Sequence homology between human and animal rotavirus serotype-specific glycoproteins

Michael L.Dyall-Smith and Ian H.Holmes

Department of Microbiology, University of Melbourne, Parkville, Victoria 3052, Australia

Received 20 February 1984; Revised and Accepted 26 March 1984

ABSTRACT

The dsRNA gene segment coding for the major outer shell glycoprotein of a human rotavirus (Hu/Australia/5/77, serotype 2) was converted into DNA and cloned into the PstI site of the plasmid pBR322. The cloned gene was sequenced and found to be 1062 bp long with one long open reading frame capable of coding for a protein 326 amino-acids. When this gene sequence was compared to the published sequences of the corresponding genes of two animal rotaviruses, SA11 (simian) and UK (bovine), all three were found to be closely related (74-78%). The predicted amino-acid sequences of the three genes were also highly conserved (75-86%), despite the fact that the three viruses belong to different serotypes.

INTRODUCTION

Rotavirus is now recognized by the World Health Organization as a major cause of infantile gastroenteritis, and a high priority has been placed on control of this disease by the production of a suitable vaccine (1). Cross-neutralization tests indicate four (or possibly five) (2-4) serotypes of human rotavirus and animal studies appear to show little cross-protection between serotypes (5). Thus a potential vaccine may have to incorporate all the known human serotypes. The virus serotype has recently been shown to be determined by the major outer shell glycoprotein (6-10) (a virus surface protein), and the gene segments coding for this protein from a bovine (UK) and a simian (SA11) rotavirus have recently been sequenced (11,12). To date however, no such gene from a human rotavirus has been analysed. We therefore cloned and sequenced the gene encoding this protein from a human rotavirus, Hu/5 (isolated in Melbourne, Australia) belonging to serotype 2.

MATERIALS AND METHODS

Virus growth and purification

The human rotavirus Hu/5 (Hu/Australia/5/77) (13) was grown in MA104

cells and purified as described previously (14).

Cloning rotavirus cDNA

The procedure for producing cDNA from rotavirus dsRNA, and cloning it into the PstI site of the plasmid pBR322 has been described previously by Dyall-Smith <u>et al</u>. (15).

Identification of cloned copies of the major outer shell glycoprotein gene of Hu/5 rotavirus

Since the UK bovine rotavirus gene encoding the major outer shell glycoprotein (gene 8 of this virus) had previously been cloned (11), this was used to screen the Hu/5 clones. To eliminate pBR322 sequences, the UK gene 8 clone was digested with PstI and the insert separated by agarose gel electrophoresis. The insert was then ³²P-labelled by nick translation (16) and hybridized to transformant bacterial colonies which had been lysed on nitrocellulose filters (17).

Northern blot analyses

Hu/5 dsRNA was separated on a polyacrylamide gel and immobilized on aminophenylthioether (APT) paper as described previously (7), except that the RNA was loaded right along the tope of the stacking gel (which was not divided into wells). After transfer, the blot was cut (lengthwise) into strips and hybridized to 32 P-labelled cDNA or nick translated DNA probes. Labelled cDNA was prepared from Hu/5 segments 7, 8 and 9 dsRNA (isolated by agarose gel electrophoresis) using reverse transcriptase (Life Sciences Inc. U.S.A.) and random primer DNA (prepared from calf thymus DNA) (18). Hybridization conditions were as follows: blots were prehybridized for 15 min at 60°C in 5 x Denhardt's solution containing 10mM HEPES (pH 7.0), 0.1% SDS, 3 x SSC, 10μ g/ml <u>E. coli</u> tRNA, and 18μ g/ml herring sperm DNA, and then hybridized (18 hr, 65°C) to the appropriate DNA probe. Blots were washed twice for 15 min at 60°C in 0.2 x SSC containing 0.1% SDS, and exposed to x-ray film.

