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Abstract
Molecular dynamics based free energy calculations allow the determination of a variety of
thermodynamic quantities from computer simulations of small molecules. Thermodynamic
integration (TI) calculations can suffer from instabilities during the creation or annihilation of
particles. This ‘singularity’ problem can be addressed with soft-core potential functions which
keep pairwise interaction energies finite for all configurations and provide smooth free energy
curves. “One-step” transformations, in which electrostatic and van der Waals forces are
simultaneously modified, can be simpler and less expensive than “two-step” transformations in
which these properties are changed in separate calculations. Here we study solvation free energies
for molecules of different hydrophobicity using both models. We provide recommended values for
the two parameters αLJ and βC controlling the behaviour of the soft-core Lennard-Jones and
Coulomb potentials and compare one-step and two-step transformations with regard to their
suitability for numerical integration. For many types of transformations, the one-step procedure
offers a convenient and accurate approach to free energy estimates.

1 Introduction
Free energy calculations aim at the rigorous computation of thermodynamic properties of
molecules via the methods of statistical thermodynamics. The thermodynamic integration
(TI) formalism is widely applied to compute free energy changes between chemical systems.
Molecular mechanics forcefields play an important role in TI free energy calculations due to
their ability to provide Boltzman-weighted conformational ensembles from molecular
dynamics (MD) simulations. Their ability to provide macroscopic data from atomistic
simulations makes them excellent tools to connect experimental data to molecular models. A
multitude of applications exists and the technique has been extensively reviewed.1–7

The focus of this work is on the performance of single-step vs. multi-step transformation
methods, as described below in more detail. Single-step transformation approaches have
been studied before8–10, but the effects of different soft-core potential parameter settings
have not been investigated comprehensively. Also, important sampling issues which single-
step transformations may encounter have not been discussed in detail. In this work, we will
investigate what values of the scaling parameters αLJ, βC and the order parameter m (see
equations 3 and 5 below) result in the smoothest free energy curves for optimal numerical
integration of five test compounds selected from lipophilic, polar and ionic species.
Additionally, we will compare the performance of one-step transformations, i.e. those using
soft-core potentials for electrostatics as well as for van der Waals interactions, with two-step
transformations consisting of separate transformation steps with linearly scaled electrostatics
and soft-core van der Waals potential functions, respectively.
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2 Theory
The general principle is straightforwardly derived from elementary statistical
thermodynamics and gives the free energy difference between two states described by two
potential functions V0 and V1 as 11:

(1)

The two potential functions are coupled via a non-physical coordinate λ so that the coupled
function V (λ) equals the initial state function V0 for λ = 0 and the end state function V1 for λ
= 1. The angular brackets indicate a Boltzmann-weighted ensemble average taken at a given
value of λ. Since nearly arbitrary transformations can be simulated, changing the number
and types of atoms in the system, TI calculations are sometimes refered to as computational
alchemy. TI calculations are normally included in thermodynamic cycles so that they can be
compared to experimental values. In a typical application, the free energy cost of
transforming a molecule A into B would be computed both in solution and bound to a
receptor. The difference in the TI results would then equal the difference in the two
molecule’s receptor binding strengths.

The integration in Equation 1 usually cannot be solved analytically. In practice, simulations
are performed at various fixed values of λ and numerical integration techniques are used. In
this work, numerical integration was performed by using the trapezoidal rule, i.e. linear
interpolation. It is therefore desirable that the free energy curve constructed from the 〈∂V(λ)/
∂λ〉-values should be as smooth as possible to limit errors in the numerical integration. In the
special case of TI calculations concerned with introducing or removing van der Waals
centers to or from the system, an endpoint singularity effect can occur in which the value of
〈∂V(λ)/∂λ〉 diverges for λ close to zero or one respectively12,13. The divergence can be
traced back to the shape of the repulsive part of the van der Waals forces, the r−12 term in
the Lennard-Jones (LJ) equation.13 The divergence is weak enough to render the total
integral finite, but the singularity effect is still a problem for the subsequent integration.
Several schemes have been developed to address this, among them non-linear mixing
functions to construct V(λ)13–19, slow-growth methods20 or analytical fitting schemes21,22.

A widely used solution is the introduction of separation-shifted scaling, or soft-core,
potentials which generally use a modified LJ equation of the form:

(2)

in which εi j and σi j are the common LJ equation parameters, ri j the interatomic distance,
αLJ a parameter that adjusts the softness of the potential and t, s and n parameters that were
set to 1,2 and 6 in the original formulation of the potential function19. For the soft-core
potential suggested by Beutler et al., a value of 0.5 for αLJ was found to yield the smoothest
curve shapes, but this has not been extensively tested for other values of t, s and n.

