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Abstract

Sensory-motor learning is commonly considered as a mapping process, whereby sensory information is transformed into the
motor commands that drive actions. However, this directional mapping, from inputs to outputs, is part of a loop; sensory
stimuli cause actions and vice versa. Here, we explore whether actions affect the understanding of the sensory input that they
cause. Using a visuo-motor task in humans, we demonstrate two types of learning-related behavioral effects. Stimulus-
dependent effects reflect stimulus-response learning, while action-dependent effects reflect a distinct learning component,
allowing the brain to predict the forthcoming sensory outcome of actions. Together, the stimulus-dependent and the action-
dependent learning components allow the brain to construct a complete internal representation of the sensory-motor loop.
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Introduction

Meaningful interactions with the environment are based on

sensory-motor learning. In order to turn a page in a journal, for

example, one should first learn how to translate relevant sensory

information (e.g., the location of the page) into the appropriate

action. As one gains statistical knowledge of the outcome of previous

actions (e.g., hand movement while gripping the page), one can also

learn to estimate how future actions would affect subsequent sensory

information (e.g., the next location of the page).

Current opinion holds that the brain utilizes internal models of

the relationship between the body and the world [1–8]. Inverse

models allow transforming of sensory inputs and desired goals into

motor commands (Figure 1, blue). Forward models act in the

opposite direction: they allow the brain to predict the sensory

outcome of actions (Figure 1, red).

A combination of inverse and forward models generates a loop

(Figure 1, bottom): sensory information causes actions, and these

actions subsequently affect sensory information. Traditionally,

however, experimental research on sensory-motor learning has

studied the loop from a single direction, investigating how subjects

change their motor response to a given stimulus (i.e., how the

sensory input leads to the motor output).

Here, we aimed to focus on the effects of motor actions on the

understanding of their sensory consequences. To that end, we re-

examined the classic ‘‘visuo-motor rotation’’ task, using a design

that allowed us to assess the individual contributions of this

learning component.

Results

During the experiment, subjects sat in front of a workstation

(Figure 2A) and grasped the handle of a lightweight robotic arm.

Sphere cursor and targets were projected onto a mirror, placed

horizontally above the subjects’ shoulders. The subjects controlled

the cursor by moving the robotic arm. They could not see their

hand or the robotic arm while performing the task.

The experiment consisted of three blocks, presented sequentially

in a single session (Figure 2B). During the first block, the subjects

were trained to move the cursor from a central position to a target

at one of eight locations. Targets were radially arrayed around the

center (45u apart) and were presented in a pseudorandom order.

The 3D effect was adjusted to display the location of the cursor at

the location of the hand in space.

In all 100 trials of the second block (‘‘learning block’’), the target

(‘‘learned target’’) was presented at a single location. For one

group of subjects (n = 11, Figure 3A) an angular deviation of 45u in

the clockwise direction was applied to the hand-cursor relation-

ship. Thus, in order to successfully reach the target, subjects

needed to make a hand movement (‘‘learned action’’) in a

direction that was 45u counterclockwise to the target. The

experiment was mirror-flipped for a second group of subjects

(n = 11, Figure 3B), where a counterclockwise deviation of 45u was

applied. Figs. 3C and 3D depict single subjects’ hand trajectories

in the first learning trial (dashed blue lines) and in the last twenty

trials (solid blue lines) of this block. The gray lines represent the

cursor trajectories in these trials. The subjects learned the new

rotation rule within approximately 20 trials, termed learning trials

(Figure 3E).

In the third block (‘‘test block’’), subjects continued to move to

the same learned target (presented with perturbation, as in the

second block) but in some interleaved trials they were also

presented with two other targets, counterclockwise (45u) and

clockwise (245u) to the learned target. To correctly reach these

targets, subjects needed to make direct movements to the target
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location, just as they did in the first block, when no rotation was

applied. For subjects who learned the clockwise perturbation, we

defined the target at 45u as ‘‘test target’’ and the target at 245u as

‘‘control target’’ (Figure 4A, red and green, respectively). The

definition of a target as a ‘‘test’’ or ‘‘control’’ was mirror-flipped for

subjects who learned the counterclockwise perturbation (Figure 4B).