DNA sequencing

The pBR322 clone was digested with PstI, and the insert subcloned into the PstI site of M13 mp8 (19). Sequences were determined from the M13 ssDNA template by the chain termination method (20) using exonuclease IIItreated restriction fragments (except the EcoRI/TaqI fragment) as primers (21). A synthetic primer (5'-dGGTCACAT-3'), complementary to the 3' end of the mRNA-sense strand was also used.

Electrophoresis of rotavirus dsRNA

dsRNA was extracted from purified virus preparations using a

Figure 1. Polyacrylamide gel electrophoresis of rotavirus dsRNA extracted from A, Wa; B, Hu/5; and C, UK viruses. The eleven gene segments of Wa virus have been numbered from largest to smallest.

simplified version of the method of Herring <u>et al</u>. (22). Briefly, 5μ l of a purified virus suspension was added to 200μ l of 0.1M sodium acetate buffer (pH5.0) containing 1% sodium dodecyl sulphate (SDS) and vortexed for 1 min with an equal volume of 'phenol'/chloroform mixture. The phases were separated by a brief centrifugation (2', 10,000 g) and an aliquot of the aqueous phase (5-20µl) mixed with 20µl of sample buffer (25% (v/v) glycerol, 0.2% bromphenol blue, 0.4M Tris-C1 (pH6.8)) and analysed on a 10% polyacrylamide gel (0.75 mm thick) using the buffer system of Laemmli (23) (but without SDS). The gel was silver stained according to the method of Herring <u>et al</u>. (22), except that the incubation in silver nitrate was for 30 min instead of 2 hr, and sodium borohydride was omitted from the developing solution. Degassing of solutions was also found to be unnecessary.

RESULTS AND DISCUSSION

The rotavirus genome consists of eleven dsRNA segments which upon gel electrophoresis form a characteristic pattern of bands; the virus electropherotype (24). The gel patterns of genomic RNA from the human rotavirus Hu/5 (Hu/Australia/5/77) (13), Wa (25) (human, serotype 1) and UK (26) viruses are shown in Fig. 1, and demonstrate clearly that Hu/5 has a

Figure 2. Northern blot hybridizations identifying gene segment 8 of Hu/5 rotavirus as encoding the major outer shell glycoprotein. Track A shows part of the ethidium bromide-stained polyacrylamide gel of Hu/5 dsRNA (only segments 5-11 shown). The RNA bands were transferred to APT-paper and the paper cut into strips (lengthwise). The blots were hybridized to ^{32}P -labelled DNA probes prepared from; B, RNA segments 7, 8 and 9 of Hu/5 virus (to precisely locate these bands); C, a pBR322 clone of UK virus segment 8 (the gene encoding the major outer shell glycoprotein of this virus), and D, a pBR322 clone of the glycoprotein gene of Hu/5 virus.

"short" pattern (due to the positions of segments 10 and 11) (27,14) compared to the "long" gel patterns of the other two. The "short" pattern has previously been associated with serotype 2 human rotaviruses (27-29), and when the Hu/5 virus was serotyped in this laboratory according to the method of Thouless <u>et al.</u> (30) (using typing antisera kindly supplied by M. Thouless and Wa, S2 (31) and SA11 (32) viruses as serotype 1, 2 and 3 reference strains) (4,33) it was indeed found to belong to serotype 2 (data not shown).

Hu/5 genomic dsRNA was converted into DNA and cloned into the PstI site of pBR322 as described previously for UK rotavirus (15). Clones of the major outer shell glycoprotein were identified using a probe (32 P-labelled by nick translation) prepared from a cloned glycoprotein gene from UK bovine rotavirus (11). The identity of one of these clones was confirmed by Northern blot analyses which also mapped this gene to segment 8 of Hu/5 rotavirus (Fig. 2). This clone was sequenced according to the strategy shown in Fig. 3 and the full sequence is shown in Fig. 4. The clone is a full-length copy of the glycoprotein gene since a) it is the same length (i.e. 1062 bp) as the corresponding UK and SA11 genes, and b) it has the characteristic conserved 5' and 3' terminal sequences (34,35). It has one open reading frame (the other frames contain multiple stop codons) capable of coding for a protein of 326 amino acids, and 5' and 3' non-coding regions of 48 and 36 bp respectively. In these respects it is identical to