Introducing the soft-core potential for van der Waals interactions requires an additional
decision about the treatment of electrostatic interactions because at low λ-values the
repulsive force in Equation 2 is weakened sufficiently to allow oppositely charged particles
to come too close to each other, leading to numerical instabilities in simulations. This can be
prevented by (a) introducing or removing only LJ-particles of zero partial charge and
computing the free energy cost of the addition or removal of their electrostatic interactions
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in a separate step (the two-step approach) or (b) also subjecting electrostatic interactions to a
λ-dependent soft-core Coulomb potential similar to Equation 2 (the one-step approach). The
former approach adds the need to conduct additional simulations and therefore adds to the
necessary computation time and human workload for data evaluation. The latter approach
may introduce sampling problems because of the unusual shape the pair interaction potential
function takes for intermediate λ-values (see Figure 1, further details are discussed in
Results).

A λ-dependent soft-core Coulomb potential can be designed by comparison to the functional
form of the soft-core LJ potential. The Amber molecular modelling suite uses 1, 1 and 6 for
t, s, and n of Equation 2.17 We will keep the t and s values unchanged in the following. This
gives:

(3)

where

(4)

Equation 3 contains two important parts. First, the prefactor (1 − λ ) flattens the potential as
λ approaches one. Second, the introduction of the modified LJ potential (VvdW (f(ri j)))
ensures that as ri j approaches zero, the transformed distance (f(ri j)) converges to a constant
value of (αLJλ)1/n σ. A soft-core Coulomb potential can be designed in a similar manner:

(5)

(6)

where

(7)

qi and qj are the atomic partial charges. m is an order parameter comparable to n. βC is a new
parameter, the analog of αLJσn of Equation 3. This equation is not new but few combinations
of the parameters have been tested intensively. Previous accounts have used m = 29,10 and m
= 6.8

We will now consider appropriate ranges for these parameters. A potential energy curve of
two atoms, plotted as a function of ri j, has a minimum if the atoms have no or opposite
charges and no minimum if they are equally charged. The shape of the potential energy
curve will vary as λ changes during the course of a TI calculation. The formation of a second
minimum in the curve at a certain λ is not desirable, as it may lead to sampling problems.
However, a second minimum may form for an oppositely charged atom-pair. In order to
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have only one or zero minima, f(ri j) should not be larger than g(ri j) at any ri j. Otherwise the

repulsive term,  in VvdW(ri j) may be weakened too much to still prevent numerical
instabilities. To keep f(ri j) ≤ g(ri j),

(8)

because f (0) ≤ g(0). Secondly, n and m should be equal. If n > m, f (ri j) > g(ri j) as r → ∞.
If n < m, f(ri j) > g(ri j) occurs when r roughly equals σ or greater. Therefore, potential curves
with single or zero minima only are always guaranteed under the following conditions:

(9)

3 Computational methods
All calculations described were performed using version 10 of the Amber molecular
modelling suite25 with additional modifications to implement optional soft-core potential
treatments of electrostatic interactions as described above.

The test molecules were parametrized according to the general amber force field (gaff)26 and
atomic partial charges were derived according to the RESP procedure27. Molecules were
embedded in a box of preequilibrated water molecules so that no solute atom was closer than
12 Å to the box edges. The improved version of the TIP4P water model for simulations
using an Ewald type long range electrostatics treatment was used28,29. All simulations were
conducted using a 2 fs timestep while constraining bonds to hydrogen atoms via the SHAKE
algorithm30. A Langevin thermostat31 was employed to constrain the system temperature to
298 K and a pressure of 1 atm was controlled by a Berendsen coupling algorithm32. The
nonbonded cutoff distance was 9 Å. The Amber molecular modelling suite uses a soft-core
potential function of Equation 3 with n = 6 for disappearing van der Waals particles17 and
Equation 5 with m =2 or 6 for electrostatic interactions. Corresponding forms for appearing
atoms are obtained by replacing λ with (1 − λ ) and vice versa. In the particle-mesh Ewald
treatment of electrostatics, soft-core potentials are used only for the direct sum part, since
only short range interactions give rise to the ‘singularity’ problem. The reciprocal
contribution to electrostatic interactions is scaled linearly with λ. Similarly, in regular MD
simulations van der Waals interactions are evaluated according to the LJ equation up to the
same cutoff distance and long-range dispersion interactions beyond this cutoff are treated by
an analytical isotropic long-range correction. In TI calculations, the former term makes use
of the soft-core potential while the latter, which does not contribute any forces due to its
isotropic nature, is linearly scaled.