This third block comprised 150 trials presented in a pseudorandom

order, with every 30 trials containing one test target, one control

target, and 28 learned targets. Note that the main difference

between the test and control targets is that the hand movement

required to reach the test target (Figure 4, A and B, red arrows) was

identical to the learned action (Figure 4, A and B, blue arrows).

Figs. 4C and 4D depicts subjects’ hand trajectories towards the

test and control targets, performed before learning (black lines)

and during the test block (red and green lines). In line with

previous studies [9–11], we found that subjects’ trajectories to the

control targets (green) were not statistically different (Figure 4E,

p = 0.12, n = 22) from those made in the first block, indicating little

or no generalization of the learned visuomotor rotation.

Surprisingly, subjects’ trajectories to the test targets (red), were

significantly different from those performed in the first block

(Figure 4E, mean angular difference of 11.3u61.4u, p,0.0001,

n = 22), suggesting generalization of the learned rotation in this

direction.

We next tested if the presentation of the test or control target

affected subjects’ performance on subsequent learning trials

(Figure 4F). Control targets did not significantly affect perfor-

mance of the learned action, as the angular errors in subsequent

learning trials were unaffected (Figure 4F, green, 0.89u61.7u
p = 0.36 and 21.0u61.5u p = 0.25, in the first and second

subsequent learning trials, respectively). Following a test target,

however, response to the learned target was changed significantly,

showing a transient increase of the error in the first and second

subsequent learning trials (Figure 4F, red, mean difference of

4.9u61.4u p,0.0001 and 2.9u61.7u p = 0.002, respectively).

Discussion

The results shown in Figure 4C–E, demonstrate the consid-

erable difference between subjects’ responses to the test and

control targets. Only hand trajectories to the test target were

affected by learning. What could be the source of this unexpected

discrepancy?

The effect of learning on movements to the test target was

assessed carefully, using three different controls: First, to ensure

that the effect is learning related, we compared the subjects’ hand

trajectories made before and after learning (Figure 4, C and D,

black vs. red trajectories). Second, to rule out that the effect is

related to the proximity of the test target to the learned target, we

Figure 1. Circular sensory-motor information flow enables two
types of learning. Mapping of sensations to actions (given the
current sensory input, how should I turn a page?) and mapping of
actions to sensations (given the current motor command to the hand,
what should I see?).
doi:10.1371/journal.pone.0026020.g001

Figure 2. The experimental design. (A) Side-view of the
experimental setup. Only one of the eight drawn targets appeared at
a time. (B) Possible target locations in the three blocks of the task.
doi:10.1371/journal.pone.0026020.g002
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compared between hand trajectories to the test target and an

equidistant control target (Figure 4, C and D, red and green

trajectories). Third, to exclude the possibility that the effect is a

result of spatial differences between the test and control targets, the

experiment was mirror-flipped for half of the subjects (Figure 4, A

and B), so that the test and control targets flipped their locations.

Thus, the targets differ only in that the required response to the

test target is very similar to the learned action (Figure 4, A and B,

red and blue arrows), as opposed to the required response to the

control target (Figure 4, A and B, green arrows).

The subjects were therefore not merely mapping the learned

target to a new action; rather, it is plausible that they were

employing a form action-dependent learning. Namely, in the

second block, subjects saw that their ‘‘learned action’’ resulted in

deviated motion of the cursor, towards the learned target. In the

third block, when subjects saw a target that required movement in

the same direction as the learned action, it is likely that they implicitly

predicted that this hand movement would result in cursor motion

to the learned target and not the test target. Thus, subjects made

initial errors in trajectory to the test target. When the test target

was counterclockwise to the learned target, hand movements were

biased counterclockwise (Figure 4C), and when the test target was

clockwise to the learned target, hand movements were biased

clockwise (Figure 4D). The resultant generalization pattern is

asymmetric about the learned target.

Previous observations of generalization following learning of

visuomotor rotation [1,9,10], including one from our laboratory

[11], did not consider the effects of action-dependent learning. In

these studies, the generalization of visuomotor adaptation across

directions was assumed to be symmetrical about the learned target.

Here we observed a specific adaptation effect in the direction of

the learned action, indicating that the pattern of the generalization

function is asymmetrical about the learned target (Fig. 5).