Figure 3. Summary of the sequencing strategy used to determine the nucleotide sequence of the cloned DNA copy of dsRNA gene segment 8 of Hu/5 rotavirus. The number of nucleotides are indicated below the line representing the clone, and the restriction sites used to generate sequencing primers are shown immediately above (\diamondsuit , AluI; \blacktriangledown , EcoRI; \bigtriangledown , TaqI; \diamondsuit , BglII; \diamondsuit , HincII). A synthetic primer (5'-dGGTCACAT-3') complementary to the 3' end of the mRNA-sense strand was also used (primer P). The orientation of the clone is such that the mRNA-sense DNA strand is in the indicated 5' to 3' direction.

UK and SA11 glycoprotein genes (11,12). The base sequence homologies of the Hu/5, SA11 and UK glycoprotein genes are as follows; Hu/5:UK or SA11 = 74% and UK:SA11 = 77.6%. They are obviously closely related.

When the predicted amino-acid sequence of the Hu/5 virus glycoprotein gene was compared to those of UK and SA11 (Fig. 5) an even greater degree of similarity was observed. In pair-wise comparison the amino-acid sequence homologies are; Hu/5:UK = 75.8%, Hu/5:SA11 = 75.2% and UK:SA11 = 85.6%. Studies with UK and SA11 viruses have shown that the glycosylation of these proteins is asparagine-linked and consists of simple ("high mannose") oligosaccharide moieties (36-38). Fig. 5 shows that all three proteins retain a potential glycosylation site (of the type Asn-X- $\frac{\text{Ser}}{\text{Thr}}$) at residue 69, which for SA11 is the only such site. The Hu/5 and UK proteins also have potential sites at residues 238 (both), 146 (Hu/5) and 318 (UK), however the distribution of carbohydrate in these proteins is not known.

All glycoproteins of eukaryotic cells require a signal sequence for vectorial transport across the endoplasmic reticulum (39). Using the general rules proposed by Perlman and Halvorson (40) a typical signal sequence can be discerned in the first 25 residues of the 3 rotavirus glycoproteins. Their putative hydrophobic core sequences (res. 6-19) are preceded by the charged residue Glu⁻ (res. 5). The likely cleavage sites are after serine at position 15, or after position 25 (Ser/Thr). Recent studies with SA11 virus (41) have demonstrated a cleaved signal sequence for this protein with a molecular weight (1,500MW) consistent with the earlier predicted cleavage site. It is interesting that the first 25

