and resuspended in RIPA buffer with

protease inhibitor cocktial (Sigma). The purity of cytosolic and

mitochondrial fractions is determined by flow cytometry when the

two fractions are stained by JC1, a specific mitochondrial indicator

(Figure S1) [33]. For detection of cytochrome c release,

cytochrome c concentrations in the cytosol and the mitochondria

were determined by immunoblotting with anti-cytochrome c

antibody (BD Pharmingen) as described below.

Measurement of apoptosis-associated proteins by
Immunoblotting

Proteins (30 mg) from either total cell lysates or cytosolic and

mitochondrial fractions of untreated and H342-treated H2373

cells were separated by 12% SDS-PAGE and then transferred

onto PVDF membranes. The membrane was incubated with

antibodies against the following proteins: PARP, c-IAP1, c-IAP2,

survivin, caspase 3, cytochrome c and b-actin. Secondary

antibodies conjugated with horseradish peroxidase were visualized

with enhanced-chemiluminescence substrates (Pierce).

RNA extraction
Total RNA from the untreated and treated H2373 mesotheli-

oma cells was extracted using RiboPureTM Kit (Ambion),

according to the manufacturer’s instruction manual.

Microarray Expression Profiling
Microarray expression profiling was performed by the Applied

Genomics Technology Center (Wayne State University). The

RNA was amplified into cRNA and biotinylated by in vitro

transcription using the IlluminaH TotalPrep RNA Amplification

Kit (Ambion) according to the manufacturer’s protocol. Biotiny-

lated cRNAs were purified, fragmented, and subsequently

hybridized to an Illumina Human-12 v4 Expression BeadChip

(Illumina). Microarray data have been submitted to the Gene

Expression Omnibus (GEO) database (accession no.GSE28616).

All data is MIAME compliant.

Global gene expression analysis and signal pathway
analysis

Functional interpretation of differentially expressed genes was

analyzed in the context of gene ontology using the DAVID

Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/).

The differentially expressed genes induced by two Hoechst dyes

were categorized, compared to genetic categories in the David

database, and ranked according to p-values [36]. Hierarchical

clusters of global gene expression profiles were analyzed by the

Mev version 4.5.1software and enriched pathways of gene

expression signatures were analyzed by Genomatix software.

Real-time RT-PCR for microarray data validation
To validate microarray data, 50 ng of total RNA was reverse

transcribed using MMLV reverse transcriptase enzyme (Promega)

in the presence of the RNase inhibitor RNAsin (2 units/ml)

(Promega). Real-time PCR amplification was performed with the

ABsolute QPCR SYBR Green Mix (Thermo Scientific) on a MJ

Research DNA Engine Opticon (MJ Research). The initial

denaturation step was at 95uC for 5 min, followed by 40 cycles

of amplification at 95uC for 30s, 60uC for 30s and 72uC for 30s.

PCR products were separated on a 2% agarose gel and stained

with ethidium bromide. The primers used in the real-time PCRs

are shown in additional file1: Table S1.

Statistical analysis
Statistical differences between treatment groups were measured

using a Student’s t-test. P-values ,0.05 were considered significant.

Supporting Information

Figure S1 Determination of the amounts of the mitochondria in

different fractions after fractionating the mitochondria from

cultured H2373 MPM cells. The mitochondria of H2373 cells

were extracted using the centrifuge-based method [58]. A,

Mitochondrial fraction without JC-1 staining (0.2% mitochondria

or UL+UR areas); B, Supernatant after first centrifuge (55.29%);

C, Cytosolic fraction (15%) after second centrifuge; D, Mitochon-

drial fraction (99.11%) after second centrifuge. Since protein

abundance is higher in the cytosolic fraction than that in the

mitochondrial fraction, the ratio of mitochondrial amounts
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between the two fractions is about 500-1000 times according to the

protein amount that you load for the SDS-PAGE gel.

(TIF)

Table S1 Primer sequences used for real-time RT-PCR in

microarray validation analysis.

(DOC)
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