4 Results
The computation of free energies of solvation was selected to test the accuracy of different
TI parametrisations. Five test molecules were selected for simulations: cyclohexane, a
chloride ion, ethanol, a magnesium ion and water, to cover examples of nonpolar, polar and
charged species. Free energies of solvation were computed by simulating the removal of the
molecule from a water filled simulation box. For onestep transformations, a single
transformation was studied in which the initial state corresponded to the solvated molecule
and the end state to a box of pure water (keeping the number of solvent molecules
unchanged). The connection between this fixed-charge free energy change and experimental
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solvation free energies has been discussed elsewhere.28,29,33 For two-step transformations,
the molecule first had its atomic partial charges reduced to zero by a linear scaling TI
calculation, followed by removing the van der Waals interactions from the now chargeless
molecule in a subsequent TI calculation using a soft-core Lennard-Jones potential.

4.1 Optimal value for the parameter αLJ in two-step transformations
To test if the value of 0.5 for αLJ suggested in Ref. 19 is suitable for a soft-core van der
Waals potential of the form given in Equation 3 with n = 6, we computed the second (vdW)
step contribution to the solvation free energy for the five test molecules, i.e. for the removal
of the van der Waals interaction of the chargeless molecule with the solvent, while varying
αLJ from 0.3 to 0.7. The calculations were conducted using 99 evenly spaced λ-windows (λ
=0.01, 0.02, …, 0.99). Each window was subjected to a 1000 step steepest descent
minimization to remove bad initial contacts and a 50 ps NPT heating run in which the
system temperature was raised to 298 K with a target pressure of 1 bar. Equilibration was
followed by a 100 ps NPT simulation for data collection. While the value of αLJ used
markedly affected the shape of the free energy curves obtained (Figure 2), all simulations
yielded comparable free energy estimates (Table 1).

The effect of sampling fluctuations on a free energy calculation can be estimated from the
standard error of the mean for the free energy:

(10)

where σi is the standard error of the mean for the ∂V/∂λ-values of the i-th window. The
standard error (SEM) for each window can be estimated as:

(11)

where σ∂V/∂λ is the standard deviation, τ is the autocorrelation time of ∂V/∂λ and tsim is the
total length of the simulation.34 Values for τ are typically in the range of 1 ps, but may
depend on λ. See the Supplementary Information for details and a plot of τ vs. λ. Equation 10
does not take into account errors arising from the numerical integration step. For widely-
spaced windows, errors in the numerical integration scheme may contribute to the overall
uncertainty in the result. This difficulty in directly assigning uncertainties is a drawback of
TI methods, but minimizing the estimated error from Equation 10, (or the curvature, which
we discuss next) is still a useful goal for generating good soft-core potentials. The error
estimate drops as the number of TI windows increases, both by decreasing errors in
numerical integration and because errors in estimating the mean for each window should be
uncorrelated and tend to cancel.

As an alternative measure of the smoothness of a free energy curve, we introduce the finite
difference curvature value C:

(12)

where N is the number of TI simulation windows and 〈∂V/∂λ〉i is the Boltzman weighted
average of the mixed potential function derivative for simulation window i. An alternative
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formulation for non-evenly spaced λ-windows, requiring the second λ-derivative of V,
would be:

(13)

A smaller value for C suggests a corresponding smaller error from numerical integration.
(Due to the noise of the free energy curves, we did not use the raw 〈∂V/∂λ〉-data to calculate
the curvature. The curve was smoothened by 10th order B-spline and an even-spaced 100
points were collected along the new curve to calculate C.).

Generally, an optimal αLJ should yield a smooth free energy curve, a low error estimate and
a small curvature. From Table 1, we see that e.g. for cyclohexane, errors get smaller with
bigger values of αLJ up to a value of about 0.5. We have chosen αLJ = 0.5 for cyclohexane,
αLJ = 0.4 for the chloride ion, αLJ = 0.5 for ethanol, αLJ = 0.6 for the magnesium ion, and
αLJ = 0.4 for a water molecule as a best compromise value for each compound, but
differences for αLJ in the range between 0.4 and 0.6 are small and differences in σSEM are
probably not significant enough to unambigously indicate an optimal value in each case.

We conclude that the value of 0.5 for αLJ, which was used in e.g. Refs. 17 or 35,36 yields
acceptable results for the Amber implementation of soft-core LJ potentials, but small
deviations from that number represent a slight improvement in terms of estimated error of
free energy for some of the test molecules. Values outside the range 0.4 to 0.6 appear to be
less suitable since they tend to increase the curvatures and estimated errors.