					1	łu/5	Segi	ment	8		5'-0	GCT	TAN	VAAC (BAGA	TTT	CGT	CTGG	TAG	CGGT	TAGC	CTT	TTA ⁴⁸
ATG TA1	r GGT	ATT	GAA	TAT	ACC	ACA	ATT	CTG	ACC	ATT	TTG	ATA	TCT	ATC	ATA	TTA	TTG	AAT	TAT	ATA	TTA	AAA	ACT ¹²³
Met Tyj	r Gly	Ile	Glu	Tyr	Thr	Thr	Ile	Leu	Thr	Ile	Leu	Ile	Ser	Ile	Ile	Leu	Leu	Asn	Tyr	Ile	Leu	Lys	Thr ₂₅
ATA ACT	T AAT	ACG	ATG	GAC	TAC	ATA	ATT	TTC	AGG	TTT	TTA	CTA	CTC	ATT	GCT	TTA	ATA	TCA	CCA	TTT	GTA	AGG	ACA ¹⁹⁸
Ile Th	r Asn	Thr	Met	Asp	Tyr	Ile	Ile	Phe	Arg	Phe	Leu	Leu	Leu	Ile	Ala	Leu	Ile	Ser	Pro	Phe	Val	Arg	Thr ₅₀
CAA AA	T TAT	GGC	ATG	TAT	TTA	CCA	ATA	ACG	G GA	TCA	CTA	GAC	GCT	GTA	TAT	ACG	AAT	TCT	ACT	AGT	GGA	GAG	CCA ²⁷³
Gln As	n Tyr	Gly	Met	Tyr	Leu	Pro	Ile	Thr	Gly	Ser	Leu	Asp	Ala	Val	Tyr	Thr	Asn	Ser	Thr	Ser	Gly	Glu	Pro ₇₅
TTT TT	A ACT	TCG	ACG	CTG	TGT	TTA	ТАС	ТАТ	CCA	GCA	GAA	GCT	AAA	AAT	GAG	ATT	TCA	дат	дат	GAA	TGG	GAA	алт ³⁴⁸
Phe Let	u Thr	Ser	Thr	Leu	Cys	Leu	Туг	Туг	Pro	Ala	Glu	Ala	Lys	Asn	Glu	Ile	Ser	Авр	Азр	Glu	Trp	Glu	Asn ₁₀₀
ACT TTA	A TCA	C AA	TTA	TTT	TTA	ACT	AAA	GGA	TGG	CCA	ATT	GGA	TCA	GTT	TAT	TTT	AAA	GAC	TAC	AAT	дат	ATT	AAT ⁴²³
Thr Let	u Ser	Gln	Leu	Phe	Leu	Thr	Lys	Gly	Trp	Pro	Ile	Gly	Ser	Val	Tyr	Phe	Lys	Asp	Tyr	Asn	Авр	Ile	Asn ₁₂₅
ACA TT	T TCT	GTG	AAT	CCA	CAA	CTA	TAT	TGT	GAT	TAT	AAT	GTA	GTA	TTG	ATG	AGA	TAT	GAC	AAT	ACA	TCT	GAA	TTA ⁴⁹⁸
Thr Pho	e Ser	Val	Asn	Pro	Gln	Leu	Tyr	Cys	Asp	Tyr	Asn	Val	Val	Leu	Met	Arg	Tyr	Авр	Asn	Thr	Ser	Glu	Leu ₁₅₀
GAT GCI	A TCA	GAG	TTA	GCA	GAT	CTT	ATA	TTG	AAT	GAA	TGG	CTG	TGC	AAT	CCT	ATG	GAT	ATA	TCG	CTT	TAC	TAT	TAT ⁵⁷³