We also observed that subjects’ responses to control and test

targets differentially affected the trajectories of subsequent

responses to the learned targets: test trials increased the error in

subsequent learning trials while control trials did not (Figure 4F).

This result, which suggests an action-dependent effect of

interference to learning at the level of a single trial, further

supports the involvement of an action-dependent learning

component. Taken together, our main findings suggest that

action-dependent effects can be observed in two aspects of

learning: generalization and interference.

It is important to note that this study does not discriminate

between the effects of actions per-se and their resultant sensations

(e.g. proprioception) and/or reinforcements on adaptation. In this

sense, we use the term ‘‘action-dependent learning’’ broadly.

The described action-dependent effects were isolated by testing

a ‘‘chimeric’’ stimulus-action pair wherein the action (the learned

action) was involved in learning, but the stimulus (the test target)

was not. Based on our conceptual dissociation between action-

dependent and stimulus-dependent learning components, the two

were separated empirically. Our results are supported by two

recent studies [12,13] showing that repetition-induced movement

biases occur simultaneously with error-based learning effects.

To conclude, this study dissociated sensory-motor learning into

stimulus-dependent components (Figure 3E and Figure S1) and

action-dependent components (Figure 4). In the context of the

sensory-motor loop [2,4], it is tempting to infer that stimulus-

dependent effects reflect learning of the mapping of sensory inputs

to motor outputs (How should I respond to this sensory stimulus?),

while action-dependent effects reflect learning to map motor

outputs to predicted sensory inputs (What happens when I execute

this action?). Together, the stimulus-dependent and the action-

dependent learning components enable a complete internal

representation of the sensory-motor loop. It is possible that the

two learning components originate from the same or different

neural mechanisms; future physiological experiments may be

instrumental for shedding light on this issue.

The ability to gain knowledge of the motor output is necessary

to estimate the future state of the body in relation to the external

world. Our findings support the notion that the brain predicts the

sensory consequences of actions. The advantage of adaptivity of

the sensory predictor is not necessarily specific to motor control.

Recent studies have suggested that forward estimations occur in

several brain areas, including the cerebellum [14,15], the posterior

parietal cortex [16], the vestibular system [17] and even the retina

[18]. The generation of sensory predictions and the ability to

modify them, in a changing but statistically predictable environ-

ment, appear to be a fundamental function of the nervous system.

Figure 3. Block 2–The visuomotor rotation task. (A–B) In each
learning trial, the subjects were required to perform hand movement in
the direction of the learned action (blue arrows) in order to move a
cursor (gray arrows) towards the learned target. The angular deviation
of the cursor relative to the hand was 45u, either clockwise (A, 11
subjects) or counterclockwise (B, 11 subjects). Only one target location
was used in all learning trials. (C–D) Trajectories of two subjects
(exposed to either clockwise (C) or counterclockwise (D) rotation) in the
first learning trial (dashed lines) and in trials 81–100 (solid lines). Orange
dots represent the hand position 250 ms after movement onset. (E)
Mean angular error (6 SEM, N = 22 subjects) in the first 100 learning
trials. Abbreviations: LT- learned target; LA- learned action.
doi:10.1371/journal.pone.0026020.g003
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Materials and Methods

1. Ethics Statement
The experimental procedures were approved by the Hebrew

University institutional review board. All subjects gave informed

written consent prior to the experiment.

2. Subjects
Twenty two subjects (aged 20–27, 11 males 11 females) were paid

to participate in the study. All subjects had normal or corrected to

normal vision, were reported right-handed, had no reported

neurological history, and considered as naı̈ve subjects. Subjects

were told that their payment depends on their performance level.