4.2 Effect of the parameters αLJ, βC and m in one-step transformations
We now explore the effect different choices for the two softness parameters in one-step TI
transformations of the five test molecules have. For m = 2 in Equation 5, higher (softer)
values for αLJ require correspondingly higher values for βC, otherwise the electrostatic
attraction of oppositely charged atoms can overcome the weakened van der Waals repulsion
at some short distances ri j, i.e. violating the condition of Equation 8. This would correspond
to forming a second minimum in the potential energy curve of oppositely charge atoms,
separated from the first minimum by a high energy barrier. While this has to occur at some λ
with m = 2, the energy barrier can be lowered by assigning high values on βc. On the other
hand, higher values for βC lead to large changes of 〈∂V/∂λ〉 at low λ-values because the
separation factor, λβC added to the interatomic distance in Equation 5 will change faster with
λ. This is equivalent to a quicker decoupling of the electrostatic interactions, causing the
corresponding free energy change to occur early in the transformation. This makes the free
energy from the change in electrostatic interactions heavily dependent on data from the first
λ-windows in case of disappearing atoms, which is undesirable in terms of optimal sampling
and would prevent simulations to be conducted with fewer, wider spaced λ-windows. When
m = 6 in Equation 5, an additional minimum does not form as far as Equation 9 is satisfied.
Accordingly, the lower limit of βC is roughly bounded by αLJσ 6 in this case.

Since βC has units of m-th order of distance, we will use the more intuitive , which is a

distance. Free energy calculations were conducted varying αLJ from 0.2 to 0.5 and  from
1.5 to 5 Å to find the parameter setting resulting in the smoothest free energy curves and
lowest errors for the same five test molecules used above. Free energies were evaluated with
99 TI windows (λ =0.01, 0.02, …, 0.99). Each window was minimized by 1000 steps of
steepest descent method and was relaxed further by undergoing 50 ps NTP MD simulations.
∂V/∂λ was collected from the following 100 ps of NTP MD simulations. From the
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simulations, solvation free energies, C-values and error estimates were calculated. Optimal

values for αLJ and  would be found from simulations with low errors and C-values. The
full data set is provided in the Supplementary Information.

The calculated solvation free energy of the nonpolar test molecule cyclohexane was not

much affected by  and the calculated free energy by the one-step transformation agreed
well to that of the two-step transformation (compare with Table 2).

For ethanol the calculated solvation free energy deviated substantially from the result of the

two-step calculation with parameters αLJ =0.4 or 0.5,  and m = 2. We believe that
these deviations were caused by the second minimum in the potential energy curve. At λ ≈
0.2 the second minimum can be observed near zero distance in potential energy reference
curves (right-hand side of Figure 3a). A high energy barrier between the two minima

prevents efficient sampling. An improved combination of parameters (with a higher )
resolves this problem (left-hand side of Figure 3a).

The calculated solvation free energy of the highly charged magnesium ion was strongly

affected by small  - and large αLJ-values, but for  larger than 3.0 Å, the results
converged to the corresponding value in Table 2. When m = 2, the potential energy curve
between the magnesium ion and the oxygen atom of water has a second minimum at a
certain range of λ (curves are not shown). The depth of the second minimum becomes

deeper as  decreases and this may cause the deviation of the computed ΔG. Which one
of the minima is sampled depends on the initial geometry of the system. Generally it is
expected that the minimum near ri j = 0 is less likely to be sampled unless the magnesium
ion and a water molecule are almost in contact at the beginning of the simulation. Therefore,

for m = 2,  needs to be set to above a certain lower limit which is affected by αLJ. The

result show that αLJ = 0.2 is optimal and the lower limit for  was about 3.0 Å in this

case. However, for m = 6, an even smaller  could be used.

This second minimum should not occur with m = 6 as far as Equation 9 is obeyed.

Nevertheless, the calculated solvation free energies were still strongly affected by  even
when setting m = 6. The results differed by up to 8 kcal/mol, beyond the range of σSEM. To
understand the reason of the discrepancy better, 〈∂V/∂λ〉 vs λ was plotted for the two cases.
(Figure 4) In these specific cases, we noticed that there is a kink at λ ≈ 0.6 for αLJ = 0.5. The
point λ = 0.6 is roughly the point where the exclusive volume of the test molecule
completely collapses (see right-hand side of Figure 3b) because the potential energy curve
becomes almost flat at short distances at λ ≥ 0.6 (e.g. the energy changes only by 0.6 kcal/
mol for distances between 0 and 1.1 Å where the minimum is located) and the minimum
moves to zero distance for λ-values higher than this. Therefore, one can expect that the
magnesium ion will most of the time have a water molecule on top of it at higher λ-values.
While this collapse of the molecule’s solvent exclusion volume has to occur at some point
during the simulation, the effect should be spread out over as wide a λ-range as possible, to
ensure better sampling.