Asp Ala	a Ser	Glu	Leu	Ala	Asp	Leu	Ile	Leu	Asn	Glu	Trp	Leu	Cys	Asn	Pro	Net	Asp	Ile	Ser	Leu	Tyr	Tyr	Tyr ₁₇₅
CAA CA	A AGT	AGC	GAA	TCA	AAT	AAA	TGG	ATA	TCG	ATG	GGA	ACA	дас	TGC	ACG	GTA	AAA	GTT	TGT	CCA	CTC	እእፓ	ACA ⁶⁴⁸
Gln Gli	n Ser	Ser	Glu	Ser	Asn	Lys	Trp	Ile	Ser	Met	Gly	Thr	Авр	Cys	Thr	Val	Lys	Val	Cys	Pro	Leu	እያከ	Thr ₂₀₀
CAA AC	C CTA	GGG	ATT	GGA	TGC	AAA	ACT	ACG	GAT	GTA	AAC	ACA	TTT	GAG	ATT	GTT	GCG	TCG	TCT	GAA	AAA	TTA	GTA ⁷²³
Gln Th	r Leu	Gly	Ile	Gly	Cys	Lys	Thr	Thr	Asp	Val	Asn	Thr	Phe	Glu	Ile	Val	Ala	Ser	Ser	Glu	Lys	Leu	Val ₂₂₅
ATT ACT	T GAC	GTT	GTA	AAT	GGT	GTT	AAC	CAT	AAC	ATA	AAT	ATT	TCA	ATA	እእፕ	ACG	TGC	ACT	ATA	CGC	AAC	TGT	алт ⁷⁹⁸
Ile Th	r Asp	Val	Val	Asn	Gly	Val	Asn	His	Asn	Ile	Asn	Ile	Ser	Ile	እ\$n	Thr	Cys	Thr	Ile	Arg	Asn	Cys	^{Авп} 250
AAA TTI	A GGA	CCA	CGA	GAA	AAT	GTT	GCT	ATA	ATT	CAA	GTT	GGT	GGA	CCG	እእር	GCA	TTA	GАТ	ATC	ACT	GCT	дат	сса ⁸⁷³
Lys Lev	u Gly	Pro	Arg	Glu	Asn	Val	Ala	Ile	Ile	Gln	Val	Gly	Gly	Pro	እsn	Ala	Leu	Авр	Ile	Thr	Ala	Абр	^{Рго} 275
ACA ACI	A GTC	CCA	C AA	GTT	C AA	AGA	ATC	ATG	CGA	ATA	AAT	TGG	AAA	AAA	TGG	TGG	C AA	GTA	TTT	TAT	ACA	GTA	GTT ⁹⁴⁸
Thr Thi	r Val	Pro	Gln	Val	Gln	Arg	Ile	Met	Arg	Ile	Asn	Trp	Lys	Lys	Trp	Trp	Gln	Val	Phe	Tyr	Thr	Val	Val ₃₀₀
GAC TA	T ATT	AAC	C AA	GTT	ATA	C AA	GTC	ATG	TCC	AAA	CGA	TCA	AGA	TCA	TTA	GAC	GCA	GCT	GCT	TTT	TAT	TAT	AGA ¹⁰²³
Asp Ty:	r Ile	Asn	Gln	Val	Ile	Gln	Val	Met	Ser	Lys	Arg	Ser	Arg	Ser	Leu	Asp	Ala	Ala	Ala	Phe	Tyr	Tyr	Arg ₃₂₅
ATT <u>TAC</u> 11e ₃₂₆	<u>g</u> ata <u>s</u>	<u>rag</u> a:	ITTG	STCA	GATT	FGTA	IGAT	GTGA	CC-3	, 106 :	2												