3. Behavioral task
Subjects were seated in a dark room and were asked to use their

right hand in order to make reaching movements, using a

lightweight robotic arm along a horizontal plane created by force

boundaries (Phantom Haptic Interface, SensAble Devices, Cam-

bridge, MA). A monitor projected a three-dimensional image of a

cursor, which subjects controlled by moving the robotic arm, and a

three-dimensional target through a mirror. Subjects positioned

Figure 4. Block 3-Action-dependent learning. (A–B) Target locations (circles) and required hand movement directions (arrows) during the test
block, for subjects who were exposed to clockwise rotation (A, 11 subjects) and counterclockwise rotation (B, 11 subjects). Note that the learned
target and the test target required the same action (the learned action). (C–D) Single subjects’ trajectories towards the test and the control targets
during the test block (red and green, respectively), compared to trajectories towards these targets before learning (black). Orange dots represent the
hand position 250 ms after movement onset. (E) Mean angular errors (6 SEM, N = 22 subjects) in movements to the test (red) and control (green)
targets during the test block. (F) Mean angular deviation (6 SEM, N = 22 subjects) of hand movements in learning trials, before and after responses to
the test target (red) and the control target (green). The errors are normalized to show the relative deviation from the preceding learning trial (trial
number 21 on the x-axis).
doi:10.1371/journal.pone.0026020.g004
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their head in front of the mirror and held the robotic arm. They

could not see their arms or hands, but they were provided with the

visual feedback of cursor position, which corresponded to their

hand position. The positions of the cursor and of the robotic arm

were sampled at 100 Hz by the device encoders and stored for off

line analysis.

4. Trial flow
Subjects had to move a cursor with a 7.0 mm radius into a

sphere with a 9.0 mm radius which appeared in the middle of the

screen (‘center’). The subjects needed to keep the cursor inside the

sphere until another sphere (the ‘target’), with a 10.0 mm radius,

appeared, and the center disappeared. The subjects then had to

move the cursor to the target within 900 ms. This relatively long

interval allowed a limited but comfortable range of response time

and movement time. Yet, subjects were instructed to perform fast

and accurate movements. When the hand reached the target, the

target changed its color. The cursor had to stay in the target for

300 ms, to consider the trial ‘‘successful’’. A brief sound informed

the subject of a success. A failure resulted in a different sound,

which informed subjects that the trial was aborted. An inter-trial

interval of 1.4 seconds separated the trials. All subjects read the

instructions before the session has started and were tested verbally

to confirm that the instructions were understood.

5. Trial types and session flow
There were three blocks of trials: pre-learning block, learning

block and test block. The pre-learning block consisted of 144 standard

trials. In each standard trial, the subjects had to move the cursor

from the center to a target that appeared at one of eight locations (18

trials at each location). Targets were radially arrayed at a distance of

70.7 mm from the center, and were 45u apart (at 0u-rightward, 45u,

90u-forward, 135u, 180u-leftward, 225u, 270u-backward, and 315u,
relative to the center).

The learning block consisted of 100 learning trials. The target in a

learning trial (called the learned target) appeared always at the 90u
location (forward to the center). In a learning trial, the relationship

between hand movement and cursor movement was transformed;

the location of the cursor was rotated 45u clockwise (group CW, 11

subjects) or 45u counter-clockwise (group CCW, 11 subjects)

around the center, relative to the location of the hand. Therefore,

in order to move the cursor to the learned target, the subjects had to

make a hand movement at an angle of 45u from a direct path to

the learned target: to the 135u location in group CW (Figure 3A) and

to the 45u location in group CCW (Figure 3B). We called the

required movement the learned action.

The test block immediately followed the learning block and

consisted of 5 mini-blocks of 30 trials. Each mini-block contained

28 learning trials, 1 test trial and 1 control trial (Figure 4A and

Figure 4B, for group CW and group CCW, respectively). The test

and the control trials were standard trials with targets at the 45u and

the 135u locations. The stimulus in a test trial (the test target) was

located 45u away from the learned target, in the direction of the

learned action (at the 135u location in group CW and at the 45u
location in group CCW). The stimulus in a control trial (the control

target) was also 45u away from the learned target (at the 45u location in

the CW group and at the 135u location in the CCW group) but

was not located in the direction of the learned action.

After the session, the all subjects were presented with a post-

learning block, which was similar to the pre-learning block and

consisted of 96 standard trials (12 trials at each of 8 locations). The

visuomotor rotation was completely removed so that the learning

could be ‘‘washed out’’ and after-effects on movements to the

learned target could be measured (Figure S1).