However, stable close contacts between the ion and solvent may also occur at λ < 0.6. At λ =
0.5, the core repulsive potential has not yet spontaneously completely collapsed, but we
intentionally moved one water molecule near the magnesium ion for a second simulation
and collected ∂V/∂λ-values (Figure 5). The magnesium ion and the water were very close (<
0.2 Å) during the whole simulation time (100 ps). Figure 5 shows that ∂V/∂λ-values can
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fluctuate in different ranges depending on the initial geometry. This implies that the contact
geometry is trapped in a deeper potential well, which cannot be intuitively predicted by the
pair potential of magnesium ion and water. These sorts of alternative conformations were
not easily interconverted by thermal fluctuations. It can be interpreted that the early collapse
of exclusive volume is the primary reason of the problem. In other words, when it collapsed,
the core potential (VSC(ri j = 0)) was still too negative (about −40 kcal/mol). To confirm this
assumption, a ‘harder’ core potential was used (αLJ = 0.2), making the core potential about
−20 kcal/mol when the exclusive volume collapses (left-had side of Figure 3b). Now, the
calculated free energy agreed with that from the two-step simulation.

The appearance of a deep second minimum in the potential function where, as in our
example, a water molecule can become trapped is a case to be avoided in simulations. At
that point, the system has entered a state were barriers exist that are too high to be overcome
during any reasonable simulation time. As Figure 4 shows, standard error calculations can
significantly underestimate the actual problem, since a large part of the conformational
ensemble is not sampled. The autocorrelation time computed for a finite sample remains
small but the system properties actually strongly depend on a conformational change that is
unlikely to ever be observed in the simulation. Sudden kinks in the free energy curve
(resulting from neighboring windows exploring different conformational ensembles)
therefore point to possible problems in simulation convergence. It should be noted however,
that the molecule studied here, the small, highly charged Mg2+ ion, arguably represents a
worst case scenario for one-step TI transformations.

To compute the solvation free energy of water, a relatively hard core potential (αLJ = 0.2)
also turned out to be optimal. If the core of the water molecule is too soft, the repulsive
potential cannot efficiently cover the hydrogen atom and the same problem as seen in the
case of magnesium ion can occur. With a softer LJ potential (αLJ = 0.5), the repulsive core
of the molecule collapses at around λ = 0.5 and its core potential is about −50 kcal/mol, but
with a harder core potential (αLJ = 0.2), the core collapses at around λ = 0.85 and its core
potential is about −10 kcal/mol. (Figure 3c). The corresponding free energies showed a
significant discrepancy (−10.82 kcal/mol for αLJ = 0.5 and −7.0 kcal/mol for αLJ = 0.2) and
only the one with the harder core was comparable with the calculation for the two-step
transformation.

To predict the appearance of additional minima in the pair potential curve, one additional
complication must be adressed: Most commonly used water models have only one center for
their van der Waals potential, which is usually located close to or at the center of the oxygen
atom. The hydrogen atoms then have no LJ interactions. The single-minimum condition
(Equation 9) for the pair potential between such a hydrogen atom and any negatively
charged atom needs modification: In this case f(ri j) ≤ g(ri j) becomes:

(14)

Here, rs indicates the offset distance of the LJ potential center, projected onto the pair
interaction axis. This value will change dynamically depending on water model, geometry
and λ. To simplify, we consider the case of n = m = 6 and ri j = 0 only, where:

(15)
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Here, rs will not go to zero due to the fixed distance between the oxygen and hydrogen
atoms of water molecule. Therefore, as λ goes to 0, lhs of Equation 15 can be larger than rhs
and consequently, f (0) > g(0). As the result, a new minimum in the potential curve can
appear when λ is near zero. Although the contribution of the minimum may be small, this is
an apparant limitation of the current single step soft-core method. Some water molecules
like TIP4PEW additionally separate the center for Coulombic interaction and van der Waals
interaction on the oxygen atom. Accordingly, the same type of minimum can also appear
between a positively charged atom and the negative charge of a water molecule oxygen
atom. However, using optimal parameter sets, our results show the effect of the new
minimum on the computed solvation free energy to be apparently negligible, since both the
one-step and two-step transformations converged to almost equal results.

4.3 Optimal values for αLJ, βC and m in one-step transformations

Summarizing these results, for m = 2, a range from 2.5 to 3.5 Å is appropriate for  and
when m = 6, a range from 2.0 to 2.5 Å is suitable. However, determining αLJ can be more
difficult. Qualitatively we see that the core potential should not be too negative when the
core collapse occurs, but the potential should be soft enough to prevent ‘origin singularity’-
like curve shapes. Plotting potential energy curves as shown in Figure 3 is helpful in making
a choice for αLJ.