Figure 4. Nucleotide sequence and predicted amino-acid sequence of the mRNA-sense DNA strand of the segment 8 clone of Hu-5 rotavirus. In phase termination codons are indicated by solid bars.

residues of all three glycoproteins show relatively greater conservation than the subsequent 25.

While the glycoproteins of Hu/5, UK and SA11 are very similar in amino-acid sequence, they must differ in antigenically significant regions since the three viruses are serotypically different, i.e. Hu/5 is a human serotype 2 virus, UK belongs to a bovine serotype (33), and SA11 although

	10	20 30	40 50
Hu/5 SA11 UK	M Y G I E Y T T I L T [] L I S I I M Y G I E Y T T [] L T F L I S I I M Y G I E Y T T I L [] F L [] S I []	I L L N Y I L K M I T NM M D Y I I [I L L N Y I L K S M T R I M D M I I I M L L N Y I L K S I T R I M D Y I I 	PRFLLUIIALISPFVRT YRTLIFIIVILSPFLRA YRTLLFIIVILSPFLRA YRFLLIVVVLACTMUNA
Hu/5 SA11 UK	60 0 N Y G M X L P I T G S L D A V Y 0 N Y G I N L P I T G S M D T A Y 0 N Y G V N L P I T G S M D T A Y	70 80 Y 🗖 Ň S T 🗟 G E P P L T S T L C L Y Y A N S T Q E E T P L T S T L C L Y Y A N S T Q S E P F L T S T L C L Y	90 YPAEARNEISDDEWEN YPTEAATEINDNSWXD YPVEASNEIADTEWKD
Hu/5 SAll UK	110 T L S Q L F L T K G W P I G S V Y T L S Q L F L T K G W P T G S V Y T L S Q L F L T K G W P T G S V Y	120 120 1 R K D Y N D I N T P S V N P Q L Y Y Y F K E Y T N I A S F S V D P Q L Y Y F K E Y T D I A A F S V E P Q L Y	140 150 С D Y N V V L M (В Y D (Й Т (S) E L С D Y N V V L M К Y D (А T L Q) L С D Y N L V L M К Y D (S T Q) E L
Hu/5 SAll UK	160 D (A) S E L A D L I L N E W L C N P D M S E L A D L I L N E W L C N P D M S E L A D L I L N E W L C N P	170 180 P M D I Š L Y Y Y Q Q Š Š E Š N K W P M D I T L Y Y Y Q Q T D E A N K W P M D I T L Y Y Y Q Q T D E A N K W	190 200 І S M G โD C T V K V C P L N T І S M G S S C T โ K V C P L N T І S M G S S C T V K V C P L N T
Hu/5 SA11 UK	210 OTLGIGC (KITTD V) N TFE I OTLGIGC LTTD A TTFE E QTLGIGCLITN) PD TFE T	220 230 Î V A Ŝ Ŝ E K L V I T D V V Ñ G V N E V A T A E K L V I T D V V D G V N T V A T T E K L V I T D V V D G V N	240 250 H M II NISIN T C T I R N C M H K L D V T T A T C T I R N C K H K L N V T T A T C T I R N C K
Hu/5 SAll UK	260 K L G P R E N V A I I Q V G G [P] N K L G P R E N V A Ŭ I Q V G G S [D] K L G P R E N V A I I Q V G G A] N	270 280 N Å L D I T A D P T T V P Q V Ø R I I D I L D I T A D P T T A P Q T E R M I N V L D I T A D P T T A P Q T E R M I	290 300 M R I N W K K W W Q V F Y T V V M R I N W K K W W Q V F Y T V V M R I N W K K W W Q V F Y T V V
	310	320	
HuZS SAll UK	D Y Î N Q Ŭ] I Q V M S K R S R S L D Y V D Q I I Q V M S K R S R S L D Y V N Q I I Q T M S K R S R S L	L [D] A A A F Y Y R [] L N S A A F Y Y R V L N S [S] A F Y Y R V L N S [S] A F Y Y R V	

<u>Figure 5</u>. Comparison of the predicted amino-acid sequence of the major outer shell glycoproteins of Hu/5, SA11 and UK rotaviruses. Data for the SA11 and UK protein sequences are from refs. 11 and 12. Amino-acid substitutions are boxed, and where all three amino-acids differ at the same position, all three have been outlined. Asterisks show potential glycosylation sites in the Hu/5 sequence, and dotted lines indicate highly hydrophobic regions near the N-terminus.

of simian origin is serologically human type 3 (33). Results of competition experiments using monoclonal antibodies to SA11 virus have demonstrated only one or possibly two epitopes involved in neutralization (S. Sonza and A. Breschkin, manuscript submitted for publication), and future work in this laboratory is aimed at precisely identifying these regions.

The sequence data (above) support the wealth of serological evidence (42-44) that rotaviruses are a closely related group. Indeed they appear to be much more closely related than the three serotypes of mammalian reovirus, which are structurally and epidemiologically similar to rotaviruses (45). The genes encoding the serotype-specific protein of the three reovirus serotypes are related only to the extent of 1-12% as estimated by nucleic acid hybridization (46). The fact that two simian rotaviruses, SA11 and rhesus (MM18006) are serologically closely related (33) yet were isolated over 20 years apart (47,48) also suggests that rotavirus serotypes are fairly stable antigenically, unlike influenza A subtypes which show antigenic drift (49). While many more rotavirus glycoprotein genes need to be studied, the limited number of human serotypes so far detected and the apparently low level of antigenic drift look encouraging for the development of human rotavirus vaccines.

