Skip to main content
. Author manuscript; available in PMC: 2012 Sep 1.
Published in final edited form as: Neuroimage. 2011 Jun 6;58(1):198–212. doi: 10.1016/j.neuroimage.2011.05.077

Table 1. Parameters defining the standard physiology.

Values without a marker are assumed. Values marked with are calculated using the assumed values and the detailed model.

Variable Standard value
(range tested)
Description
TE 32 ms (20-40 ms) Echo time
V I,0 0.05 (0.01-0.15) Total blood volume fraction at baseline (Roland et al., 1987)
ω a 0.2 (0-0.4) Arterial fraction of baseline total blood volume (Weber et al., 2008)
ω c 0.4 (0.6-0.2) Capillary fraction of baseline total blood volume (Weber et al., 2008)
ω v 0.4 (0.2-0.6) Venous fraction of baseline total blood volume (Weber et al., 2008)
φ 0.38 (0.3-0.65) Grubb’s constant relating CBF to total CBV (Grubb et al., 1974)
φ c 0.1 (0-0.33) Exponent relating CBF to capillary CBV (Stefanovic et al., 2008)
φ v 0.2 (0-0.65) Exponent relating CBF to venous CBV (Chen and Pike, 2009a)
Va(t) 0.016 Arterial blood volume with activation (Section 3.1)
Vc(t) 0.021 Capillary blood volume with activation from Grubb relation and φc
Vv(t) 0.022 Venous blood volume with activation from Grubb relation and φc
OEF0 0.4 (0.25-0.65) Resting oxygen extraction fraction (Marchal et al., 1992)
κ 0.4 Fraction of capillary blood considered to be “arterial” (Tsai et al., 2003)
SAO2 0.98 Arterial oxygen saturation (Schutz, 2001)
SCO2 0.74 Capillary oxygen saturation at baseline (Eqn. A8)
SVO2 0.59 Venous oxygen saturation at baseline (Eqn. A6 and A7)
Hct 0.44 (0.25-0.65) Resting hematocrit of arteries and vein (Gustard et al., 2003)
Hctc 0.33 (0.19-0.49) Resting hematocrit of capillaries calculated from Hct (Sakai et al., 1985)
A* 21.2 s−1 Constant term in quadratic dependence of intravascular R2 on Hct for arteries and vein (Zhao et al., 2007)
AC 19.7 s−1 Constant term in quadratic dependence of intravascular R2 on Hct for
capillaries (Zhao et al., 2007)
C* 174.7 s−1 Quadratic term in quadratic dependence of intravascular R2 on Hct for
arteries and vein (Zhao et al., 2007)
CC 142.7 s−1 Quadratic term in quadratic dependence of intravascular R2 on Hct for
capillaries (Zhao et al., 2007)
R2A(0) 21.3 s−1 Resting arterial rate of signal decay (Eqn. A5) (Zhao et al., 2007)
R2C(0) 28.9 s−1 Resting capillary rate of signal decay (Eqn. A5) (Zhao et al., 2007)
R2V(0) 50.9 s−1 Resting venous rate of signal decay (Eqn. A5) (Zhao et al., 2007)
R2E(0) 25.1 s−1 Resting extravascular rate of signal decay (Perthen et al., 2008)
ΔR2A 0 s−1 Change in arterial signal decay rate with activation (Eqn. A9)
ΔR2C −3.1 s−1 Change in capillary signal decay rate with activation (Eqn. A9)
ΔR2V −10.2 s−1 Change in venous signal decay rate with activation (Eqn. A9)
ΔR2E −0.4 s−1 Change in extravascular signal decay rate (Eqn. A10: (Ogawa et al., 1993)
λ 1.15 (0.9-1.3) Intravascular to extravascular spin density ratio determined experimentally
ε a 1.30 Ratio of baseline intravascular arterial to extravascular signal (Eqn. A2)
ε c 1.02 Ratio of baseline intravascular capillary to extravascular signal (Eqn. A2)
ε v 0.50 Ratio of baseline intravascular venous to extravascular signal (Eqn. A2)
γ 2.68 × 108 Gyromagnetic ratio of protons
Δ χ 2.64 × 10-7 Susceptibility of fully deoxygenated blood (Spees et al., 2001)
B0 3 T Magnetic field strength
SO2,off 0.95 Blood saturation for equal tissue-blood susceptibility (Spees et al., 2001)

denotes calculated parameters at n=2.5 (δCBF=50%, δCMRO2=20%)