As a general rule of thumb, we suggest m = 6, αLJ = 0.5 and  for most molecules,
unless they have large local charges, in which case a smaller αLJ of 0.2–0.3 seems to work
better. For molecules that contain zero-vdW radius atoms or off-center partial charges, like
the TIPXP or SPC water models, αLJ < 0.5 is also recommended. Should simulation

instabilities or odd curve shapes be observed, αLJ can be systematically reduced or 
increased until smooth, integratable curves are obtained. Alternatively, a way of more
carefully determining settings for αLJ and βC, based on the optimal parameter sets (Table 3)
is outlined in the Appendix.

4.4 Comparison of one-step and two-step transformations
To compare the accuracy of one-step and two-step transformations, we first conducted
extensive sampling benchmark calculations to obtain a ‘best estimate’ free energy result.
These were conducted using 99 λ-windows, using the same equilibration protocol as above,
but with a 1 ns length data collection phase. Simulation parameter values determined as
outlined in the Appendix with m = 6 were used for each calculation (summarized in Table
4). Using the parameter settings from Table 3 instead did not change the results significantly
(data not shown). For all compounds, almost identical free energies of solvation were
calculated with one- or two-step transformations, with very similar overall σSEM (Table 4).
All calculations resulted in very smooth free energy curves (Figure 6).

Starting from the high precision values from the benchmark calculations, we subsequently
reduced the number of λ-windows used in computing the free energy, to get results as they
would have been obtained from a more typically applied TI calculation using many fewer
windows, e.g. 24, 14, 9 or 6. The results (Table 5) show that even for 6 λ-windows, the
deviations between the one- and two-step approaches are below 1 kcal/mol except in the
case of the magnesium ion. Its solvation free energy is much more negative than the other
test molecules and the error estimate was quite large. Longer simulations might be needed
for the magnesium ion to obtain more accurate results with less number of λ-windows.

In comparison to the high precision results, reducing the number of λ windows to 24 or 14
typically resulted in deviations of less than 0.2 kcal/mol and even the results with only 6 λ-
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windows tend to lie within 1 kcal/mol of the 99 λ ones. The largest contribution to the
deviation comes from the magnesium case. The thermodynamic integration results turn out
to be fairly robust with respect to reducing the number of substeps, both for the one- and
two-step approach. Still, errors from numerical integration appear larger than the σSEM
calculated above.

4.5 Solvation free energies of amino acid side chain residues
Having derived optimal settings for the soft-core parameters in the previous sections, we
now turn to testing these parameters in other typical applications. A common test case for
precise calculations of solvation free energies are amino acid side chain residues, built from
amino acid residues by replacing the protein backbone part with a hydrogen atom. To test
the performance of one-step vs. two-step TI transformations on larger and biochemically
more relevant test molecules than the ones discussed above, we have calculated the
solvation free energies of the side chains of tyrosine, histidine and glutamine (para-methyl
phenol, 4-methyl imidazole and propionamide). The molecules were built as described in the
work of Shirts et al.35 and solvated using the TIP4PEW water model, to stay consistent with
the calculations described so far. The histidine molecule was set to be the ε-protonated
tautomer. Simulations were performed using the same protocol as in the previous section,
but with an extended 2 ns length data collection phase, using parameters of αLJ = 0.6 for

two-step and  for one-step transformations. m = 2 was used to
allow a comparison to previously published work. The results are summarized in Table 6.
For all three amino acid side chain analogues, free energies of solvation are computed in
excellent agreement with previous results.

5 Conclusion
We present here optimized parameter settings for a widely used implementation of soft-core
potential functions for TI calculations. It is advisable to use the same value for the order
parameter m for the Coulomb potential as the order parameter n for the LJ potential. In this

work, we showed that n = m = 6 performs well. Optimal range for  turned out to be from
2.0 to 2.5 Å. While the ideal value for the αLJ-parameter is 0.5 in the second (vdW) step of
two-step TI transformations of chargeless molecules, it can be lowered to ~0.2 for one-step
transformations of compounds with moderately large partial charges.

Both one-step as well as two-step TI calculations resulted in very similar and precise free
energy results as far as correct soft-core parameters are used. One-step transformations gave
free energy curves of approximately the same average curvature as two-step
transformations, indicating that in most cases, TI calculations can be performed in a single
transformation step without a loss of precision. However, care must be taken when
performing one-step transformations, in case kinks in the curve of 〈∂V/∂λ〉 as seen in Figure
4 occur. Preliminary short calculations to obtain an estimate of the free energy curve shape
for a selected set of parameters could be used to identify such problems.