Figure 5. Alternative patterns of the generalization function. Stimulus-generalization is the transfer or ‘‘spreading’’ of a conditioned response
to new stimuli. The extent of stimulus-generalization depends on proximity to the learned stimulus [1,19–24]. For example, a pigeon that learned to
peck as a response to a yellow stimulus (580 nm), will also peck, to some extent, as a response to yellowish stimuli (570 or 590 nm) but will not
change its response to other colors. Generalization effects of visuomotor learning are commonly assessed by measuring after-effects in responses to
stimuli that did not appear during learning [10,11]. Previous studies on human subjects have found little or no generalization for stimuli located 45u
or more away from the learned stimulus (this was termed ‘‘limited generalization’’ [10,25]). Stimulus-generalization is assumed to be symmetrical
about the learned stimulus [9]. Our results indicate that the pattern of the generalization function in visuomotor rotation learning is not symmetric
about the learned stimulus. Movements to a target in the direction of the learned action were affected by learning, while movements to a target that
was located at the same angular distance from the learned target were not affected. The generalization could still be symmetric (A), about a different
direction, between the directions of the learned target and the learned action. However, it seems unlikely that the effect of visuomotor rotation
learning would not be maximal in the direction of the learned target. Alternatively, the generalization function could be bimodal (B), with a peak in
the direction of the learned target and a peak in the direction of the learned action. A third option is that the generalization function is unimodal,
with relatively moderate slope in the directions between the learned target and the learned action (C). An experimental support for each of the last
two options could be task-dependent: the whole range of hand movement directions (between the direction of the learned target and the direction
of the learned action) is experienced during learning (Fig. 3E), with some directions experienced more than others. The visuomotor rotation task
might therefore not be sensitive enough to examine the exact pattern of the generalization function. It should be emphasized that whether the
generalization function is unimodal or not, whether it is symmetric or not, it depends not only in the spatial properties of the visual input, but also in
the spatial properties of the motor output. Abbreviations: LA–learned action; LT–learned target.
doi:10.1371/journal.pone.0026020.g005
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Trials in the pre-learning block, in each mini-block of the test

block and in the post-learning block were ordered pseudoran-

domly. The test target appeared before the control target in 53.6%

of the mini-blocks. During the session, two breaks of 24 seconds

enabled the subject to rest.

6. Data analysis
In each trial, the hand’s direction was computed as the direction

of the vector that connects the hand’s position at movement onset

to the hand’s position 250 ms after movement onset.

Angular error in learning trials (Figure 3E) was calculated as the

angular difference between the hand direction and the direction of

the test target (the learned action).

The mean hand direction towards the test and control targets

during the pre-learning block (computed for each subject

separately) was used as a baseline to check learning-related

changes in the third block. Thus, zero error in Figure 4E means

that the hand direction in the third block was not changed,

compared to the first block. There was no significant difference

between the mean hand directions at the beginning and at the end

of the pre-learning block.

In the pre-learning block, standard trials with a deviation of

more than 20u (,3 standard deviations of the mean hand direction

made towards the test and control targets) between the hand’s

direction and the direction of the target were excluded. ‘‘Post-pre’’

comparisons of hand directions (Figure 4) also excluded angular

differences of more than 20u. A more permissive criterion of

excluding errors only when they were larger than 45u yielded

similar results. Yet, the criterion of 20u was selected in order to

restrict the analysis to trials in which we have a better estimate that

the subject is more attentive and collaborating.

To check for the effect of test and control trials on learning trials

(Figure 4F), we compared the hand trajectories in learning trials

that appeared before and after each test or control trial, using the

following normalization:

Norm_Err(n) = Err(n) 2 Err(21), where Norm_Err is the

normalized angular error (shown in Figure 4F) and Err(n) is the

measured angular error (as calculated in Figure 3E) at trial n,

before (n,0) or after (n.0) the test/control trial. For example, if

before a specific test/control trial the hand direction was 10

degrees away from the direction of the learned action

(Err(21) = 10), and in the trial that followed the same test/control

trial the error was 15 degrees (Err(+1) = 15), then the normalized

error for this one learning trial (Norm_Err(+1)) is +5 degrees (5

degrees larger than the error in the previous learning trial).

Positive values of the normalized error mean larger error, and

negative values–smaller error.

After-effects (Figure S1) were measured as the angular deviation

of the hand’s direction in the post-learning block, compared to the

mean hand’s direction in the pre-learning block.

Results are presented as means 6 SEM. Paired Student’s t-test

was used to check for significance. Differences were considered

significant if p,0.01.

Supporting Information

Figure S1 After-effects in movements to the learned
target.
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