ACKNOWLEDGEMENTS

We thank M.J. Albert and R.F. Bishop, S. Urasawa, R.G. Wyatt and T.H. Flewett for kindly supplying virus strains, and C.W. Ward for allowing one of us (M.D.-S.) the use of facilities at the C.S.I.R.O., Division of Protein Chemistry, Melbourne. M.D.-S. is grateful for the many helpful discussions with M. Fraenkel and to T. Dopheide for his hospitality and for providing the synthetic DNA primer. We thank J. Lambert for technical assistance and M. Gierveld for the expert typing of the manuscript. M.D.-S. is supported by an Australian Postdoctoral Fellowship from the National Health and Medical Research Council. This work was financed by the Diarrheal Diseases Programme of the World Health Organization and by the National Health and Medical Research Council of Australia.

REFERENCES

- 1. Bull. W.H.O. (1983) 61, 251-254.
- Sato, K., Inaba, Y., Miura, Y., Tokuhisa, S. and Matumoto, M. (1982). Arch. Virol. 73, 45-50.
- Thouless, M.E., Beards, M. and Flewett, T.H. (1982). Arch. Virol. 73, 219-230.
- Wyatt, R.G., James, H.D., Pittman, A.L., Hoshino, Y., Greenberg, H.B., Kalica, A.R., Flores, J. and Kapikian, A.Z. (1983). J. Clin. Micro. 18, 310-317.
- Gaul, S.K., Simpson, T.F., Woode, G.N. and Fulton, R.W. (1982).
 J. Clin. Micro. 16, 495-503.
- Kalica, A.R., Greenberg, H.B., Wyatt, R.G., Flores, J., Sereno, M.M., Kapikian, A.Z. and Chanock, R.M. (1981). Virology 112, 385-390.
- 7. Dyall-Smith, M.L., Azad, A.A. and Holmes, I.H. (1983). J. Virol. 46, 317-320.
- Kantharidis, P., Dyall-Smith, M.L. and Holmes, I.H. (1983). J. Virol. 48, 330-334.
- 9. Bastardo, J.W., McKimm-Breschkin, J.L., Sonza, S., Mercer, L.D. and Holmes, I.H. (1981). Infect. Immun. 34, 641-647.
- Sonza, S., Breschkin, A.M. and Holmes I.H. (1983). J. Virol. 45, 1143-1146.
- Elleman, T.C., Hoyne, P.A., Dyall-Smith, M.L., Holmes, I.H. and Azad, A.A. (1983). Nucleic Acids Res. 11, 4689-4701.
- 12. Both, G.W., Mattick, J.S. and Bellamy, A.R. (1983). Proc. Natl. Acad. Sci. U.S.A. 80, 3091-3095.
- 13. Albert, M.J. and Bishop, R.F. (1984). J. Med. Virol. In press.
- 14. Dyall-Smith, M.L. and Holmes, I.H. (1981). J. Virol. 38, 1099-1103.
- Dyall-Smith, M.L., Elleman, T.C., Hoyne, P.A., Holmes, I.H. and Azad, A.A. (1983). Nucleic Acids Res. 11, 3351-3362.
- 16. Rigby, P.W.S., Dieckman, M., Rhodes, C. and Berg, P. (1977).