Although the calculations used here employed the thermodynamic integration scheme, the
parameters for soft-core potentials should also be of use with other free energy approaches,
such as free-energy perturbation theory or Bennett acceptance ratio calculations38,39. In all
such calculations, having smooth behavior as a function of λ, avoiding multiple minima, and
preventing premature “collapse” of interactions (in the one-step transformations) are
important to obtain reliable free energy estimates with minimal sampling requirements.
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Appendix: Optimizing soft-core parameters
The “rule of thumb” given in Section 4.3 has worked for us in many examples, but the
parameters for new compounds can alternatively be optimized by an analysis of important
pair potentials, as desribed here:

• First, a representative pair potential is chosen that is dominantly affecting the
interaction free energy. For example, we will consider the pair potential between a
magnesium ion and an oxygen atom of water to be the most important interaction
for the calculation of the solvation free energy of a magnesium ion.

• Second,  is taken to be the distance where the depth of the pair-potential is 80%
of its minimum value, to the right of the minimum distance. E.g., the lowest
potential energy of Mg2+-O(TIP4PEW) is about −367.4 kcal/mol. At the distance of

2.37 Å, the potential energy reaches about 80% of this value. Therefore,  can be
set to 2.37 Å.

• Third, if the maximum depth of the potential energy is shallower than −18 kcal/
mol, αLJ = 0.5 is a good starting point to try. Otherwise αLJ should be adjusted to
set the core potential (V (ri j = 0, λ )) to −18 kcal/mol when the exclusive volume is
collapsed. Taking the magnesium ion as an example again: When αLJ = 0.19, the
core potential becomes −18 kcal/mol at λ = 0.93 and the lowest potential becomes
−19.8 kcal/mol. Assuming the thermal fluctuation is about 1.8 kcal/mol (aqueous
solution at 298 K), it can be assumed that the exclusive volume is collapsed at this
λ. Therefore, αLJ = 0.19 can be used for magnesium ion.

Note that in the limit of extensive sampling, the choice of  does not affect the accuracy

of the calculated free energy. In practice however, the suggest value for  helps reduce
errors because, with the suggested value, the potential well-depth almost linearly decays at
early stage of perturbation (low λ) and thus errors are distributed evenly over the broad

range of λ. Plots like those in Figure 3 aid in determining .

Also, the choice of αLJ is important not only to have low errors but also to avoid the
problems mentioned in Figure 5. Even if the collapsed core potential is above −18 kcal/mol,
it may not necessarily cause a problem, but estimated errors may increase. The not-so-
obvious second minimum (for example, ‘Not contacted’ status of Figure 5) is caused by the
repulsion of solvent molecules around the solute. The value of −18 kcal/mol mentioned here
has been empirically determined and will probably not be optimal for every case. The
number will dependent on the various conditions, e.g. temperature, pressure, solvent
composition and more complex molecular structures.
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We chose major pair potentials to determine parameters in this way for the rest of the four
test compounds: H(c-hexane)-H(TIP4PEW), Cl−-H(TIP4PEW), O(ethanol)-H(TIP4PEW) and
O(TIP4PEW)-H(TIP4PEW). New parameters were determined and their instrinsic errors and
curvature-values of the calculation of free energy was measured in the same way as above.

We obtained  for cyclohexane, αLJ = 0.30,  for chloride

ion, αLJ = 0.38,  for ethanol, αLJ = 0.19,  for magnesium ion, and

αLJ = 0.26,  for TIP4PEW. Note that these sets are generally close to the
previous best sets listed in Table 3.
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Figure 1.
The potential energy landscape of an atomic pair interaction as a function of both the inter-
atomic distance ri j and λ. Both electrostatic and van der Waals soft-core potentials are used.
Typical values for atomic partial charges and Lennard-Jones parameters from the Amber
forcefield23,24 have been used. At regions of low λ both the strong van der Waals repulsion
at small ri j and the energy minimum at the most favorable interaction distance of
approximately 3 Å can be seen. Conversely, at λ-values close to one, the potential energy
surface is flat. The problematic intermediate region at λ ≈ 0.3 in which the interplay of
softened electrostatic and van der Waals interactions generates a potential curve with two

minima (marked A and B) can be distinguished. Values for αLJ and  of 0.5 and 3.5 Å
were used.
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Figure 2.
Influence of αLJ on the free energy curve shape, plotted for values of 0.3, 0.4, …, 0.7. The
minimum of the curve shifts to the left as αLJ increases and the value for λ → 0 becomes
smaller. The curves shown are for simulations of a cyclohexane molecule, similar results
were obtained for the other test compounds. For αLJ < 0.4 the curve shape begins to
resemble that of a non soft-core simulation showing the singularity problem. The lowest
error estimates are obtained for αLJ-values of 0.5 or larger. Error bars indicate σSEM of the
individual λ-window.
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Figure 3.
Soft-core pair potential energy curves between two atoms as a function of distance. The
curve shape changes according to λ. The hydrogen atoms of TIP4PEW do not have a LJ
potential. In this case, the LJ potential of the oxygen atom was used instead but the distance
was offset by the bond length of the hydrogen and the oxygen atoms. (rs =OH-distance).
(See Equation 14 and main text)
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Figure 4.
Some soft-core parameters produce kinks in the curve of 〈∂V/∂λ〉. Sometimes dramatic
geometrical change may occur around the kinks, leading to bad sampling and therefore,
avoiding them is recommended. This chart shows three 〈∂V/∂λ〉 curves of one-step
transformations for a magnesium ion. A kink is noticeable around λ = 0.6 when the

parameter set is αLJ = 0.5, , m = 6. With a shorter , the kink becomes
even more pronounced. Error bars for individual windows would not be visible on the scale
drawn, since they are all much smaller than 1 kcal/mol. See the main text for details.
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Figure 5.
Fluctuations of ∂V/∂λ can depend on the initial geometry when there are several local
minima. In the process of decoupling a magnesium ion from solvent water (αLJ = 0.5,

, m = 6), ∂V/∂λ was collected at λ = 0.5. Two different initial geometries were
tested: 1) The magnesium ion and the oxygen atom of a water molecule were placed less
than 0.1 Å apart (Contacted) 2) The magnesium ion was located further than 1 Å away from
the nearest water molecule (Not contacted). The ranges of ∂V/∂λ are clearly separable,
fluctuating around different averages, which means each geometry is trapped in its own
minimum state.
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Figure 6.
〈∂V/∂λ〉 curves for the five test compounds from TI calculations. The curves for one-step
transformations and both the electrostatic and van der Waals substeps of two-step
transformations are plotted. Optimized parameters from Table 4 were used. Error bars
indicate σSEM, but are too small to be visible in plots (b) and (d).
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Table 1

Average free energy estimates (in kcal/mol) for the second (vdW) step of a two-step TI calculation of the
solvation free energy for the five test compounds.  gives the average free energy change for the five
tested αLJ-values. σSEM indicates the standard error of the mean estimate (Equations 10 and 11, C indicates the
average curvature acc. to Equation 12.

Compound αLJ σSEM C

cyclohexane 0.3 2.28 0.106 0.25

0.4 2.13 0.096 0.26

0.5 2.05 0.087 0.26

0.6 2.20 0.089 0.31

0.7 2.12 0.085 0.28

chloride ion 0.3 4.75 0.052 0.17

0.4 4.75 0.053 0.14

0.5 4.72 0.055 0.15

0.6 4.66 0.056 0.16

0.7 4.79 0.056 0.16

ethanol 0.3 2.03 0.062 0.16

0.4 1.90 0.056 0.19

0.5 1.98 0.054 0.16

0.6 2.01 0.054 0.17

0.7 2.01 0.060 0.19

magnesium ion 0.3 −0.66 0.018 0.03

0.4 −0.63 0.016 0.03

0.5 −0.65 0.014 0.03

0.6 −0.65 0.014 0.03

0.7 −0.64 0.014 0.04

water 0.3 2.21 0.030 0.07

0.4 2.21 0.029 0.08

0.5 2.22 0.029 0.11

0.6 2.18 0.029 0.09

0.7 2.18 0.031 0.09
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Table 4

Solvation free energies of test compounds measured by one-step (first line) and two-step (second line)
transformations. Free energies obtained from the two methods were almost identical. Corresponding error
estimates were also similar. Curvatures of the two-step calculations are from the steps of removing Coulomb
and removing LJ potential, respectively.

molecules transformation σSEM C

cyclohexane

αLJ = 0.5, , m = 6

2.01 0.028 0.11

Two-step (αLJ = 0.5) 2.16 0.027 0.00, 0.12

chloride ion

αLJ = 0.3, , m = 6

−89.20 0.020 0.19

Two-step (αLJ = 0.4) −89.24 0.024 0.11, 0.05

ethanol

αLJ = 0.4, , m = 6

−4.33 0.018 0.07

Two-step (αLJ = 0.5) −4.32 0.019 0.03, 0.07

magnesium ion

αLJ = 0.19, , m = 6

−414.21 0.035 0.62

Two-step (αLJ = 0.6) −414.28 0.035 0.42, 0.01

water

αLJ = 0.26, , m = 6

−7.04 0.012 0.12

Two-step (αLJ = 0.4) −7.00 0.013 0.04, 0.03
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Table 6

Free energies of solvation for three amino acid side chain analogues from one- and two-step transformations,
compared to previous (two-step) simulations for the same force field (Amber ff99 plus TIP4PEW water).

sidechain one-step two-step literature, Ref.37

tyrosine −3.92 ± 0.02 −3.85 ± 0.02 −4.0

histidine −9.14 ± 0.02 −9.16 ± 0.02 −9.1

glutamine −10.18 ± 0.02 −10.25 ± 0.02 −10.1
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