	J. Mol. Biol. 113. 237-251.
17.	Grunstein, M. and Hogness, D.S. (1975). Proc. Nat. Acad. Sci., U.S.A. 72, 3961-3965.
18.	Taylor, J.M., Illemensee, R. and Summers, J. (1976). Biochim. Biophys. Acta 442, 324-330.
19.	Messing, J., Crea, R. and Seeberg, P.H. (1981). Nucleic Acids Res. 9, 309-321.
20.	Sanger, F., Nicklen, S. and Coulson, A.R. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5463-5467.
21.	Smith, A.J.H. (1979). Nucleic Acids Res. 6, 831-848.
22.	Herring, A.J., Inglis, N.F., Ojeh, C.K., Snodgrass, D.R. and Menzies, J.D. (1982), J. Clin. Microbiol. 16, 473-477
23.	Jaempli, U.K. (1970). Nature 227 680-685.
24.	Holmes, I.H. (1983). In "Reoviridae" (ed. W.K. Joklik) p.365-367
25	(Fielding, New 101K).
25.	Wyatt, R.G., James, W.D., Boni, E.H., Theil, K.W., Saif, L.J., Kalica, A.R., Greenberg, H.B., Kapikian, A.Z. and Chanock, R.M. (1980). Science 207. 189-191.
26.	Woode, G.N., Bridger, J.C., Hall, G. and Dennis, M.J. (1974). Res. Vet. Sci. 16, 102-105.
27.	Rodger, S.M., Bishop, R.F., Birch, C., McLean, B. and Holmes, I.H. (1981). J. Clin. Microbiol. 13, 272-278.
28.	Kalica, A.R., Greenberg, H.B., Espejo, R.T., Flores, J., Wyatt, R.G., Kapikian, A.Z. and Chanock, R.M. (1981). Infect. Immun. 33, 958-961.
29.	Beards, G.M. (1982). Archiv. Virol. 74, 65-70.
30.	Thouless, M.E., Beards, G.M. and Flewett, T.H. (1982). Arch. Virol. 73, 219-230.
31.	Urasawa, S., Urasawa, T. and Taniguchi, K. (1982). Infect. Immun. 38, 781-784.
32.	Rodger, S.M., Schnagl, R.D. and Holmes, I.H. (1977). J. Virol. 24, 91-98.
33.	Wyatt, R.G., Greenberg, H.B., James, W.D., Pittman, A.L., Kalica, A.R., Flores, J., Chanock, R.M. and Kapikian, A.Z. (1982). Infect. Immun. 37. 110-115.
34.	Clarke, I.N. and McCrae, M.A. (1983). J. Gen. Virol. 64, 1877-1884.
35.	Imai, M., Akatani, K., Ikegami, N. and Furuichi, Y. (1983). J. Virol. 47, 125-136.
36.	Ericson, B.L., Graham, D.Y. Mason, B.B. and Estes, M.K. (1982). J. Virol. 42, 825-839.
37.	Arias, C.F., Lopez, S. and Espejo, R.T. (1982). J. Virol. 41. 42-50.
38.	McCrae, M.A. and Faulkner-Valle, G.P. (1981). J. Virol. 39, 490-496.
39.	Kreil, G. (1981). Annu. Rev. Biochem. 50. 317-348.
40.	Perlman, D. and Halvorson, H.O. (1983). J. Mol. Biol. 167, 391-409.
41.	Ericson, B.L., Graham, D.Y., Mason, B.B., Hanssen, H.H. and Estes, M.K. (1983). Virology 127, 320-332.
42.	Kapikian, A.Z., Cline, W.L., Kim, H.W., Kalica, A.R., Wyatt, R.G. van Kirk, D.H., Chanock, R.M., James, H.D., Jr. and Vaughn, A.L.
43.	(1976). Proc. Soc. Exp. Biol. Med. 152, 535-539. Woode, G.N., Bridger, J.C., Jones, J.M., Flewett, T.H., Bryden, A.S.,
	Davies, H.A. and White, G.B.B. (1976). Infect. Immunol. 14, 804-810.
44.	Thouless, M.E., Bryden, A.S., Flewett, T.H., Woode, G.N.,
	Bridger, J.C., Snodgrass, D.R. and Herring, J.A. (1977). Arch. Virol. 53, 287-294
45.	Joklik, W.K. (1983). In "The Reoviridae" (ed. W.K. Joklik) p.1-7 (Plenum, New York, (1983).
46.	Gaillard, R.K. and Joklik, W.K. (1982). Virology 123, 152-164.
47	Malherhe H H and Strickland-Cholmley M (1967) Arch Gesamte

Virusforsch. 22, 235-245.
48. Stuker, G., Oshiro, L.S. and Schmidt, N.J. (1980). J. Clin. Microbiol. 11, 202-203.
49. Both, G.W., Sleigh, M.J., Cox, N.J. and Kendal, A.P. (1983). J. Virol. 48, 52-60.